L(s) = 1 | + (−0.853 + 0.521i)3-s + (−0.411 − 0.911i)4-s + (0.921 + 0.388i)7-s + (0.456 − 0.889i)9-s + (0.826 + 0.563i)12-s + (−1.40 + 1.06i)13-s + (−0.661 + 0.749i)16-s + (−0.222 + 0.974i)19-s + (−0.988 + 0.149i)21-s + (−0.998 + 0.0498i)25-s + (0.0747 + 0.997i)27-s + (−0.0249 − 0.999i)28-s + 1.99·31-s + (−0.998 − 0.0498i)36-s + (−0.0614 + 0.820i)37-s + ⋯ |
L(s) = 1 | + (−0.853 + 0.521i)3-s + (−0.411 − 0.911i)4-s + (0.921 + 0.388i)7-s + (0.456 − 0.889i)9-s + (0.826 + 0.563i)12-s + (−1.40 + 1.06i)13-s + (−0.661 + 0.749i)16-s + (−0.222 + 0.974i)19-s + (−0.988 + 0.149i)21-s + (−0.998 + 0.0498i)25-s + (0.0747 + 0.997i)27-s + (−0.0249 − 0.999i)28-s + 1.99·31-s + (−0.998 − 0.0498i)36-s + (−0.0614 + 0.820i)37-s + ⋯ |
Λ(s)=(=(2793s/2ΓC(s)L(s)(0.151−0.988i)Λ(1−s)
Λ(s)=(=(2793s/2ΓC(s)L(s)(0.151−0.988i)Λ(1−s)
Degree: |
2 |
Conductor: |
2793
= 3⋅72⋅19
|
Sign: |
0.151−0.988i
|
Analytic conductor: |
1.39388 |
Root analytic conductor: |
1.18063 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2793(1871,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2793, ( :0), 0.151−0.988i)
|
Particular Values
L(21) |
≈ |
0.6637333396 |
L(21) |
≈ |
0.6637333396 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.853−0.521i)T |
| 7 | 1+(−0.921−0.388i)T |
| 19 | 1+(0.222−0.974i)T |
good | 2 | 1+(0.411+0.911i)T2 |
| 5 | 1+(0.998−0.0498i)T2 |
| 11 | 1+(−0.0747−0.997i)T2 |
| 13 | 1+(1.40−1.06i)T+(0.270−0.962i)T2 |
| 17 | 1+(0.661+0.749i)T2 |
| 23 | 1+(0.318+0.947i)T2 |
| 29 | 1+(0.853−0.521i)T2 |
| 31 | 1−1.99T+T2 |
| 37 | 1+(0.0614−0.820i)T+(−0.988−0.149i)T2 |
| 41 | 1+(0.998−0.0498i)T2 |
| 43 | 1+(0.290+0.864i)T+(−0.797+0.603i)T2 |
| 47 | 1+(−0.270+0.962i)T2 |
| 53 | 1+(0.661−0.749i)T2 |
| 59 | 1+(−0.921−0.388i)T2 |
| 61 | 1+(−0.538−1.91i)T+(−0.853+0.521i)T2 |
| 67 | 1+(1.65−0.600i)T+(0.766−0.642i)T2 |
| 71 | 1+(0.0249−0.999i)T2 |
| 73 | 1+(−0.145+1.15i)T+(−0.969−0.246i)T2 |
| 79 | 1+(−0.242−1.37i)T+(−0.939+0.342i)T2 |
| 83 | 1+(−0.826−0.563i)T2 |
| 89 | 1+(0.411−0.911i)T2 |
| 97 | 1+(−0.331−1.88i)T+(−0.939+0.342i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.301894574867595520952729758009, −8.595767737185467204881296926874, −7.61569375761722839196269698668, −6.63630715170682483813468291878, −5.96040066318992438039005604538, −5.19763152052003472455538525086, −4.62561772435136773494467045156, −4.03217696881711834384166891841, −2.33086654544292113190713202791, −1.31447572587706667970429273326,
0.50788688657082750301010326352, 2.09262655952713429780981462467, 3.03341470744638785089300268938, 4.46755945838327533529780667199, 4.74360400980910268846322355753, 5.62982701549187073091657915331, 6.70468997813687231081478024540, 7.48043094337997840280337811723, 7.86270164913274988029060994616, 8.520869004771327215033798920723