Properties

Label 2527.1.d.f
Level $2527$
Weight $1$
Character orbit 2527.d
Self dual yes
Analytic conductor $1.261$
Analytic rank $0$
Dimension $4$
Projective image $D_{10}$
CM discriminant -7
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2527,1,Mod(1084,2527)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2527, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2527.1084");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2527 = 7 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2527.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.26113728692\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{20})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{10}\)
Projective field: Galois closure of 10.0.774773162367379.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + (\beta_{2} + 2) q^{4} - q^{7} + ( - \beta_{3} - \beta_1) q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_1 q^{2} + (\beta_{2} + 2) q^{4} - q^{7} + ( - \beta_{3} - \beta_1) q^{8} + q^{9} - \beta_{2} q^{11} + \beta_1 q^{14} + (2 \beta_{2} + 2) q^{16} - \beta_1 q^{18} + \beta_{3} q^{22} + ( - \beta_{2} - 1) q^{23} + q^{25} + ( - \beta_{2} - 2) q^{28} + \beta_{3} q^{29} + ( - \beta_{3} - \beta_1) q^{32} + (\beta_{2} + 2) q^{36} + \beta_{2} q^{43} + ( - \beta_{2} - 1) q^{44} + (\beta_{3} + \beta_1) q^{46} + q^{49} - \beta_1 q^{50} + \beta_1 q^{53} + (\beta_{3} + \beta_1) q^{56} + ( - 2 \beta_{2} - 1) q^{58} - q^{63} + (\beta_{2} + 2) q^{64} + \beta_1 q^{67} + ( - \beta_{3} - \beta_1) q^{72} + \beta_{2} q^{77} - \beta_{3} q^{79} + q^{81} - \beta_{3} q^{86} + \beta_1 q^{88} + ( - 2 \beta_{2} - 3) q^{92} - \beta_1 q^{98} - \beta_{2} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{4} - 4 q^{7} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 6 q^{4} - 4 q^{7} + 4 q^{9} + 2 q^{11} + 4 q^{16} - 2 q^{23} + 4 q^{25} - 6 q^{28} + 6 q^{36} - 2 q^{43} - 2 q^{44} + 4 q^{49} - 4 q^{63} + 6 q^{64} - 2 q^{77} + 4 q^{81} - 8 q^{92} + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{20} + \zeta_{20}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 3\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 3\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2527\mathbb{Z}\right)^\times\).

\(n\) \(1445\) \(1807\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1084.1
1.90211
1.17557
−1.17557
−1.90211
−1.90211 0 2.61803 0 0 −1.00000 −3.07768 1.00000 0
1084.2 −1.17557 0 0.381966 0 0 −1.00000 0.726543 1.00000 0
1084.3 1.17557 0 0.381966 0 0 −1.00000 −0.726543 1.00000 0
1084.4 1.90211 0 2.61803 0 0 −1.00000 3.07768 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by \(\Q(\sqrt{-7}) \)
19.b odd 2 1 inner
133.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2527.1.d.f 4
7.b odd 2 1 CM 2527.1.d.f 4
19.b odd 2 1 inner 2527.1.d.f 4
19.c even 3 2 2527.1.m.e 8
19.d odd 6 2 2527.1.m.e 8
19.e even 9 6 2527.1.y.f 24
19.f odd 18 6 2527.1.y.f 24
133.c even 2 1 inner 2527.1.d.f 4
133.m odd 6 2 2527.1.m.e 8
133.p even 6 2 2527.1.m.e 8
133.y odd 18 6 2527.1.y.f 24
133.ba even 18 6 2527.1.y.f 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2527.1.d.f 4 1.a even 1 1 trivial
2527.1.d.f 4 7.b odd 2 1 CM
2527.1.d.f 4 19.b odd 2 1 inner
2527.1.d.f 4 133.c even 2 1 inner
2527.1.m.e 8 19.c even 3 2
2527.1.m.e 8 19.d odd 6 2
2527.1.m.e 8 133.m odd 6 2
2527.1.m.e 8 133.p even 6 2
2527.1.y.f 24 19.e even 9 6
2527.1.y.f 24 19.f odd 18 6
2527.1.y.f 24 133.y odd 18 6
2527.1.y.f 24 133.ba even 18 6

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - 5T_{2}^{2} + 5 \) acting on \(S_{1}^{\mathrm{new}}(2527, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 5T^{2} + 5 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T + 1)^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} - T - 1)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} + T - 1)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} - 5T^{2} + 5 \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} + T - 1)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( T^{4} - 5T^{2} + 5 \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( T^{4} - 5T^{2} + 5 \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( T^{4} - 5T^{2} + 5 \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less