Properties

Label 2793.1.eo.a.1187.1
Level $2793$
Weight $1$
Character 2793.1187
Analytic conductor $1.394$
Analytic rank $0$
Dimension $36$
Projective image $D_{63}$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2793,1,Mod(137,2793)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2793, base_ring=CyclotomicField(126))
 
chi = DirichletCharacter(H, H._module([63, 102, 14]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2793.137");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2793 = 3 \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2793.eo (of order \(126\), degree \(36\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.39388858028\)
Analytic rank: \(0\)
Dimension: \(36\)
Coefficient field: \(\Q(\zeta_{63})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{36} - x^{33} + x^{27} - x^{24} + x^{18} - x^{12} + x^{9} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{63}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{63} - \cdots)\)

Embedding invariants

Embedding label 1187.1
Root \(-0.318487 + 0.947927i\) of defining polynomial
Character \(\chi\) \(=\) 2793.1187
Dual form 2793.1.eo.a.2753.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.661686 + 0.749781i) q^{3} +(0.270840 + 0.962624i) q^{4} +(-0.797133 - 0.603804i) q^{7} +(-0.124344 - 0.992239i) q^{9} +O(q^{10})\) \(q+(-0.661686 + 0.749781i) q^{3} +(0.270840 + 0.962624i) q^{4} +(-0.797133 - 0.603804i) q^{7} +(-0.124344 - 0.992239i) q^{9} +(-0.900969 - 0.433884i) q^{12} +(0.801308 - 1.56301i) q^{13} +(-0.853291 + 0.521435i) q^{16} +(-0.733052 - 0.680173i) q^{19} +(0.980172 - 0.198146i) q^{21} +(-0.124344 - 0.992239i) q^{25} +(0.826239 + 0.563320i) q^{27} +(0.365341 - 0.930874i) q^{28} +(-0.995031 - 1.72344i) q^{31} +(0.921476 - 0.388435i) q^{36} +(-0.0614710 - 0.820274i) q^{37} +(0.641701 + 1.63503i) q^{39} +(-0.778561 + 0.475769i) q^{43} +(0.173648 - 0.984808i) q^{48} +(0.270840 + 0.962624i) q^{49} +(1.72162 + 0.348032i) q^{52} +(0.995031 - 0.0995678i) q^{57} +(-0.818487 - 1.81395i) q^{61} +(-0.500000 + 0.866025i) q^{63} +(-0.733052 - 0.680173i) q^{64} +(1.34551 + 1.12902i) q^{67} +(1.16604 + 0.0581944i) q^{73} +(0.826239 + 0.563320i) q^{75} +(0.456211 - 0.889872i) q^{76} +(-1.31226 - 0.477622i) q^{79} +(-0.969077 + 0.246757i) q^{81} +(0.456211 + 0.889872i) q^{84} +(-1.58250 + 0.762092i) q^{91} +(1.95060 + 0.394323i) q^{93} +(0.331867 + 1.88211i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q+O(q^{10}) \) Copy content Toggle raw display \( 36 q - 6 q^{12} + 3 q^{13} + 3 q^{19} + 3 q^{27} + 3 q^{28} + 3 q^{43} + 3 q^{52} - 18 q^{61} - 18 q^{63} + 3 q^{64} + 3 q^{67} - 6 q^{73} + 3 q^{75} - 6 q^{79} + 3 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2793\mathbb{Z}\right)^\times\).

