L(s) = 1 | + (−0.853 + 0.521i)3-s + (−0.411 − 0.911i)4-s + (0.921 + 0.388i)7-s + (0.456 − 0.889i)9-s + (0.826 + 0.563i)12-s + (−1.40 + 1.06i)13-s + (−0.661 + 0.749i)16-s + (−0.222 + 0.974i)19-s + (−0.988 + 0.149i)21-s + (−0.998 + 0.0498i)25-s + (0.0747 + 0.997i)27-s + (−0.0249 − 0.999i)28-s + 1.99·31-s + (−0.998 − 0.0498i)36-s + (−0.0614 + 0.820i)37-s + ⋯ |
L(s) = 1 | + (−0.853 + 0.521i)3-s + (−0.411 − 0.911i)4-s + (0.921 + 0.388i)7-s + (0.456 − 0.889i)9-s + (0.826 + 0.563i)12-s + (−1.40 + 1.06i)13-s + (−0.661 + 0.749i)16-s + (−0.222 + 0.974i)19-s + (−0.988 + 0.149i)21-s + (−0.998 + 0.0498i)25-s + (0.0747 + 0.997i)27-s + (−0.0249 − 0.999i)28-s + 1.99·31-s + (−0.998 − 0.0498i)36-s + (−0.0614 + 0.820i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2793 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.151 - 0.988i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2793 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.151 - 0.988i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6637333396\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6637333396\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.853 - 0.521i)T \) |
| 7 | \( 1 + (-0.921 - 0.388i)T \) |
| 19 | \( 1 + (0.222 - 0.974i)T \) |
good | 2 | \( 1 + (0.411 + 0.911i)T^{2} \) |
| 5 | \( 1 + (0.998 - 0.0498i)T^{2} \) |
| 11 | \( 1 + (-0.0747 - 0.997i)T^{2} \) |
| 13 | \( 1 + (1.40 - 1.06i)T + (0.270 - 0.962i)T^{2} \) |
| 17 | \( 1 + (0.661 + 0.749i)T^{2} \) |
| 23 | \( 1 + (0.318 + 0.947i)T^{2} \) |
| 29 | \( 1 + (0.853 - 0.521i)T^{2} \) |
| 31 | \( 1 - 1.99T + T^{2} \) |
| 37 | \( 1 + (0.0614 - 0.820i)T + (-0.988 - 0.149i)T^{2} \) |
| 41 | \( 1 + (0.998 - 0.0498i)T^{2} \) |
| 43 | \( 1 + (0.290 + 0.864i)T + (-0.797 + 0.603i)T^{2} \) |
| 47 | \( 1 + (-0.270 + 0.962i)T^{2} \) |
| 53 | \( 1 + (0.661 - 0.749i)T^{2} \) |
| 59 | \( 1 + (-0.921 - 0.388i)T^{2} \) |
| 61 | \( 1 + (-0.538 - 1.91i)T + (-0.853 + 0.521i)T^{2} \) |
| 67 | \( 1 + (1.65 - 0.600i)T + (0.766 - 0.642i)T^{2} \) |
| 71 | \( 1 + (0.0249 - 0.999i)T^{2} \) |
| 73 | \( 1 + (-0.145 + 1.15i)T + (-0.969 - 0.246i)T^{2} \) |
| 79 | \( 1 + (-0.242 - 1.37i)T + (-0.939 + 0.342i)T^{2} \) |
| 83 | \( 1 + (-0.826 - 0.563i)T^{2} \) |
| 89 | \( 1 + (0.411 - 0.911i)T^{2} \) |
| 97 | \( 1 + (-0.331 - 1.88i)T + (-0.939 + 0.342i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.301894574867595520952729758009, −8.595767737185467204881296926874, −7.61569375761722839196269698668, −6.63630715170682483813468291878, −5.96040066318992438039005604538, −5.19763152052003472455538525086, −4.62561772435136773494467045156, −4.03217696881711834384166891841, −2.33086654544292113190713202791, −1.31447572587706667970429273326,
0.50788688657082750301010326352, 2.09262655952713429780981462467, 3.03341470744638785089300268938, 4.46755945838327533529780667199, 4.74360400980910268846322355753, 5.62982701549187073091657915331, 6.70468997813687231081478024540, 7.48043094337997840280337811723, 7.86270164913274988029060994616, 8.520869004771327215033798920723