Properties

Label 2793.1.ei.a.1871.1
Level $2793$
Weight $1$
Character 2793.1871
Analytic conductor $1.394$
Analytic rank $0$
Dimension $36$
Projective image $D_{63}$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2793,1,Mod(23,2793)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2793, base_ring=CyclotomicField(126))
 
chi = DirichletCharacter(H, H._module([63, 114, 14]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2793.23");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2793 = 3 \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2793.ei (of order \(126\), degree \(36\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.39388858028\)
Analytic rank: \(0\)
Dimension: \(36\)
Coefficient field: \(\Q(\zeta_{63})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{36} - x^{33} + x^{27} - x^{24} + x^{18} - x^{12} + x^{9} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{63}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{63} - \cdots)\)

Embedding invariants

Embedding label 1871.1
Root \(-0.797133 + 0.603804i\) of defining polynomial
Character \(\chi\) \(=\) 2793.1871
Dual form 2793.1.ei.a.2069.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.853291 + 0.521435i) q^{3} +(-0.411287 - 0.911506i) q^{4} +(0.921476 + 0.388435i) q^{7} +(0.456211 - 0.889872i) q^{9} +O(q^{10})\) \(q+(-0.853291 + 0.521435i) q^{3} +(-0.411287 - 0.911506i) q^{4} +(0.921476 + 0.388435i) q^{7} +(0.456211 - 0.889872i) q^{9} +(0.826239 + 0.563320i) q^{12} +(-1.40012 + 1.06055i) q^{13} +(-0.661686 + 0.749781i) q^{16} +(-0.222521 + 0.974928i) q^{19} +(-0.988831 + 0.149042i) q^{21} +(-0.998757 + 0.0498459i) q^{25} +(0.0747301 + 0.997204i) q^{27} +(-0.0249307 - 0.999689i) q^{28} +1.99006 q^{31} +(-0.998757 - 0.0498459i) q^{36} +(-0.0614710 + 0.820274i) q^{37} +(0.641701 - 1.63503i) q^{39} +(-0.290594 - 0.864909i) q^{43} +(0.173648 - 0.984808i) q^{48} +(0.698237 + 0.715867i) q^{49} +(1.54255 + 0.840026i) q^{52} +(-0.318487 - 0.947927i) q^{57} +(0.538989 + 1.91568i) q^{61} +(0.766044 - 0.642788i) q^{63} +(0.955573 + 0.294755i) q^{64} +(-1.65052 + 0.600739i) q^{67} +(0.145170 - 1.15843i) q^{73} +(0.826239 - 0.563320i) q^{75} +(0.980172 - 0.198146i) q^{76} +(0.242495 + 1.37526i) q^{79} +(-0.583744 - 0.811938i) q^{81} +(0.542546 + 0.840026i) q^{84} +(-1.70213 + 0.433415i) q^{91} +(-1.69810 + 1.03769i) q^{93} +(0.331867 + 1.88211i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q+O(q^{10}) \) Copy content Toggle raw display \( 36 q + 3 q^{12} + 3 q^{13} - 6 q^{19} + 3 q^{21} + 3 q^{27} + 3 q^{43} + 36 q^{52} + 3 q^{61} + 3 q^{64} + 3 q^{67} + 3 q^{73} + 3 q^{75} + 3 q^{79} + 3 q^{91} - 6 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2793\mathbb{Z}\right)^\times\).

\(n\) \(932\) \(2110\) \(2206\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{4}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 0.542546 0.840026i \(-0.317460\pi\)
−0.542546 + 0.840026i \(0.682540\pi\)
\(3\) −0.853291 + 0.521435i −0.853291 + 0.521435i
\(4\) −0.411287 0.911506i −0.411287 0.911506i
\(5\) 0 0 −0.0249307 0.999689i \(-0.507937\pi\)
0.0249307 + 0.999689i \(0.492063\pi\)
\(6\) 0 0
\(7\) 0.921476 + 0.388435i 0.921476 + 0.388435i
\(8\) 0 0
\(9\) 0.456211 0.889872i 0.456211 0.889872i
\(10\) 0 0
\(11\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(12\) 0.826239 + 0.563320i 0.826239 + 0.563320i
\(13\) −1.40012 + 1.06055i −1.40012 + 1.06055i −0.411287 + 0.911506i \(0.634921\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.661686 + 0.749781i −0.661686 + 0.749781i
\(17\) 0 0 0.411287 0.911506i \(-0.365079\pi\)
−0.411287 + 0.911506i \(0.634921\pi\)
\(18\) 0 0
\(19\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(20\) 0 0
\(21\) −0.988831 + 0.149042i −0.988831 + 0.149042i
\(22\) 0 0
\(23\) 0 0 0.583744 0.811938i \(-0.301587\pi\)
−0.583744 + 0.811938i \(0.698413\pi\)
\(24\) 0 0
\(25\) −0.998757 + 0.0498459i −0.998757 + 0.0498459i
\(26\) 0 0
\(27\) 0.0747301 + 0.997204i 0.0747301 + 0.997204i
\(28\) −0.0249307 0.999689i −0.0249307 0.999689i
\(29\) 0 0 −0.270840 0.962624i \(-0.587302\pi\)
0.270840 + 0.962624i \(0.412698\pi\)
\(30\) 0 0
\(31\) 1.99006 1.99006 0.995031 0.0995678i \(-0.0317460\pi\)
0.995031 + 0.0995678i \(0.0317460\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) −0.998757 0.0498459i −0.998757 0.0498459i
