Properties

Label 840.2.bg.e
Level 840840
Weight 22
Character orbit 840.bg
Analytic conductor 6.7076.707
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [840,2,Mod(121,840)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(840, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("840.121");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 840=23357 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 840.bg (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 6.707433769796.70743376979
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ6+1)q3+ζ6q5+(3ζ6+2)q7ζ6q9+(2ζ6+2)q11+q13+q153ζ6q19+(2ζ61)q21+(ζ61)q25+2q99+O(q100) q + ( - \zeta_{6} + 1) q^{3} + \zeta_{6} q^{5} + ( - 3 \zeta_{6} + 2) q^{7} - \zeta_{6} q^{9} + ( - 2 \zeta_{6} + 2) q^{11} + q^{13} + q^{15} - 3 \zeta_{6} q^{19} + ( - 2 \zeta_{6} - 1) q^{21} + (\zeta_{6} - 1) q^{25} + \cdots - 2 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+q3+q5+q7q9+2q11+2q13+2q153q194q21q252q27+9q312q33+5q353q37+q39+4q41+6q43+q45+4q99+O(q100) 2 q + q^{3} + q^{5} + q^{7} - q^{9} + 2 q^{11} + 2 q^{13} + 2 q^{15} - 3 q^{19} - 4 q^{21} - q^{25} - 2 q^{27} + 9 q^{31} - 2 q^{33} + 5 q^{35} - 3 q^{37} + q^{39} + 4 q^{41} + 6 q^{43} + q^{45}+ \cdots - 4 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/840Z)×\left(\mathbb{Z}/840\mathbb{Z}\right)^\times.

nn 241241 281281 337337 421421 631631
χ(n)\chi(n) ζ6-\zeta_{6} 11 11 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
121.1
0.500000 0.866025i
0.500000 + 0.866025i
0 0.500000 + 0.866025i 0 0.500000 0.866025i 0 0.500000 + 2.59808i 0 −0.500000 + 0.866025i 0
361.1 0 0.500000 0.866025i 0 0.500000 + 0.866025i 0 0.500000 2.59808i 0 −0.500000 0.866025i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 840.2.bg.e 2
3.b odd 2 1 2520.2.bi.c 2
4.b odd 2 1 1680.2.bg.h 2
7.c even 3 1 inner 840.2.bg.e 2
7.c even 3 1 5880.2.a.c 1
7.d odd 6 1 5880.2.a.bc 1
21.h odd 6 1 2520.2.bi.c 2
28.g odd 6 1 1680.2.bg.h 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
840.2.bg.e 2 1.a even 1 1 trivial
840.2.bg.e 2 7.c even 3 1 inner
1680.2.bg.h 2 4.b odd 2 1
1680.2.bg.h 2 28.g odd 6 1
2520.2.bi.c 2 3.b odd 2 1
2520.2.bi.c 2 21.h odd 6 1
5880.2.a.c 1 7.c even 3 1
5880.2.a.bc 1 7.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T1122T11+4 T_{11}^{2} - 2T_{11} + 4 acting on S2new(840,[χ])S_{2}^{\mathrm{new}}(840, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
55 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
77 T2T+7 T^{2} - T + 7 Copy content Toggle raw display
1111 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
1313 (T1)2 (T - 1)^{2} Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 T2+3T+9 T^{2} + 3T + 9 Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 T29T+81 T^{2} - 9T + 81 Copy content Toggle raw display
3737 T2+3T+9 T^{2} + 3T + 9 Copy content Toggle raw display
4141 (T2)2 (T - 2)^{2} Copy content Toggle raw display
4343 (T3)2 (T - 3)^{2} Copy content Toggle raw display
4747 T26T+36 T^{2} - 6T + 36 Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
6161 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
6767 T2+5T+25 T^{2} + 5T + 25 Copy content Toggle raw display
7171 (T14)2 (T - 14)^{2} Copy content Toggle raw display
7373 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
7979 T2+9T+81 T^{2} + 9T + 81 Copy content Toggle raw display
8383 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
8989 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
9797 (T+14)2 (T + 14)^{2} Copy content Toggle raw display
show more
show less