\(n\) \(932\) \(2110\) \(2206\)
\(\chi(n)\) \(-1\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{4}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 −0.797133 0.603804i \(-0.793651\pi\)
0.797133 + 0.603804i \(0.206349\pi\)
\(3\) −0.661686 + 0.749781i −0.661686 + 0.749781i
\(4\) 0.270840 + 0.962624i 0.270840 + 0.962624i
\(5\) 0 0 0.661686 0.749781i \(-0.269841\pi\)
−0.661686 + 0.749781i \(0.730159\pi\)
\(6\) 0 0
\(7\) −0.797133 0.603804i −0.797133 0.603804i
\(8\) 0 0
\(9\) −0.124344 0.992239i −0.124344 0.992239i
\(10\) 0 0
\(11\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(12\) −0.900969 0.433884i −0.900969 0.433884i
\(13\) 0.801308 1.56301i 0.801308 1.56301i −0.0249307 0.999689i \(-0.507937\pi\)
0.826239 0.563320i \(-0.190476\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.853291 + 0.521435i −0.853291 + 0.521435i
\(17\) 0 0 −0.698237 0.715867i \(-0.746032\pi\)
0.698237 + 0.715867i \(0.253968\pi\)
\(18\) 0 0
\(19\) −0.733052 0.680173i −0.733052 0.680173i
\(20\) 0 0
\(21\) 0.980172 0.198146i 0.980172 0.198146i
\(22\) 0 0
\(23\) 0 0 −0.969077 0.246757i \(-0.920635\pi\)
0.969077 + 0.246757i \(0.0793651\pi\)
\(24\) 0 0
\(25\) −0.124344 0.992239i −0.124344 0.992239i
\(26\) 0 0
\(27\) 0.826239 + 0.563320i 0.826239 + 0.563320i
\(28\) 0.365341 0.930874i 0.365341 0.930874i
\(29\) 0 0 0.583744 0.811938i \(-0.301587\pi\)
−0.583744 + 0.811938i \(0.698413\pi\)
\(30\) 0 0
\(31\) −0.995031 1.72344i −0.995031 1.72344i −0.583744 0.811938i \(-0.698413\pi\)
−0.411287 0.911506i \(-0.634921\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0.921476 0.388435i 0.921476 0.388435i
\(37\) −0.0614710 0.820274i −0.0614710 0.820274i −0.939693 0.342020i \(-0.888889\pi\)
0.878222 0.478254i \(-0.158730\pi\)
\(38\) 0 0
\(39\) 0.641701 + 1.63503i 0.641701 + 1.63503i
\(40\) 0 0
\(41\) 0 0 −0.980172 0.198146i \(-0.936508\pi\)
0.980172 + 0.198146i \(0.0634921\pi\)
\(42\) 0 0
\(43\) −0.778561 + 0.475769i −0.778561 + 0.475769i −0.853291 0.521435i \(-0.825397\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.542546 0.840026i \(-0.682540\pi\)
0.542546 + 0.840026i \(0.317460\pi\)
\(48\) 0.173648 0.984808i 0.173648 0.984808i
\(49\) 0.270840 + 0.962624i 0.270840 + 0.962624i
\(50\) 0 0
\(51\) 0 0
\(52\) 1.72162 + 0.348032i 1.72162 + 0.348032i
\(53\) 0 0 −0.270840 0.962624i \(-0.587302\pi\)
0.270840 + 0.962624i \(0.412698\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0.995031 0.0995678i 0.995031 0.0995678i
\(58\) 0 0
\(59\) 0 0 0.853291 0.521435i \(-0.174603\pi\)
−0.853291 + 0.521435i \(0.825397\pi\)
\(60\) 0 0
\(61\) −0.818487 1.81395i −0.818487 1.81395i −0.500000 0.866025i \(-0.666667\pi\)
−0.318487 0.947927i \(-0.603175\pi\)
\(62\) 0 0
\(63\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(64\) −0.733052 0.680173i −0.733052 0.680173i
\(65\) 0 0
\(66\) 0 0
\(67\) 1.34551 + 1.12902i 1.34551 + 1.12902i 0.980172 + 0.198146i \(0.0634921\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.995031 0.0995678i \(-0.0317460\pi\)
−0.995031 + 0.0995678i \(0.968254\pi\)
\(72\) 0 0
\(73\) 1.16604 + 0.0581944i 1.16604 + 0.0581944i 0.623490 0.781831i \(-0.285714\pi\)
0.542546 + 0.840026i \(0.317460\pi\)
\(74\) 0 0