\(37\) −0.0614710 + 0.820274i −0.0614710 + 0.820274i 0.878222 + 0.478254i \(0.158730\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(38\) 0 0
\(39\) 0.641701 1.63503i 0.641701 1.63503i
\(40\) 0 0
\(41\) 0 0 −0.0249307 0.999689i \(-0.507937\pi\)
0.0249307 + 0.999689i \(0.492063\pi\)
\(42\) 0 0
\(43\) −0.290594 0.864909i −0.290594 0.864909i −0.988831 0.149042i \(-0.952381\pi\)
0.698237 0.715867i \(-0.253968\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 0.797133 0.603804i \(-0.206349\pi\)
−0.797133 + 0.603804i \(0.793651\pi\)
\(48\) 0.173648 0.984808i 0.173648 0.984808i
\(49\) 0.698237 + 0.715867i 0.698237 + 0.715867i
\(50\) 0 0
\(51\) 0 0
\(52\) 1.54255 + 0.840026i 1.54255 + 0.840026i
\(53\) 0 0 −0.411287 0.911506i \(-0.634921\pi\)
0.411287 + 0.911506i \(0.365079\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −0.318487 0.947927i −0.318487 0.947927i
\(58\) 0 0
\(59\) 0 0 −0.980172 0.198146i \(-0.936508\pi\)
0.980172 + 0.198146i \(0.0634921\pi\)
\(60\) 0 0
\(61\) 0.538989 + 1.91568i 0.538989 + 1.91568i 0.365341 + 0.930874i \(0.380952\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(62\) 0 0
\(63\) 0.766044 0.642788i 0.766044 0.642788i
\(64\) 0.955573 + 0.294755i 0.955573 + 0.294755i
\(65\) 0 0
\(66\) 0 0
\(67\) −1.65052 + 0.600739i −1.65052 + 0.600739i −0.988831 0.149042i \(-0.952381\pi\)
−0.661686 + 0.749781i \(0.730159\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.698237 0.715867i \(-0.746032\pi\)
0.698237 + 0.715867i \(0.253968\pi\)
\(72\) 0 0
\(73\) 0.145170 1.15843i 0.145170 1.15843i −0.733052 0.680173i \(-0.761905\pi\)
0.878222 0.478254i \(-0.158730\pi\)
\(74\) 0 0
\(75\) 0.826239 0.563320i 0.826239 0.563320i
\(76\) 0.980172 0.198146i 0.980172 0.198146i
\(77\) 0 0
\(78\) 0 0
\(79\) 0.242495 + 1.37526i 0.242495 + 1.37526i 0.826239 + 0.563320i \(0.190476\pi\)
−0.583744 + 0.811938i \(0.698413\pi\)
\(80\) 0 0
\(81\) −0.583744 0.811938i −0.583744 0.811938i
\(82\) 0 0
\(83\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(84\) 0.542546 + 0.840026i 0.542546 + 0.840026i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.542546 0.840026i \(-0.682540\pi\)
0.542546 + 0.840026i \(0.317460\pi\)
\(90\) 0 0
\(91\) −1.70213 + 0.433415i −1.70213 + 0.433415i
\(92\) 0 0
\(93\) −1.69810 + 1.03769i −1.69810 + 1.03769i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0.331867 + 1.88211i 0.331867 + 1.88211i 0.456211 + 0.889872i \(0.349206\pi\)
−0.124344 + 0.992239i \(0.539683\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0.456211 + 0.889872i 0.456211 + 0.889872i
\(101\) 0 0 −0.661686 0.749781i \(-0.730159\pi\)
0.661686 + 0.749781i \(0.269841\pi\)
\(102\) 0 0
\(103\) −0.994008 + 1.24645i −0.994008 + 1.24645i −0.0249307 + 0.999689i \(0.507937\pi\)
−0.969077 + 0.246757i \(0.920635\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(108\) 0.878222 0.478254i 0.878222 0.478254i
\(109\) 1.97520 + 0.0985783i 1.97520 + 0.0985783i 0.995031 0.0995678i \(-0.0317460\pi\)
0.980172 + 0.198146i \(0.0634921\pi\)
\(110\) 0 0
\(111\) −0.375267 0.731986i −0.375267 0.731986i
\(112\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(113\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0.305003 + 1.72976i 0.305003 + 1.72976i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0.0747301 + 0.997204i 0.0747301 + 0.997204i
\(122\) 0 0
\(123\) 0 0
\(124\) −0.818487 1.81395i −0.818487 1.81395i
\(125\) 0 0
\(126\) 0 0
\(127\) 0.431280 + 0.109817i 0.431280 + 0.109817i 0.456211 0.889872i \(-0.349206\pi\)
−0.0249307 + 0.999689i \(0.507937\pi\)
\(128\) 0 0
\(129\) 0.698955 + 0.586493i 0.698955 + 0.586493i
\(130\) 0 0
\(131\) 0 0 −0.318487 0.947927i \(-0.603175\pi\)
0.318487 + 0.947927i \(0.396825\pi\)
\(132\) 0 0
\(133\) −0.583744 + 0.811938i −0.583744 + 0.811938i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 0.0249307 0.999689i \(-0.492063\pi\)
−0.0249307 + 0.999689i \(0.507937\pi\)
\(138\) 0 0
\(139\) −0.0488728 + 0.00987984i −0.0488728 + 0.00987984i −0.222521 0.974928i \(-0.571429\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0.365341 + 0.930874i 0.365341 + 0.930874i
\(145\) 0 0
\(146\) 0 0
\(147\) −0.969077 0.246757i −0.969077 0.246757i
\(148\) 0.772967 0.281337i 0.772967 0.281337i
\(149\) 0 0 −0.998757 0.0498459i \(-0.984127\pi\)
