L(s) = 1 | + (−0.5 + 0.866i)5-s + (0.5 + 2.59i)7-s + (−1 − 1.73i)11-s + 13-s + (−1.5 + 2.59i)19-s + (−0.499 − 0.866i)25-s + (4.5 + 7.79i)31-s + (−2.5 − 0.866i)35-s + (−1.5 + 2.59i)37-s − 2·41-s + 3·43-s + (−3 + 5.19i)47-s + (−6.5 + 2.59i)49-s + 1.99·55-s + (−2 − 3.46i)59-s + ⋯ |
L(s) = 1 | + (−0.223 + 0.387i)5-s + (0.188 + 0.981i)7-s + (−0.301 − 0.522i)11-s + 0.277·13-s + (−0.344 + 0.596i)19-s + (−0.0999 − 0.173i)25-s + (0.808 + 1.39i)31-s + (−0.422 − 0.146i)35-s + (−0.246 + 0.427i)37-s − 0.312·41-s + 0.457·43-s + (−0.437 + 0.757i)47-s + (−0.928 + 0.371i)49-s + 0.269·55-s + (−0.260 − 0.450i)59-s + ⋯ |
Λ(s)=(=(2520s/2ΓC(s)L(s)(−0.701−0.712i)Λ(2−s)
Λ(s)=(=(2520s/2ΓC(s+1/2)L(s)(−0.701−0.712i)Λ(1−s)
Degree: |
2 |
Conductor: |
2520
= 23⋅32⋅5⋅7
|
Sign: |
−0.701−0.712i
|
Analytic conductor: |
20.1223 |
Root analytic conductor: |
4.48578 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2520(1801,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2520, ( :1/2), −0.701−0.712i)
|
Particular Values
L(1) |
≈ |
1.066516671 |
L(21) |
≈ |
1.066516671 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(0.5−0.866i)T |
| 7 | 1+(−0.5−2.59i)T |
good | 11 | 1+(1+1.73i)T+(−5.5+9.52i)T2 |
| 13 | 1−T+13T2 |
| 17 | 1+(−8.5+14.7i)T2 |
| 19 | 1+(1.5−2.59i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−11.5−19.9i)T2 |
| 29 | 1+29T2 |
| 31 | 1+(−4.5−7.79i)T+(−15.5+26.8i)T2 |
| 37 | 1+(1.5−2.59i)T+(−18.5−32.0i)T2 |
| 41 | 1+2T+41T2 |
| 43 | 1−3T+43T2 |
| 47 | 1+(3−5.19i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−26.5+45.8i)T2 |
| 59 | 1+(2+3.46i)T+(−29.5+51.0i)T2 |
| 61 | 1+(1−1.73i)T+(−30.5−52.8i)T2 |
| 67 | 1+(2.5+4.33i)T+(−33.5+58.0i)T2 |
| 71 | 1+14T+71T2 |
| 73 | 1+(0.5+0.866i)T+(−36.5+63.2i)T2 |
| 79 | 1+(4.5−7.79i)T+(−39.5−68.4i)T2 |
| 83 | 1−6T+83T2 |
| 89 | 1+(2−3.46i)T+(−44.5−77.0i)T2 |
| 97 | 1+14T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.046502553664370268660308140522, −8.401340311052111018721201385101, −7.86093704983684182060545729224, −6.79008653767653431209116169550, −6.10998724273518174755242839035, −5.37012095030339318983678769393, −4.47964789811145656219081102061, −3.35496191506312556476808847210, −2.66263514703228905682009739745, −1.46578173202486610092740303495,
0.35598933204592419380338541279, 1.59851258659846327415508034260, 2.80555058472077783504835140222, 4.00574083414178767156899211747, 4.48979605561166295090958934247, 5.40591509166606710614496311835, 6.40334328231317704171973469948, 7.20967667627442631268911740403, 7.81668569693202870741659074953, 8.555803318689080057763811484465