Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [2527,1,Mod(1084,2527)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2527, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0]))
N = Newforms(chi, 1, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2527.1084");
S:= CuspForms(chi, 1);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 2527.d (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Projective image: | |
Projective field: | Galois closure of 10.0.774773162367379.1 |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of :
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1084.1 |
|
−1.90211 | 0 | 2.61803 | 0 | 0 | −1.00000 | −3.07768 | 1.00000 | 0 | ||||||||||||||||||||||||||||||
1084.2 | −1.17557 | 0 | 0.381966 | 0 | 0 | −1.00000 | 0.726543 | 1.00000 | 0 | |||||||||||||||||||||||||||||||
1084.3 | 1.17557 | 0 | 0.381966 | 0 | 0 | −1.00000 | −0.726543 | 1.00000 | 0 | |||||||||||||||||||||||||||||||
1084.4 | 1.90211 | 0 | 2.61803 | 0 | 0 | −1.00000 | 3.07768 | 1.00000 | 0 | |||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | CM by |
19.b | odd | 2 | 1 | inner |
133.c | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 2527.1.d.f | ✓ | 4 |
7.b | odd | 2 | 1 | CM | 2527.1.d.f | ✓ | 4 |
19.b | odd | 2 | 1 | inner | 2527.1.d.f | ✓ | 4 |
19.c | even | 3 | 2 | 2527.1.m.e | 8 | ||
19.d | odd | 6 | 2 | 2527.1.m.e | 8 | ||
19.e | even | 9 | 6 | 2527.1.y.f | 24 | ||
19.f | odd | 18 | 6 | 2527.1.y.f | 24 | ||
133.c | even | 2 | 1 | inner | 2527.1.d.f | ✓ | 4 |
133.m | odd | 6 | 2 | 2527.1.m.e | 8 | ||
133.p | even | 6 | 2 | 2527.1.m.e | 8 | ||
133.y | odd | 18 | 6 | 2527.1.y.f | 24 | ||
133.ba | even | 18 | 6 | 2527.1.y.f | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
2527.1.d.f | ✓ | 4 | 1.a | even | 1 | 1 | trivial |
2527.1.d.f | ✓ | 4 | 7.b | odd | 2 | 1 | CM |
2527.1.d.f | ✓ | 4 | 19.b | odd | 2 | 1 | inner |
2527.1.d.f | ✓ | 4 | 133.c | even | 2 | 1 | inner |
2527.1.m.e | 8 | 19.c | even | 3 | 2 | ||
2527.1.m.e | 8 | 19.d | odd | 6 | 2 | ||
2527.1.m.e | 8 | 133.m | odd | 6 | 2 | ||
2527.1.m.e | 8 | 133.p | even | 6 | 2 | ||
2527.1.y.f | 24 | 19.e | even | 9 | 6 | ||
2527.1.y.f | 24 | 19.f | odd | 18 | 6 | ||
2527.1.y.f | 24 | 133.y | odd | 18 | 6 | ||
2527.1.y.f | 24 | 133.ba | even | 18 | 6 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .