L(s) = 1 | + (0.5 + 0.866i)2-s + (0.309 + 0.951i)3-s + (−0.499 + 0.866i)4-s + (−0.809 + 1.40i)5-s + (−0.669 + 0.743i)6-s − 0.999·8-s + (−0.809 + 0.587i)9-s − 1.61·10-s + (−0.913 − 1.58i)11-s + (−0.978 − 0.207i)12-s + (0.669 − 1.15i)13-s + (−1.58 − 0.336i)15-s + (−0.5 − 0.866i)16-s + (−0.913 − 0.406i)18-s + (−0.809 − 1.40i)20-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)2-s + (0.309 + 0.951i)3-s + (−0.499 + 0.866i)4-s + (−0.809 + 1.40i)5-s + (−0.669 + 0.743i)6-s − 0.999·8-s + (−0.809 + 0.587i)9-s − 1.61·10-s + (−0.913 − 1.58i)11-s + (−0.978 − 0.207i)12-s + (0.669 − 1.15i)13-s + (−1.58 − 0.336i)15-s + (−0.5 − 0.866i)16-s + (−0.913 − 0.406i)18-s + (−0.809 − 1.40i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.241 + 0.970i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.241 + 0.970i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7888018577\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7888018577\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 3 | \( 1 + (-0.309 - 0.951i)T \) |
| 37 | \( 1 + T \) |
good | 5 | \( 1 + (0.809 - 1.40i)T + (-0.5 - 0.866i)T^{2} \) |
| 7 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.913 + 1.58i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.669 + 1.15i)T + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + (0.978 - 1.69i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.669 - 1.15i)T + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (0.809 - 1.40i)T + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (0.309 - 0.535i)T + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.104 + 0.181i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.104 + 0.181i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - 1.82T + T^{2} \) |
| 79 | \( 1 + (-0.309 - 0.535i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.445710686037320084298626352794, −8.364967484440016063297594058068, −8.156127548937910287890925064483, −7.39720221201616405688051831075, −6.43899358511676640123495676495, −5.60955074570844839637840420935, −5.11517829568424293859302910867, −3.66022866521009936981407825682, −3.40973716538525059663136265987, −2.88816479287078064655101284575,
0.39576928961515880116085136204, 1.80507181127681388245733816366, 2.30143497232256746131695889117, 3.81785914986847178306566245125, 4.38782484501888655221490899415, 5.09381692415180741114686832077, 6.11791515852700168797391088651, 6.97740991569410954629234607208, 7.982972352271876918909242930813, 8.459016431585272066021486676050