\(75\) 0.826239 + 0.563320i 0.826239 + 0.563320i
\(76\) 0.456211 0.889872i 0.456211 0.889872i
\(77\) 0 0
\(78\) 0 0
\(79\) −1.31226 0.477622i −1.31226 0.477622i −0.411287 0.911506i \(-0.634921\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(80\) 0 0
\(81\) −0.969077 + 0.246757i −0.969077 + 0.246757i
\(82\) 0 0
\(83\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(84\) 0.456211 + 0.889872i 0.456211 + 0.889872i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.921476 0.388435i \(-0.873016\pi\)
0.921476 + 0.388435i \(0.126984\pi\)
\(90\) 0 0
\(91\) −1.58250 + 0.762092i −1.58250 + 0.762092i
\(92\) 0 0
\(93\) 1.95060 + 0.394323i 1.95060 + 0.394323i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0.331867 + 1.88211i 0.331867 + 1.88211i 0.456211 + 0.889872i \(0.349206\pi\)
−0.124344 + 0.992239i \(0.539683\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0.921476 0.388435i 0.921476 0.388435i
\(101\) 0 0 −0.853291 0.521435i \(-0.825397\pi\)
0.853291 + 0.521435i \(0.174603\pi\)
\(102\) 0 0
\(103\) 1.57646 0.237613i 1.57646 0.237613i 0.698237 0.715867i \(-0.253968\pi\)
0.878222 + 0.478254i \(0.158730\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(108\) −0.318487 + 0.947927i −0.318487 + 0.947927i
\(109\) 1.57646 + 1.19412i 1.57646 + 1.19412i 0.878222 + 0.478254i \(0.158730\pi\)
0.698237 + 0.715867i \(0.253968\pi\)
\(110\) 0 0
\(111\) 0.655701 + 0.496674i 0.655701 + 0.496674i
\(112\) 0.995031 + 0.0995678i 0.995031 + 0.0995678i
\(113\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −1.65052 0.600739i −1.65052 0.600739i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(122\) 0 0
\(123\) 0 0
\(124\) 1.38953 1.42462i 1.38953 1.42462i
\(125\) 0 0
\(126\) 0 0
\(127\) 0.183040 + 0.405658i 0.183040 + 0.405658i 0.980172 0.198146i \(-0.0634921\pi\)
−0.797133 + 0.603804i \(0.793651\pi\)
\(128\) 0 0
\(129\) 0.158440 0.898560i 0.158440 0.898560i
\(130\) 0 0
\(131\) 0 0 −0.0249307 0.999689i \(-0.507937\pi\)
0.0249307 + 0.999689i \(0.492063\pi\)
\(132\) 0 0
\(133\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 −0.661686 0.749781i \(-0.730159\pi\)
0.661686 + 0.749781i \(0.269841\pi\)
\(138\) 0 0
\(139\) 0.00124308 0.0498459i 0.00124308 0.0498459i −0.998757 0.0498459i \(-0.984127\pi\)
1.00000 \(0\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(145\) 0 0
\(146\) 0 0
\(147\) −0.900969 0.433884i −0.900969 0.433884i
\(148\) 0.772967 0.281337i 0.772967 0.281337i
\(149\) 0 0 0.124344 0.992239i \(-0.460317\pi\)
−0.124344 + 0.992239i \(0.539683\pi\)
\(150\) 0 0
\(151\) −0.109562 + 1.46200i −0.109562 + 1.46200i 0.623490 + 0.781831i \(0.285714\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −1.40012 + 1.06055i −1.40012 + 1.06055i
\(157\) −0.0488728 1.95974i −0.0488728 1.95974i −0.222521 0.974928i \(-0.571429\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −0.232712 0.592942i −0.232712 0.592942i 0.766044 0.642788i \(-0.222222\pi\)
−0.998757 + 0.0498459i \(0.984127\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.995031 0.0995678i \(-0.968254\pi\)
0.995031 + 0.0995678i \(0.0317460\pi\)
\(168\) 0 0
\(169\) −1.21716 1.69297i −1.21716 1.69297i
\(170\) 0 0
\(171\) −0.583744 + 0.811938i −0.583744 + 0.811938i