0.998757 + 0.0498459i \(0.0158730\pi\)
\(150\) 0 0
\(151\) −0.109562 1.46200i −0.109562 1.46200i −0.733052 0.680173i \(-0.761905\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −1.75426 + 0.0875515i −1.75426 + 0.0875515i
\(157\) −1.29713 + 1.46983i −1.29713 + 1.46983i −0.500000 + 0.866025i \(0.666667\pi\)
−0.797133 + 0.603804i \(0.793651\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −0.397146 0.498006i −0.397146 0.498006i 0.542546 0.840026i \(-0.317460\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.698237 0.715867i \(-0.253968\pi\)
−0.698237 + 0.715867i \(0.746032\pi\)
\(168\) 0 0
\(169\) 0.564727 2.00716i 0.564727 2.00716i
\(170\) 0 0
\(171\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(172\) −0.668852 + 0.620604i −0.668852 + 0.620604i
\(173\) 0 0 −0.698237 0.715867i \(-0.746032\pi\)
0.698237 + 0.715867i \(0.253968\pi\)
\(174\) 0 0
\(175\) −0.939693 0.342020i −0.939693 0.342020i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(180\) 0 0
\(181\) 1.97520 0.0985783i 1.97520 0.0985783i 0.980172 0.198146i \(-0.0634921\pi\)
0.995031 + 0.0995678i \(0.0317460\pi\)
\(182\) 0 0
\(183\) −1.45882 1.35359i −1.45882 1.35359i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −0.318487 + 0.947927i −0.318487 + 0.947927i
\(190\) 0 0
\(191\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(192\) −0.969077 + 0.246757i −0.969077 + 0.246757i
\(193\) 0.543524 0.332140i 0.543524 0.332140i −0.222521 0.974928i \(-0.571429\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0.365341 0.930874i 0.365341 0.930874i
\(197\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(198\) 0 0
\(199\) 0.636181 1.89350i 0.636181 1.89350i 0.270840 0.962624i \(-0.412698\pi\)
0.365341 0.930874i \(-0.380952\pi\)
\(200\) 0 0
\(201\) 1.09512 1.37324i 1.09512 1.37324i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0.131259 1.75153i 0.131259 1.75153i
\(209\) 0 0
\(210\) 0 0
\(211\) 0.499146 0.210408i 0.499146 0.210408i −0.124344 0.992239i \(-0.539683\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 1.83379 + 0.773009i 1.83379 + 0.773009i
\(218\) 0 0
\(219\) 0.480172 + 1.06417i 0.480172 + 1.06417i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −1.35329 1.38746i −1.35329 1.38746i −0.853291 0.521435i \(-0.825397\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(224\) 0 0
\(225\) −0.411287 + 0.911506i −0.411287 + 0.911506i
\(226\) 0 0
\(227\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(228\) −0.733052 + 0.680173i −0.733052 + 0.680173i
\(229\) 0.245910 0.0370649i 0.245910 0.0370649i −0.0249307 0.999689i \(-0.507937\pi\)
0.270840 + 0.962624i \(0.412698\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 0.411287 0.911506i \(-0.365079\pi\)
−0.411287 + 0.911506i \(0.634921\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −0.924027 1.04705i −0.924027 1.04705i
\(238\) 0 0
\(239\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(240\) 0 0
\(241\) −1.14434 + 1.59168i −1.14434 + 1.59168i −0.411287 + 0.911506i \(0.634921\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(242\) 0 0
\(243\) 0.921476 + 0.388435i 0.921476 + 0.388435i
\(244\) 1.52448 1.27919i 1.52448 1.27919i
\(245\) 0 0
\(246\) 0 0
\(247\) −0.722402 1.60101i −0.722402 1.60101i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 −0.853291 0.521435i \(-0.825397\pi\)
0.853291 + 0.521435i \(0.174603\pi\)
\(252\) −0.900969 0.433884i −0.900969 0.433884i
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −0.124344 0.992239i −0.124344 0.992239i
\(257\) 0 0 −0.969077 0.246757i \(-0.920635\pi\)
0.969077 + 0.246757i \(0.0793651\pi\)
\(258\) 0 0
\(259\) −0.375267 + 0.731986i −0.375267 + 0.731986i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 1.22641 + 1.25738i 1.22641 + 1.25738i
\(269\) 0 0 0.124344 0.992239i \(-0.460317\pi\)
−0.124344 + 0.992239i \(0.539683\pi\)
\(270\) 0 0
\(271\) −0.708087 + 0.180301i −0.708087 + 0.180301i −0.583744 0.811938i \(-0.698413\pi\)
−0.124344 + 0.992239i \(0.539683\pi\)
\(272\) 0 0
\(273\) 1.22641 1.25738i 1.22641 1.25738i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0.0546039 0.728639i 0.0546039 0.728639i −0.900969 0.433884i \(-0.857143\pi\)
0.955573 0.294755i \(-0.0952381\pi\)
\(278\) 0 0
\(279\) 0.907887 1.77090i 0.907887 1.77090i
\(280\) 0 0
