Properties

Label 2-2527-7.6-c0-0-4
Degree $2$
Conductor $2527$
Sign $1$
Analytic cond. $1.26113$
Root an. cond. $1.12300$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.17·2-s + 0.381·4-s − 7-s + 0.726·8-s + 9-s + 1.61·11-s + 1.17·14-s − 1.23·16-s − 1.17·18-s − 1.90·22-s + 0.618·23-s + 25-s − 0.381·28-s − 1.90·29-s + 0.726·32-s + 0.381·36-s − 1.61·43-s + 0.618·44-s − 0.726·46-s + 49-s − 1.17·50-s + 1.17·53-s − 0.726·56-s + 2.23·58-s − 63-s + 0.381·64-s + 1.17·67-s + ⋯
L(s)  = 1  − 1.17·2-s + 0.381·4-s − 7-s + 0.726·8-s + 9-s + 1.61·11-s + 1.17·14-s − 1.23·16-s − 1.17·18-s − 1.90·22-s + 0.618·23-s + 25-s − 0.381·28-s − 1.90·29-s + 0.726·32-s + 0.381·36-s − 1.61·43-s + 0.618·44-s − 0.726·46-s + 49-s − 1.17·50-s + 1.17·53-s − 0.726·56-s + 2.23·58-s − 63-s + 0.381·64-s + 1.17·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2527 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2527 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2527\)    =    \(7 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(1.26113\)
Root analytic conductor: \(1.12300\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{2527} (1084, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2527,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.6629253917\)
\(L(\frac12)\) \(\approx\) \(0.6629253917\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + T \)
19 \( 1 \)
good2 \( 1 + 1.17T + T^{2} \)
3 \( 1 - T^{2} \)
5 \( 1 - T^{2} \)
11 \( 1 - 1.61T + T^{2} \)
13 \( 1 - T^{2} \)
17 \( 1 - T^{2} \)
23 \( 1 - 0.618T + T^{2} \)
29 \( 1 + 1.90T + T^{2} \)
31 \( 1 - T^{2} \)
37 \( 1 + T^{2} \)
41 \( 1 - T^{2} \)
43 \( 1 + 1.61T + T^{2} \)
47 \( 1 - T^{2} \)
53 \( 1 - 1.17T + T^{2} \)
59 \( 1 - T^{2} \)
61 \( 1 - T^{2} \)
67 \( 1 - 1.17T + T^{2} \)
71 \( 1 + T^{2} \)
73 \( 1 - T^{2} \)
79 \( 1 - 1.90T + T^{2} \)
83 \( 1 - T^{2} \)
89 \( 1 - T^{2} \)
97 \( 1 - T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.203743631023791004363333834341, −8.621624232741404911220456351245, −7.54079475970765626826531841508, −6.89879094495389046916886732604, −6.47995354696416956065557806463, −5.17687471776181476460598889551, −4.12891555653162599963939373919, −3.48344006436650449533195192636, −1.94796406838159161512101365954, −0.970010285617325072201697358933, 0.970010285617325072201697358933, 1.94796406838159161512101365954, 3.48344006436650449533195192636, 4.12891555653162599963939373919, 5.17687471776181476460598889551, 6.47995354696416956065557806463, 6.89879094495389046916886732604, 7.54079475970765626826531841508, 8.621624232741404911220456351245, 9.203743631023791004363333834341

Graph of the $Z$-function along the critical line