L(s) = 1 | + (−0.5 + 0.866i)5-s + (0.5 + 2.59i)7-s + (−1 − 1.73i)11-s + 13-s + (−1.5 + 2.59i)19-s + (−0.499 − 0.866i)25-s + (4.5 + 7.79i)31-s + (−2.5 − 0.866i)35-s + (−1.5 + 2.59i)37-s − 2·41-s + 3·43-s + (−3 + 5.19i)47-s + (−6.5 + 2.59i)49-s + 1.99·55-s + (−2 − 3.46i)59-s + ⋯ |
L(s) = 1 | + (−0.223 + 0.387i)5-s + (0.188 + 0.981i)7-s + (−0.301 − 0.522i)11-s + 0.277·13-s + (−0.344 + 0.596i)19-s + (−0.0999 − 0.173i)25-s + (0.808 + 1.39i)31-s + (−0.422 − 0.146i)35-s + (−0.246 + 0.427i)37-s − 0.312·41-s + 0.457·43-s + (−0.437 + 0.757i)47-s + (−0.928 + 0.371i)49-s + 0.269·55-s + (−0.260 − 0.450i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.701 - 0.712i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.701 - 0.712i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.066516671\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.066516671\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
| 7 | \( 1 + (-0.5 - 2.59i)T \) |
good | 11 | \( 1 + (1 + 1.73i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - T + 13T^{2} \) |
| 17 | \( 1 + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.5 - 2.59i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 + (-4.5 - 7.79i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (1.5 - 2.59i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 2T + 41T^{2} \) |
| 43 | \( 1 - 3T + 43T^{2} \) |
| 47 | \( 1 + (3 - 5.19i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (2 + 3.46i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (1 - 1.73i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.5 + 4.33i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 14T + 71T^{2} \) |
| 73 | \( 1 + (0.5 + 0.866i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (4.5 - 7.79i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 6T + 83T^{2} \) |
| 89 | \( 1 + (2 - 3.46i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 14T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.046502553664370268660308140522, −8.401340311052111018721201385101, −7.86093704983684182060545729224, −6.79008653767653431209116169550, −6.10998724273518174755242839035, −5.37012095030339318983678769393, −4.47964789811145656219081102061, −3.35496191506312556476808847210, −2.66263514703228905682009739745, −1.46578173202486610092740303495,
0.35598933204592419380338541279, 1.59851258659846327415508034260, 2.80555058472077783504835140222, 4.00574083414178767156899211747, 4.48979605561166295090958934247, 5.40591509166606710614496311835, 6.40334328231317704171973469948, 7.20967667627442631268911740403, 7.81668569693202870741659074953, 8.555803318689080057763811484465