\(172\) −0.668852 0.620604i −0.668852 0.620604i
\(173\) 0 0 0.411287 0.911506i \(-0.365079\pi\)
−0.411287 + 0.911506i \(0.634921\pi\)
\(174\) 0 0
\(175\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(180\) 0 0
\(181\) −1.82237 0.768193i −1.82237 0.768193i −0.969077 0.246757i \(-0.920635\pi\)
−0.853291 0.521435i \(-0.825397\pi\)
\(182\) 0 0
\(183\) 1.90165 + 0.586581i 1.90165 + 0.586581i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −0.318487 0.947927i −0.318487 0.947927i
\(190\) 0 0
\(191\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(192\) 0.995031 0.0995678i 0.995031 0.0995678i
\(193\) 0.421476 0.477591i 0.421476 0.477591i −0.500000 0.866025i \(-0.666667\pi\)
0.921476 + 0.388435i \(0.126984\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −0.853291 + 0.521435i −0.853291 + 0.521435i
\(197\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(198\) 0 0
\(199\) 0.0497994 1.99689i 0.0497994 1.99689i −0.0249307 0.999689i \(-0.507937\pi\)
0.0747301 0.997204i \(-0.476190\pi\)
\(200\) 0 0
\(201\) −1.73683 + 0.261784i −1.73683 + 0.261784i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0.131259 + 1.75153i 0.131259 + 1.75153i
\(209\) 0 0
\(210\) 0 0
\(211\) −0.541008 0.0270006i −0.541008 0.0270006i −0.222521 0.974928i \(-0.571429\pi\)
−0.318487 + 0.947927i \(0.603175\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −0.247452 + 1.97462i −0.247452 + 1.97462i
\(218\) 0 0
\(219\) −0.815183 + 0.835765i −0.815183 + 0.835765i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −1.92852 + 0.192978i −1.92852 + 0.192978i −0.988831 0.149042i \(-0.952381\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(224\) 0 0
\(225\) −0.969077 + 0.246757i −0.969077 + 0.246757i
\(226\) 0 0
\(227\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(228\) 0.365341 + 0.930874i 0.365341 + 0.930874i
\(229\) 0.245910 + 0.0370649i 0.245910 + 0.0370649i 0.270840 0.962624i \(-0.412698\pi\)
−0.0249307 + 0.999689i \(0.507937\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 0.270840 0.962624i \(-0.412698\pi\)
−0.270840 + 0.962624i \(0.587302\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 1.22641 0.667869i 1.22641 0.667869i
\(238\) 0 0
\(239\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(240\) 0 0
\(241\) 1.36879 1.40335i 1.36879 1.40335i 0.542546 0.840026i \(-0.317460\pi\)
0.826239 0.563320i \(-0.190476\pi\)
\(242\) 0 0
\(243\) 0.456211 0.889872i 0.456211 0.889872i
\(244\) 1.52448 1.27919i 1.52448 1.27919i
\(245\) 0 0
\(246\) 0 0
\(247\) −1.65052 + 0.600739i −1.65052 + 0.600739i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 0.318487 0.947927i \(-0.396825\pi\)
−0.318487 + 0.947927i \(0.603175\pi\)
\(252\) −0.969077 0.246757i −0.969077 0.246757i
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0.456211 0.889872i 0.456211 0.889872i
\(257\) 0 0 −0.995031 0.0995678i \(-0.968254\pi\)
0.995031 + 0.0995678i \(0.0317460\pi\)
\(258\) 0 0
\(259\) −0.446285 + 0.690984i −0.446285 + 0.690984i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −0.722402 + 1.60101i −0.722402 + 1.60101i
\(269\) 0 0 −0.998757 0.0498459i \(-0.984127\pi\)
0.998757 + 0.0498459i \(0.0158730\pi\)
