Properties

Label 2527.1.d.f
Level 25272527
Weight 11
Character orbit 2527.d
Self dual yes
Analytic conductor 1.2611.261
Analytic rank 00
Dimension 44
Projective image D10D_{10}
CM discriminant -7
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2527,1,Mod(1084,2527)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2527, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2527.1084");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 2527=7192 2527 = 7 \cdot 19^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2527.d (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 1.261137286921.26113728692
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ20)+\Q(\zeta_{20})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x45x2+5 x^{4} - 5x^{2} + 5 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D10D_{10}
Projective field: Galois closure of 10.0.774773162367379.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q2+(β2+2)q4q7+(β3β1)q8+q9β2q11+β1q14+(2β2+2)q16β1q18+β3q22+(β21)q23+β2q99+O(q100) q - \beta_1 q^{2} + (\beta_{2} + 2) q^{4} - q^{7} + ( - \beta_{3} - \beta_1) q^{8} + q^{9} - \beta_{2} q^{11} + \beta_1 q^{14} + (2 \beta_{2} + 2) q^{16} - \beta_1 q^{18} + \beta_{3} q^{22} + ( - \beta_{2} - 1) q^{23}+ \cdots - \beta_{2} q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+6q44q7+4q9+2q11+4q162q23+4q256q28+6q362q432q44+4q494q63+6q642q77+4q818q92+2q99+O(q100) 4 q + 6 q^{4} - 4 q^{7} + 4 q^{9} + 2 q^{11} + 4 q^{16} - 2 q^{23} + 4 q^{25} - 6 q^{28} + 6 q^{36} - 2 q^{43} - 2 q^{44} + 4 q^{49} - 4 q^{63} + 6 q^{64} - 2 q^{77} + 4 q^{81} - 8 q^{92} + 2 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of ν=ζ20+ζ201\nu = \zeta_{20} + \zeta_{20}^{-1}:

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν23 \nu^{2} - 3 Copy content Toggle raw display
β3\beta_{3}== ν33ν \nu^{3} - 3\nu Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+3 \beta_{2} + 3 Copy content Toggle raw display
ν3\nu^{3}== β3+3β1 \beta_{3} + 3\beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2527Z)×\left(\mathbb{Z}/2527\mathbb{Z}\right)^\times.

nn 14451445 18071807
χ(n)\chi(n) 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1084.1
1.90211
1.17557
−1.17557
−1.90211
−1.90211 0 2.61803 0 0 −1.00000 −3.07768 1.00000 0
1084.2 −1.17557 0 0.381966 0 0 −1.00000 0.726543 1.00000 0
1084.3 1.17557 0 0.381966 0 0 −1.00000 −0.726543 1.00000 0
1084.4 1.90211 0 2.61803 0 0 −1.00000 3.07768 1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by Q(7)\Q(\sqrt{-7})
19.b odd 2 1 inner
133.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2527.1.d.f 4
7.b odd 2 1 CM 2527.1.d.f 4
19.b odd 2 1 inner 2527.1.d.f 4
19.c even 3 2 2527.1.m.e 8
19.d odd 6 2 2527.1.m.e 8
19.e even 9 6 2527.1.y.f 24
19.f odd 18 6 2527.1.y.f 24
133.c even 2 1 inner 2527.1.d.f 4
133.m odd 6 2 2527.1.m.e 8
133.p even 6 2 2527.1.m.e 8
133.y odd 18 6 2527.1.y.f 24
133.ba even 18 6 2527.1.y.f 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2527.1.d.f 4 1.a even 1 1 trivial
2527.1.d.f 4 7.b odd 2 1 CM
2527.1.d.f 4 19.b odd 2 1 inner
2527.1.d.f 4 133.c even 2 1 inner
2527.1.m.e 8 19.c even 3 2
2527.1.m.e 8 19.d odd 6 2
2527.1.m.e 8 133.m odd 6 2
2527.1.m.e 8 133.p even 6 2
2527.1.y.f 24 19.e even 9 6
2527.1.y.f 24 19.f odd 18 6
2527.1.y.f 24 133.y odd 18 6
2527.1.y.f 24 133.ba even 18 6

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T245T22+5 T_{2}^{4} - 5T_{2}^{2} + 5 acting on S1new(2527,[χ])S_{1}^{\mathrm{new}}(2527, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T45T2+5 T^{4} - 5T^{2} + 5 Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 (T+1)4 (T + 1)^{4} Copy content Toggle raw display
1111 (T2T1)2 (T^{2} - T - 1)^{2} Copy content Toggle raw display
1313 T4 T^{4} Copy content Toggle raw display
1717 T4 T^{4} Copy content Toggle raw display
1919 T4 T^{4} Copy content Toggle raw display
2323 (T2+T1)2 (T^{2} + T - 1)^{2} Copy content Toggle raw display
2929 T45T2+5 T^{4} - 5T^{2} + 5 Copy content Toggle raw display
3131 T4 T^{4} Copy content Toggle raw display
3737 T4 T^{4} Copy content Toggle raw display
4141 T4 T^{4} Copy content Toggle raw display
4343 (T2+T1)2 (T^{2} + T - 1)^{2} Copy content Toggle raw display
4747 T4 T^{4} Copy content Toggle raw display
5353 T45T2+5 T^{4} - 5T^{2} + 5 Copy content Toggle raw display
5959 T4 T^{4} Copy content Toggle raw display
6161 T4 T^{4} Copy content Toggle raw display
6767 T45T2+5 T^{4} - 5T^{2} + 5 Copy content Toggle raw display
7171 T4 T^{4} Copy content Toggle raw display
7373 T4 T^{4} Copy content Toggle raw display
7979 T45T2+5 T^{4} - 5T^{2} + 5 Copy content Toggle raw display
8383 T4 T^{4} Copy content Toggle raw display
8989 T4 T^{4} Copy content Toggle raw display
9797 T4 T^{4} Copy content Toggle raw display
show more
show less