\(281\) 0 0 −0.124344 0.992239i \(-0.539683\pi\)
0.124344 + 0.992239i \(0.460317\pi\)
\(282\) 0 0
\(283\) −0.822063 1.60349i −0.822063 1.60349i −0.797133 0.603804i \(-0.793651\pi\)
−0.0249307 0.999689i \(-0.507937\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −0.661686 0.749781i −0.661686 0.749781i
\(290\) 0 0
\(291\) −1.26458 1.43294i −1.26458 1.43294i
\(292\) −1.11562 + 0.344123i −1.11562 + 0.344123i
\(293\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) −0.853291 0.521435i −0.853291 0.521435i
\(301\) 0.0681853 0.909870i 0.0681853 0.909870i
\(302\) 0 0
\(303\) 0 0
\(304\) −0.583744 0.811938i −0.583744 0.811938i
\(305\) 0 0
\(306\) 0 0
\(307\) −0.668852 1.30464i −0.668852 1.30464i −0.939693 0.342020i \(-0.888889\pi\)
0.270840 0.962624i \(-0.412698\pi\)
\(308\) 0 0
\(309\) 0.198237 1.58189i 0.198237 1.58189i
\(310\) 0 0
\(311\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(312\) 0 0
\(313\) 1.26587 + 1.06219i 1.26587 + 1.06219i 0.995031 + 0.0995678i \(0.0317460\pi\)
0.270840 + 0.962624i \(0.412698\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 1.15382 0.786662i 1.15382 0.786662i
\(317\) 0 0 −0.995031 0.0995678i \(-0.968254\pi\)
0.995031 + 0.0995678i \(0.0317460\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(325\) 1.34551 1.12902i 1.34551 1.12902i
\(326\) 0 0
\(327\) −1.73683 + 0.945825i −1.73683 + 0.945825i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −0.977635 + 0.470804i −0.977635 + 0.470804i −0.853291 0.521435i \(-0.825397\pi\)
−0.124344 + 0.992239i \(0.539683\pi\)
\(332\) 0 0
\(333\) 0.701895 + 0.428919i 0.701895 + 0.428919i
\(334\) 0 0
\(335\) 0 0
\(336\) 0.542546 0.840026i 0.542546 0.840026i
\(337\) 0.421476 + 1.25446i 0.421476 + 1.25446i 0.921476 + 0.388435i \(0.126984\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0.365341 + 0.930874i 0.365341 + 0.930874i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 0.270840 0.962624i \(-0.412698\pi\)
−0.270840 + 0.962624i \(0.587302\pi\)
\(348\) 0 0
\(349\) −1.82237 + 0.274678i −1.82237 + 0.274678i −0.969077 0.246757i \(-0.920635\pi\)
−0.853291 + 0.521435i \(0.825397\pi\)
\(350\) 0 0
\(351\) −1.16221 1.31695i −1.16221 1.31695i
\(352\) 0 0
\(353\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.318487 0.947927i \(-0.603175\pi\)
0.318487 + 0.947927i \(0.396825\pi\)
\(360\) 0 0
\(361\) −0.900969 0.433884i −0.900969 0.433884i
\(362\) 0 0
\(363\) −0.583744 0.811938i −0.583744 0.811938i
\(364\) 1.09512 + 1.37324i 1.09512 + 1.37324i
\(365\) 0 0
\(366\) 0 0
\(367\) 1.70446 0.0850661i 1.70446 0.0850661i 0.826239 0.563320i \(-0.190476\pi\)
0.878222 + 0.478254i \(0.158730\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 1.64427 + 1.12104i 1.64427 + 1.12104i
\(373\) −0.955573 1.65510i −0.955573 1.65510i −0.733052 0.680173i \(-0.761905\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −0.203033 + 0.889545i −0.203033 + 0.889545i 0.766044 + 0.642788i \(0.222222\pi\)
−0.969077 + 0.246757i \(0.920635\pi\)
\(380\) 0 0
\(381\) −0.425270 + 0.131178i −0.425270 + 0.131178i
\(382\) 0 0
\(383\) 0 0 0.921476 0.388435i \(-0.126984\pi\)
−0.921476 + 0.388435i \(0.873016\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −0.902230 0.135989i −0.902230 0.135989i
\(388\) 1.57906 1.07659i 1.57906 1.07659i
\(389\) 0 0 0.318487 0.947927i \(-0.396825\pi\)
−0.318487 + 0.947927i \(0.603175\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 1.65381 1.01062i 1.65381 1.01062i 0.698237 0.715867i \(-0.253968\pi\)
0.955573 0.294755i \(-0.0952381\pi\)
\(398\) 0 0
\(399\) 0.0747301 0.997204i 0.0747301 0.997204i
\(400\) 0.623490 0.781831i 0.623490 0.781831i
\(401\) 0 0 0.124344 0.992239i \(-0.460317\pi\)
−0.124344 + 0.992239i \(0.539683\pi\)
\(402\) 0 0
\(403\) −2.78632 + 2.11056i −2.78632 + 2.11056i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0.104359 0.106994i 0.104359 0.106994i −0.661686 0.749781i \(-0.730159\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 1.54497 + 0.393397i 1.54497 + 0.393397i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0.0365510 0.0339144i 0.0365510 0.0339144i
\(418\) 0 0
\(419\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(420\) 0 0
\(421\) −0.512867 + 1.13663i −0.512867 + 1.13663i 0.456211 + 0.889872i \(0.349206\pi\)