\(270\) 0 0
\(271\) −0.426531 0.593269i −0.426531 0.593269i 0.542546 0.840026i \(-0.317460\pi\)
−0.969077 + 0.246757i \(0.920635\pi\)
\(272\) 0 0
\(273\) 0.475716 1.69079i 0.475716 1.69079i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −0.658322 0.317031i −0.658322 0.317031i 0.0747301 0.997204i \(-0.476190\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(278\) 0 0
\(279\) −1.58634 + 1.20161i −1.58634 + 1.20161i
\(280\) 0 0
\(281\) 0 0 −0.542546 0.840026i \(-0.682540\pi\)
0.542546 + 0.840026i \(0.317460\pi\)
\(282\) 0 0
\(283\) 0.224060 1.78795i 0.224060 1.78795i −0.318487 0.947927i \(-0.603175\pi\)
0.542546 0.840026i \(-0.317460\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −0.0249307 + 0.999689i −0.0249307 + 0.999689i
\(290\) 0 0
\(291\) −1.63076 0.996539i −1.63076 0.996539i
\(292\) 0.259790 + 1.13822i 0.259790 + 1.13822i
\(293\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) −0.318487 + 0.947927i −0.318487 + 0.947927i
\(301\) 0.907887 + 0.0908478i 0.907887 + 0.0908478i
\(302\) 0 0
\(303\) 0 0
\(304\) 0.980172 + 0.198146i 0.980172 + 0.198146i
\(305\) 0 0
\(306\) 0 0
\(307\) 1.16868 + 0.885240i 1.16868 + 0.885240i 0.995031 0.0995678i \(-0.0317460\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(308\) 0 0
\(309\) −0.864963 + 1.33922i −0.864963 + 1.33922i
\(310\) 0 0
\(311\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(312\) 0 0
\(313\) −1.55282 + 0.565181i −1.55282 + 0.565181i −0.969077 0.246757i \(-0.920635\pi\)
−0.583744 + 0.811938i \(0.698413\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0.104359 1.39257i 0.104359 1.39257i
\(317\) 0 0 −0.270840 0.962624i \(-0.587302\pi\)
0.270840 + 0.962624i \(0.412698\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −0.500000 0.866025i −0.500000 0.866025i
\(325\) −1.65052 0.600739i −1.65052 0.600739i
\(326\) 0 0
\(327\) −1.93845 + 0.391866i −1.93845 + 0.391866i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0.896546 0.611254i 0.896546 0.611254i −0.0249307 0.999689i \(-0.507937\pi\)
0.921476 + 0.388435i \(0.126984\pi\)
\(332\) 0 0
\(333\) −0.806265 + 0.162990i −0.806265 + 0.162990i
\(334\) 0 0
\(335\) 0 0
\(336\) −0.733052 + 0.680173i −0.733052 + 0.680173i
\(337\) 1.12922 0.690053i 1.12922 0.690053i 0.173648 0.984808i \(-0.444444\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0.365341 0.930874i 0.365341 0.930874i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 0.411287 0.911506i \(-0.365079\pi\)
−0.411287 + 0.911506i \(0.634921\pi\)
\(348\) 0 0
\(349\) 0.673306 + 1.71556i 0.673306 + 1.71556i 0.698237 + 0.715867i \(0.253968\pi\)
−0.0249307 + 0.999689i \(0.507937\pi\)
\(350\) 0 0
\(351\) 1.54255 0.840026i 1.54255 0.840026i
\(352\) 0 0
\(353\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.0249307 0.999689i \(-0.507937\pi\)
0.0249307 + 0.999689i \(0.492063\pi\)
\(360\) 0 0
\(361\) 0.0747301 + 0.997204i 0.0747301 + 0.997204i
\(362\) 0 0
\(363\) 0.270840 0.962624i 0.270840 0.962624i
\(364\) −1.16221 1.31695i −1.16221 1.31695i
\(365\) 0 0
\(366\) 0 0
\(367\) 0.212203 + 1.69334i 0.212203 + 1.69334i 0.623490 + 0.781831i \(0.285714\pi\)
−0.411287 + 0.911506i \(0.634921\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0.148717 + 1.98450i 0.148717 + 1.98450i
