L(s) = 1 | − 1.17·2-s + 0.381·4-s − 7-s + 0.726·8-s + 9-s + 1.61·11-s + 1.17·14-s − 1.23·16-s − 1.17·18-s − 1.90·22-s + 0.618·23-s + 25-s − 0.381·28-s − 1.90·29-s + 0.726·32-s + 0.381·36-s − 1.61·43-s + 0.618·44-s − 0.726·46-s + 49-s − 1.17·50-s + 1.17·53-s − 0.726·56-s + 2.23·58-s − 63-s + 0.381·64-s + 1.17·67-s + ⋯ |
L(s) = 1 | − 1.17·2-s + 0.381·4-s − 7-s + 0.726·8-s + 9-s + 1.61·11-s + 1.17·14-s − 1.23·16-s − 1.17·18-s − 1.90·22-s + 0.618·23-s + 25-s − 0.381·28-s − 1.90·29-s + 0.726·32-s + 0.381·36-s − 1.61·43-s + 0.618·44-s − 0.726·46-s + 49-s − 1.17·50-s + 1.17·53-s − 0.726·56-s + 2.23·58-s − 63-s + 0.381·64-s + 1.17·67-s + ⋯ |
Λ(s)=(=(2527s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(2527s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
2527
= 7⋅192
|
Sign: |
1
|
Analytic conductor: |
1.26113 |
Root analytic conductor: |
1.12300 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2527(1084,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 2527, ( :0), 1)
|
Particular Values
L(21) |
≈ |
0.6629253917 |
L(21) |
≈ |
0.6629253917 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+T |
| 19 | 1 |
good | 2 | 1+1.17T+T2 |
| 3 | 1−T2 |
| 5 | 1−T2 |
| 11 | 1−1.61T+T2 |
| 13 | 1−T2 |
| 17 | 1−T2 |
| 23 | 1−0.618T+T2 |
| 29 | 1+1.90T+T2 |
| 31 | 1−T2 |
| 37 | 1+T2 |
| 41 | 1−T2 |
| 43 | 1+1.61T+T2 |
| 47 | 1−T2 |
| 53 | 1−1.17T+T2 |
| 59 | 1−T2 |
| 61 | 1−T2 |
| 67 | 1−1.17T+T2 |
| 71 | 1+T2 |
| 73 | 1−T2 |
| 79 | 1−1.90T+T2 |
| 83 | 1−T2 |
| 89 | 1−T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.203743631023791004363333834341, −8.621624232741404911220456351245, −7.54079475970765626826531841508, −6.89879094495389046916886732604, −6.47995354696416956065557806463, −5.17687471776181476460598889551, −4.12891555653162599963939373919, −3.48344006436650449533195192636, −1.94796406838159161512101365954, −0.970010285617325072201697358933,
0.970010285617325072201697358933, 1.94796406838159161512101365954, 3.48344006436650449533195192636, 4.12891555653162599963939373919, 5.17687471776181476460598889551, 6.47995354696416956065557806463, 6.89879094495389046916886732604, 7.54079475970765626826531841508, 8.621624232741404911220456351245, 9.203743631023791004363333834341