−0.969077 + 0.246757i \(0.920635\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −0.247452 + 1.97462i −0.247452 + 1.97462i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.878222 0.478254i \(-0.158730\pi\)
−0.878222 + 0.478254i \(0.841270\pi\)
\(432\) −0.797133 0.603804i −0.797133 0.603804i
\(433\) 0.0792036 0.235738i 0.0792036 0.235738i −0.900969 0.433884i \(-0.857143\pi\)
0.980172 + 0.198146i \(0.0634921\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −0.722521 1.84095i −0.722521 1.84095i
\(437\) 0 0
\(438\) 0 0
\(439\) −0.925900 + 1.43357i −0.925900 + 1.43357i −0.0249307 + 0.999689i \(0.507937\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(440\) 0 0
\(441\) 0.955573 0.294755i 0.955573 0.294755i
\(442\) 0 0
\(443\) 0 0 −0.124344 0.992239i \(-0.539683\pi\)
0.124344 + 0.992239i \(0.460317\pi\)
\(444\) −0.512867 + 0.643114i −0.512867 + 0.643114i
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(449\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0.855829 + 1.19039i 0.855829 + 1.19039i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 1.15445 0.174005i 1.15445 0.174005i 0.456211 0.889872i \(-0.349206\pi\)
0.698237 + 0.715867i \(0.253968\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 0.995031 0.0995678i \(-0.0317460\pi\)
−0.995031 + 0.0995678i \(0.968254\pi\)
\(462\) 0 0
\(463\) −0.0411974 + 0.0280879i −0.0411974 + 0.0280879i −0.583744 0.811938i \(-0.698413\pi\)
0.542546 + 0.840026i \(0.317460\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(468\) 1.45124 0.989440i 1.45124 0.989440i
\(469\) −1.75426 0.0875515i −1.75426 0.0875515i
\(470\) 0 0
\(471\) 0.340410 1.93056i 0.340410 1.93056i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0.173648 0.984808i 0.173648 0.984808i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.797133 0.603804i \(-0.206349\pi\)
−0.797133 + 0.603804i \(0.793651\pi\)
\(480\) 0 0
\(481\) −0.783873 1.21367i −0.783873 1.21367i
\(482\) 0 0
\(483\) 0 0
\(484\) 0.878222 0.478254i 0.878222 0.478254i
\(485\) 0 0
\(486\) 0 0
\(487\) 0.0931869 0.116853i 0.0931869 0.116853i −0.733052 0.680173i \(-0.761905\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(488\) 0 0
\(489\) 0.598559 + 0.217858i 0.598559 + 0.217858i
\(490\) 0 0
\(491\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −1.31680 + 1.49211i −1.31680 + 1.49211i
\(497\) 0 0
\(498\) 0 0
\(499\) 0.655701 + 0.496674i 0.655701 + 0.496674i 0.878222 0.478254i \(-0.158730\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.921476 0.388435i \(-0.873016\pi\)
0.921476 + 0.388435i \(0.126984\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0.564727 + 2.00716i 0.564727 + 2.00716i
\(508\) −0.0772807 0.438281i −0.0772807 0.438281i
\(509\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(510\) 0 0
\(511\) 0.583744 1.01107i 0.583744 1.01107i
\(512\) 0 0
\(513\) −0.988831 0.149042i −0.988831 0.149042i
\(514\) 0 0
\(515\) 0 0
\(516\) 0.247121 0.878319i 0.247121 0.878319i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(522\) 0 0
\(523\) 0.0205073 0.822319i 0.0205073 0.822319i −0.900969 0.433884i \(-0.857143\pi\)
0.921476 0.388435i \(-0.126984\pi\)
\(524\) 0 0
\(525\) 0.980172 0.198146i 0.980172 0.198146i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −0.318487 0.947927i −0.318487 0.947927i
\(530\) 0 0
\(531\) 0 0
\(532\) 0.980172 + 0.198146i 0.980172 + 0.198146i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 1.59228 1.20611i 1.59228 1.20611i 0.766044 0.642788i \(-0.222222\pi\)
0.826239 0.563320i \(-0.190476\pi\)
\(542\) 0 0
\(543\) −1.63402 + 1.11406i −1.63402 + 1.11406i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0.617276 1.83723i 0.617276 1.83723i 0.0747301 0.997204i \(-0.476190\pi\)
0.542546 0.840026i \(-0.317460\pi\)
\(548\) 0 0
\(549\) 1.95060 + 0.394323i 1.95060 + 0.394323i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −0.310745 + 1.36146i −0.310745 + 1.36146i
\(554\) 0 0
\(555\) 0 0
\(556\) 0.0291063 + 0.0404844i 0.0291063 + 0.0404844i
\(557\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(558\) 0 0
\(559\) 1.32414 + 0.902786i 1.32414 + 0.902786i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −0.222521 0.974928i −0.222521 0.974928i
\(568\) 0 0
\(569\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(570\) 0 0