\(373\) 1.91115 1.91115 0.955573 0.294755i \(-0.0952381\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −0.203033 0.889545i −0.203033 0.889545i −0.969077 0.246757i \(-0.920635\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(380\) 0 0
\(381\) −0.425270 0.131178i −0.425270 0.131178i
\(382\) 0 0
\(383\) 0 0 0.542546 0.840026i \(-0.317460\pi\)
−0.542546 + 0.840026i \(0.682540\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0.568885 + 0.713360i 0.568885 + 0.713360i
\(388\) −1.72188 + 0.829215i −1.72188 + 0.829215i
\(389\) 0 0 0.0249307 0.999689i \(-0.492063\pi\)
−0.0249307 + 0.999689i \(0.507937\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −1.89973 0.384038i −1.89973 0.384038i −0.900969 0.433884i \(-0.857143\pi\)
−0.998757 + 0.0498459i \(0.984127\pi\)
\(398\) 0 0
\(399\) −0.853291 0.521435i −0.853291 0.521435i
\(400\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(401\) 0 0 −0.456211 0.889872i \(-0.650794\pi\)
0.456211 + 0.889872i \(0.349206\pi\)
\(402\) 0 0
\(403\) −3.49108 + 0.174233i −3.49108 + 0.174233i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −0.0614710 0.136234i −0.0614710 0.136234i 0.878222 0.478254i \(-0.158730\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0.655701 + 1.45318i 0.655701 + 1.45318i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0.0365510 + 0.0339144i 0.0365510 + 0.0339144i
\(418\) 0 0
\(419\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(420\) 0 0
\(421\) −1.20842 + 0.307701i −1.20842 + 0.307701i −0.797133 0.603804i \(-0.793651\pi\)
−0.411287 + 0.911506i \(0.634921\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −0.442830 + 1.94017i −0.442830 + 1.94017i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.318487 0.947927i \(-0.396825\pi\)
−0.318487 + 0.947927i \(0.603175\pi\)
\(432\) −0.998757 0.0498459i −0.998757 0.0498459i
\(433\) 0.212203 + 0.129674i 0.212203 + 0.129674i 0.623490 0.781831i \(-0.285714\pi\)
−0.411287 + 0.911506i \(0.634921\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −0.722521 + 1.84095i −0.722521 + 1.84095i
\(437\) 0 0
\(438\) 0 0
\(439\) 1.36037 + 1.03044i 1.36037 + 1.03044i 0.995031 + 0.0995678i \(0.0317460\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(440\) 0 0
\(441\) 0.921476 0.388435i 0.921476 0.388435i
\(442\) 0 0
\(443\) 0 0 0.998757 0.0498459i \(-0.0158730\pi\)
−0.998757 + 0.0498459i \(0.984127\pi\)
\(444\) −0.300520 + 0.765713i −0.300520 + 0.765713i
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(449\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −1.02369 1.04954i −1.02369 1.04954i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 1.15445 + 0.174005i 1.15445 + 0.174005i 0.698237 0.715867i \(-0.253968\pi\)
0.456211 + 0.889872i \(0.349206\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 −0.698237 0.715867i \(-0.746032\pi\)
0.698237 + 0.715867i \(0.253968\pi\)
\(462\) 0 0
\(463\) −0.00372615 + 0.0497220i −0.00372615 + 0.0497220i −0.998757 0.0498459i \(-0.984127\pi\)
0.995031 + 0.0995678i \(0.0317460\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(468\) 0.131259 1.75153i 0.131259 1.75153i
