Properties

Label 2520.2.bi.c
Level 25202520
Weight 22
Character orbit 2520.bi
Analytic conductor 20.12220.122
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2520,2,Mod(361,2520)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2520, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2520.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2520=233257 2520 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2520.bi (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 20.122301309420.1223013094
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 840)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qζ6q5+(3ζ6+2)q7+(2ζ62)q11+q133ζ6q19+(ζ61)q25+(9ζ6+9)q31+(ζ63)q353ζ6q37+14q97+O(q100) q - \zeta_{6} q^{5} + ( - 3 \zeta_{6} + 2) q^{7} + (2 \zeta_{6} - 2) q^{11} + q^{13} - 3 \zeta_{6} q^{19} + (\zeta_{6} - 1) q^{25} + ( - 9 \zeta_{6} + 9) q^{31} + (\zeta_{6} - 3) q^{35} - 3 \zeta_{6} q^{37} + \cdots - 14 q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2qq5+q72q11+2q133q19q25+9q315q353q374q41+6q436q4713q49+4q554q592q61q655q6728q71+28q97+O(q100) 2 q - q^{5} + q^{7} - 2 q^{11} + 2 q^{13} - 3 q^{19} - q^{25} + 9 q^{31} - 5 q^{35} - 3 q^{37} - 4 q^{41} + 6 q^{43} - 6 q^{47} - 13 q^{49} + 4 q^{55} - 4 q^{59} - 2 q^{61} - q^{65} - 5 q^{67} - 28 q^{71}+ \cdots - 28 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2520Z)×\left(\mathbb{Z}/2520\mathbb{Z}\right)^\times.

nn 281281 631631 10811081 12611261 20172017
χ(n)\chi(n) 11 11 ζ6-\zeta_{6} 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
361.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0 0 −0.500000 0.866025i 0 0.500000 2.59808i 0 0 0
1801.1 0 0 0 −0.500000 + 0.866025i 0 0.500000 + 2.59808i 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2520.2.bi.c 2
3.b odd 2 1 840.2.bg.e 2
7.c even 3 1 inner 2520.2.bi.c 2
12.b even 2 1 1680.2.bg.h 2
21.g even 6 1 5880.2.a.bc 1
21.h odd 6 1 840.2.bg.e 2
21.h odd 6 1 5880.2.a.c 1
84.n even 6 1 1680.2.bg.h 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
840.2.bg.e 2 3.b odd 2 1
840.2.bg.e 2 21.h odd 6 1
1680.2.bg.h 2 12.b even 2 1
1680.2.bg.h 2 84.n even 6 1
2520.2.bi.c 2 1.a even 1 1 trivial
2520.2.bi.c 2 7.c even 3 1 inner
5880.2.a.c 1 21.h odd 6 1
5880.2.a.bc 1 21.g even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(2520,[χ])S_{2}^{\mathrm{new}}(2520, [\chi]):

T112+2T11+4 T_{11}^{2} + 2T_{11} + 4 Copy content Toggle raw display
T131 T_{13} - 1 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
77 T2T+7 T^{2} - T + 7 Copy content Toggle raw display
1111 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
1313 (T1)2 (T - 1)^{2} Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 T2+3T+9 T^{2} + 3T + 9 Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 T29T+81 T^{2} - 9T + 81 Copy content Toggle raw display
3737 T2+3T+9 T^{2} + 3T + 9 Copy content Toggle raw display
4141 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
4343 (T3)2 (T - 3)^{2} Copy content Toggle raw display
4747 T2+6T+36 T^{2} + 6T + 36 Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 T2+4T+16 T^{2} + 4T + 16 Copy content Toggle raw display
6161 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
6767 T2+5T+25 T^{2} + 5T + 25 Copy content Toggle raw display
7171 (T+14)2 (T + 14)^{2} Copy content Toggle raw display
7373 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
7979 T2+9T+81 T^{2} + 9T + 81 Copy content Toggle raw display
8383 (T6)2 (T - 6)^{2} Copy content Toggle raw display
8989 T2+4T+16 T^{2} + 4T + 16 Copy content Toggle raw display
9797 (T+14)2 (T + 14)^{2} Copy content Toggle raw display
show more
show less