\(571\) 1.15382 + 0.786662i 1.15382 + 0.786662i 0.980172 0.198146i \(-0.0634921\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0.698237 0.715867i 0.698237 0.715867i
\(577\) −0.277479 + 1.21572i −0.277479 + 1.21572i 0.623490 + 0.781831i \(0.285714\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(578\) 0 0
\(579\) −0.290594 + 0.566825i −0.290594 + 0.566825i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(588\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(589\) −0.442830 + 1.94017i −0.442830 + 1.94017i
\(590\) 0 0
\(591\) 0 0
\(592\) −0.574352 0.588854i −0.574352 0.588854i
\(593\) 0 0 −0.661686 0.749781i \(-0.730159\pi\)
0.661686 + 0.749781i \(0.269841\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0.444489 + 1.94743i 0.444489 + 1.94743i
\(598\) 0 0
\(599\) 0 0 −0.124344 0.992239i \(-0.539683\pi\)
0.124344 + 0.992239i \(0.460317\pi\)
\(600\) 0 0
\(601\) −1.12310 1.04209i −1.12310 1.04209i −0.998757 0.0498459i \(-0.984127\pi\)
−0.124344 0.992239i \(-0.539683\pi\)
\(602\) 0 0
\(603\) −0.218403 + 1.74281i −0.218403 + 1.74281i
\(604\) −1.28756 + 0.701170i −1.28756 + 0.701170i
\(605\) 0 0
\(606\) 0 0
\(607\) 0.939693 1.62760i 0.939693 1.62760i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0.137724 0.0580555i 0.137724 0.0580555i −0.318487 0.947927i \(-0.603175\pi\)
0.456211 + 0.889872i \(0.349206\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 −0.270840 0.962624i \(-0.587302\pi\)
0.270840 + 0.962624i \(0.412698\pi\)
\(618\) 0 0
\(619\) 0.939693 1.62760i 0.939693 1.62760i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0.801308 + 1.56301i 0.801308 + 1.56301i
\(625\) 0.995031 0.0995678i 0.995031 0.0995678i
\(626\) 0 0
\(627\) 0 0
\(628\) 1.87325 + 0.577822i 1.87325 + 0.577822i
\(629\) 0 0
\(630\) 0 0
\(631\) −0.462211 0.282452i −0.462211 0.282452i 0.270840 0.962624i \(-0.412698\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(632\) 0 0
\(633\) −0.316203 + 0.439811i −0.316203 + 0.439811i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −1.73683 0.261784i −1.73683 0.261784i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 0.270840 0.962624i \(-0.412698\pi\)
−0.270840 + 0.962624i \(0.587302\pi\)
\(642\) 0 0
\(643\) −1.29713 0.262221i −1.29713 0.262221i −0.500000 0.866025i \(-0.666667\pi\)
−0.797133 + 0.603804i \(0.793651\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −1.96783 + 0.296603i −1.96783 + 0.296603i
\(652\) −0.290594 + 0.566825i −0.290594 + 0.566825i
\(653\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −0.964623 0.657669i −0.964623 0.657669i
\(658\) 0 0
\(659\) 0 0 −0.411287 0.911506i \(-0.634921\pi\)
0.411287 + 0.911506i \(0.365079\pi\)
\(660\) 0 0
\(661\) −0.456211 + 0.889872i −0.456211 + 0.889872i 0.542546 + 0.840026i \(0.317460\pi\)
−0.998757 + 0.0498459i \(0.984127\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 1.87822 + 0.478254i 1.87822 + 0.478254i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −1.63076 + 0.503024i −1.63076 + 0.503024i −0.969077 0.246757i \(-0.920635\pi\)
−0.661686 + 0.749781i \(0.730159\pi\)
\(674\) 0 0
\(675\) −0.124344 0.992239i −0.124344 0.992239i
\(676\) −2.06180 + 0.310767i −2.06180 + 0.310767i
\(677\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(678\) 0 0
\(679\) −0.425270 + 1.86323i −0.425270 + 1.86323i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(684\) 0.270840 0.962624i 0.270840 0.962624i
\(685\) 0 0
\(686\) 0 0
\(687\) −0.190506 + 0.159853i −0.190506 + 0.159853i
\(688\) 0.840775 + 0.354416i 0.840775 + 0.354416i
\(689\) 0 0
\(690\) 0 0
\(691\) 0.988831 + 0.149042i 0.988831 + 0.149042i 0.623490 0.781831i \(-0.285714\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0.0747301 + 0.997204i 0.0747301 + 0.997204i
\(701\) 0 0 0.921476 0.388435i \(-0.126984\pi\)
−0.921476 + 0.388435i \(0.873016\pi\)
\(702\) 0 0
\(703\) −0.786030 0.242458i −0.786030 0.242458i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −0.247452 0.0247613i −0.247452 0.0247613i −0.0249307 0.999689i \(-0.507937\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(710\) 0 0
\(711\) 1.33443 + 0.411618i 1.33443 + 0.411618i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.661686 0.749781i \(-0.269841\pi\)
−0.661686 + 0.749781i \(0.730159\pi\)
\(720\) 0 0
\(721\) −1.40012 + 0.762464i −1.40012 + 0.762464i
\(722\) 0 0
\(723\) 0.146497 1.95486i 0.146497 1.95486i
\(724\) −0.902230 1.75987i −0.902230 1.75987i
\(725\) 0 0
\(726\) 0 0
\(727\) −0.296345 + 0.181093i −0.296345 + 0.181093i −0.661686 0.749781i \(-0.730159\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(728\) 0 0
\(729\) −0.988831 + 0.149042i −0.988831 + 0.149042i
\(730\) 0 0
\(731\) 0 0
\(732\) −0.633808 + 1.88643i −0.633808 + 1.88643i
\(733\) −0.425270 + 1.86323i −0.425270 + 1.86323i 0.0747301 + 0.997204i \(0.476190\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 1.65381 0.421112i 1.65381 0.421112i 0.698237 0.715867i \(-0.253968\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(740\) 0 0
\(741\) 1.45124 + 0.989440i 1.45124 + 0.989440i
\(742\) 0 0
\(743\) 0 0 −0.878222 0.478254i \(-0.841270\pi\)
0.878222 + 0.478254i \(0.158730\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0.0397461 1.59377i 0.0397461 1.59377i −0.583744 0.811938i \(-0.698413\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0.995031 0.0995678i 0.995031 0.0995678i
\(757\) 1.28245 0.326552i 1.28245 0.326552i 0.456211 0.889872i \(-0.349206\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(762\) 0 0
\(763\) 1.78181 + 0.858075i 1.78181 + 0.858075i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(769\) −1.53018 + 0.0763683i −1.53018 + 0.0763683i −0.797133 0.603804i \(-0.793651\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −0.526292 0.358820i −0.526292 0.358820i
\(773\) 0 0 −0.921476 0.388435i \(-0.873016\pi\)
0.921476 + 0.388435i \(0.126984\pi\)
\(774\) 0 0
\(775\) −1.98759 + 0.0991964i −1.98759 + 0.0991964i
\(776\) 0 0
\(777\) −0.0614710 0.820274i −0.0614710 0.820274i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −0.998757 + 0.0498459i −0.998757 + 0.0498459i
\(785\) 0 0
\(786\) 0 0
\(787\) 0.510189 + 1.29994i 0.510189 + 1.29994i 0.921476 + 0.388435i \(0.126984\pi\)
−0.411287 + 0.911506i \(0.634921\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −2.78632 2.11056i −2.78632 2.11056i
\(794\) 0 0
\(795\) 0 0
\(796\) −1.98759 + 0.198888i −1.98759 + 0.198888i
\(797\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) −1.70213 0.433415i −1.70213 0.433415i
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(810\) 0 0
\(811\) −0.300520 0.666021i −0.300520 0.666021i 0.698237 0.715867i \(-0.253968\pi\)
−0.998757 + 0.0498459i \(0.984127\pi\)
\(812\) 0 0
\(813\) 0.510189 0.523071i 0.510189 0.523071i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0.907887 0.0908478i 0.907887 0.0908478i
\(818\) 0 0
\(819\) −0.390845 + 1.71241i −0.390845 + 1.71241i
\(820\) 0 0
\(821\) 0 0 −0.270840 0.962624i \(-0.587302\pi\)
0.270840 + 0.962624i \(0.412698\pi\)
\(822\) 0 0
\(823\) −1.28756 + 0.701170i −1.28756 + 0.701170i −0.969077 0.246757i \(-0.920635\pi\)
−0.318487 + 0.947927i \(0.603175\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.878222 0.478254i \(-0.158730\pi\)
−0.878222 + 0.478254i \(0.841270\pi\)
\(828\) 0 0
\(829\) −1.25818 0.605907i −1.25818 0.605907i −0.318487 0.947927i \(-0.603175\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(830\) 0 0
\(831\) 0.333345 + 0.650213i 0.333345 + 0.650213i
\(832\) −1.65052 + 0.600739i −1.65052 + 0.600739i
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0.148717 + 1.98450i 0.148717 + 1.98450i
\(838\) 0 0
\(839\) 0 0 −0.980172 0.198146i \(-0.936508\pi\)
0.980172 + 0.198146i \(0.0634921\pi\)
\(840\) 0 0
\(841\) −0.853291 + 0.521435i −0.853291 + 0.521435i
\(842\) 0 0
\(843\) 0 0
\(844\) −0.397080 0.368437i −0.397080 0.368437i
\(845\) 0 0
\(846\) 0 0
\(847\) −0.318487 + 0.947927i −0.318487 + 0.947927i
\(848\) 0 0
\(849\) 1.53758 + 0.939594i 1.53758 + 0.939594i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −0.532620 0.740830i −0.532620 0.740830i 0.456211 0.889872i \(-0.349206\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 −0.797133 0.603804i \(-0.793651\pi\)
0.797133 + 0.603804i \(0.206349\pi\)
\(858\) 0 0
\(859\) −0.532620 + 0.740830i −0.532620 + 0.740830i −0.988831 0.149042i \(-0.952381\pi\)
0.456211 + 0.889872i \(0.349206\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0.955573 + 0.294755i 0.955573 + 0.294755i
\(868\) −0.0496136 1.98944i −0.0496136 1.98944i
\(869\) 0 0
\(870\) 0 0
\(871\) 1.67381 2.59156i 1.67381 2.59156i
\(872\) 0 0
\(873\) 1.82624 + 0.563320i 1.82624 + 0.563320i
\(874\) 0 0
\(875\) 0 0
\(876\) 0.772510 0.875360i 0.772510 0.875360i
\(877\) −1.40012 0.762464i −1.40012 0.762464i −0.411287 0.911506i \(-0.634921\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(882\) 0 0
\(883\) −0.229801 + 1.30327i −0.229801 + 1.30327i 0.623490 + 0.781831i \(0.285714\pi\)
−0.853291 + 0.521435i \(0.825397\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.318487 0.947927i \(-0.396825\pi\)
−0.318487 + 0.947927i \(0.603175\pi\)
\(888\) 0 0
\(889\) 0.354757 + 0.268718i 0.354757 + 0.268718i
\(890\) 0 0
\(891\) 0 0
\(892\) −0.708087 + 1.80418i −0.708087 + 1.80418i
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 1.00000 1.00000
\(901\) 0 0
\(902\) 0 0
\(903\) 0.416256 + 0.811938i 0.416256 + 0.811938i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0.673306 0.283822i 0.673306 0.283822i −0.0249307 0.999689i \(-0.507937\pi\)
0.698237 + 0.715867i \(0.253968\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(912\) 0.921476 + 0.388435i 0.921476 + 0.388435i
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) −0.134924 0.208904i −0.134924 0.208904i
\(917\) 0 0
\(918\) 0 0
\(919\) −1.41004 0.961352i −1.41004 0.961352i −0.998757 0.0498459i \(-0.984127\pi\)
−0.411287 0.911506i \(-0.634921\pi\)
\(920\) 0 0
\(921\) 1.25101 + 0.764478i 1.25101 + 0.764478i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0.0205073 0.822319i 0.0205073 0.822319i
\(926\) 0 0
\(927\) 0.655701 + 1.45318i 0.655701 + 1.45318i
\(928\) 0 0
\(929\) 0 0 0.542546 0.840026i \(-0.317460\pi\)
−0.542546 + 0.840026i \(0.682540\pi\)
\(930\) 0 0
\(931\) −0.853291 + 0.521435i −0.853291 + 0.521435i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −0.0270521 + 1.08476i −0.0270521 + 1.08476i 0.826239 + 0.563320i \(0.190476\pi\)
−0.853291 + 0.521435i \(0.825397\pi\)
\(938\) 0 0
\(939\) −1.63402 0.246289i −1.63402 0.246289i
\(940\) 0 0
\(941\) 0 0 −0.853291 0.521435i \(-0.825397\pi\)
0.853291 + 0.521435i \(0.174603\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 0.661686 0.749781i \(-0.269841\pi\)
−0.661686 + 0.749781i \(0.730159\pi\)
\(948\) −0.574352 + 1.27289i −0.574352 + 1.27289i
\(949\) 1.02531 + 1.77589i 1.02531 + 1.77589i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 0.969077 0.246757i \(-0.0793651\pi\)
−0.969077 + 0.246757i \(0.920635\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 2.96034 2.96034
\(962\) 0 0
\(963\) 0 0
\(964\) 1.92148 + 0.388435i 1.92148 + 0.388435i
\(965\) 0 0
\(966\) 0 0
\(967\) 0.248378 + 0.0123960i 0.248378 + 0.0123960i 0.173648 0.984808i \(-0.444444\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 0.124344 0.992239i \(-0.460317\pi\)
−0.124344 + 0.992239i \(0.539683\pi\)
\(972\) −0.0249307 0.999689i −0.0249307 0.999689i
\(973\) −0.0488728 0.00987984i −0.0488728 0.00987984i
\(974\) 0 0
\(975\) −0.559404 + 1.66498i −0.559404 + 1.66498i
\(976\) −1.79298 0.863455i −1.79298 0.863455i
\(977\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0.988831 1.71271i 0.988831 1.71271i
\(982\) 0 0
\(983\) 0 0 −0.878222 0.478254i \(-0.841270\pi\)
0.878222 + 0.478254i \(0.158730\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −1.16221 + 1.31695i −1.16221 + 1.31695i
\(989\) 0 0
\(990\) 0 0
\(991\) 0.999887 1.54813i 0.999887 1.54813i 0.173648 0.984808i \(-0.444444\pi\)
0.826239 0.563320i \(-0.190476\pi\)
\(992\) 0 0
\(993\) 0.588713 0.911506i 0.588713 0.911506i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1.06976 1.09677i 1.06976 1.09677i 0.0747301 0.997204i \(-0.476190\pi\)
0.995031 0.0995678i \(-0.0317460\pi\)
\(998\) 0 0
\(999\) −0.822574 −0.822574
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2793.1.ei.a.1871.1 36
3.2 odd 2 CM 2793.1.ei.a.1871.1 36
19.17 even 9 2793.1.eo.a.2753.1 yes 36
49.11 even 21 2793.1.eo.a.1187.1 yes 36
57.17 odd 18 2793.1.eo.a.2753.1 yes 36
147.11 odd 42 2793.1.eo.a.1187.1 yes 36
931.207 even 63 inner 2793.1.ei.a.2069.1 yes 36
2793.2069 odd 126 inner 2793.1.ei.a.2069.1 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2793.1.ei.a.1871.1 36 1.1 even 1 trivial
2793.1.ei.a.1871.1 36 3.2 odd 2 CM
2793.1.ei.a.2069.1 yes 36 931.207 even 63 inner
2793.1.ei.a.2069.1 yes 36 2793.2069 odd 126 inner
2793.1.eo.a.1187.1 yes 36 49.11 even 21
2793.1.eo.a.1187.1 yes 36 147.11 odd 42
2793.1.eo.a.2753.1 yes 36 19.17 even 9
2793.1.eo.a.2753.1 yes 36 57.17 odd 18