\(469\) −0.390845 1.71241i −0.390845 1.71241i
\(470\) 0 0
\(471\) 1.50171 + 1.26009i 1.50171 + 1.26009i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −0.583744 + 0.811938i −0.583744 + 0.811938i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.998757 0.0498459i \(-0.0158730\pi\)
−0.998757 + 0.0498459i \(0.984127\pi\)
\(480\) 0 0
\(481\) −1.33135 0.561212i −1.33135 0.561212i
\(482\) 0 0
\(483\) 0 0
\(484\) −0.661686 0.749781i −0.661686 0.749781i
\(485\) 0 0
\(486\) 0 0
\(487\) 0.0546039 0.139129i 0.0546039 0.139129i −0.900969 0.433884i \(-0.857143\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(488\) 0 0
\(489\) 0.598559 + 0.217858i 0.598559 + 0.217858i
\(490\) 0 0
\(491\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 1.74771 + 0.951755i 1.74771 + 0.951755i
\(497\) 0 0
\(498\) 0 0
\(499\) 0.821552 + 0.0410019i 0.821552 + 0.0410019i 0.456211 0.889872i \(-0.349206\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.998757 0.0498459i \(-0.0158730\pi\)
−0.998757 + 0.0498459i \(0.984127\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 2.07473 + 0.207608i 2.07473 + 0.207608i
\(508\) −0.340922 + 0.286067i −0.340922 + 0.286067i
\(509\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(510\) 0 0
\(511\) −0.894347 0.750446i −0.894347 0.750446i
\(512\) 0 0
\(513\) −0.222521 0.974928i −0.222521 0.974928i
\(514\) 0 0
\(515\) 0 0
\(516\) 0.907887 0.0908478i 0.907887 0.0908478i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0.261979 0.779741i 0.261979 0.779741i −0.733052 0.680173i \(-0.761905\pi\)
0.995031 0.0995678i \(-0.0317460\pi\)
\(524\) 0 0
\(525\) −0.318487 0.947927i −0.318487 0.947927i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 0.878222 + 0.478254i 0.878222 + 0.478254i
\(530\) 0 0
\(531\) 0 0
\(532\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −1.08374 1.67796i −1.08374 1.67796i −0.583744 0.811938i \(-0.698413\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(542\) 0 0
\(543\) 1.78181 0.858075i 1.78181 0.858075i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 1.65381 + 1.01062i 1.65381 + 1.01062i 0.955573 + 0.294755i \(0.0952381\pi\)
0.698237 + 0.715867i \(0.253968\pi\)
\(548\) 0 0
\(549\) −1.69810 + 1.03769i −1.69810 + 1.03769i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0.757652 + 1.17307i 0.757652 + 1.17307i
\(554\) 0 0
\(555\) 0 0
\(556\) 0.0483195 0.0123037i 0.0483195 0.0123037i
\(557\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(558\) 0 0
\(559\) 0.119764 + 1.59813i 0.119764 + 1.59813i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0.921476 + 0.388435i 0.921476 + 0.388435i
\(568\) 0 0
\(569\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(570\) 0 0
\(571\) 1.15382 0.786662i 1.15382 0.786662i 0.173648 0.984808i \(-0.444444\pi\)
0.980172 + 0.198146i \(0.0634921\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −0.583744 + 0.811938i −0.583744 + 0.811938i
\(577\) −0.914101 + 0.848162i −0.914101 + 0.848162i −0.988831 0.149042i \(-0.952381\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(578\) 0 0
\(579\) 0.0792036 + 0.632030i 0.0792036 + 0.632030i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(588\) 0.173648 0.984808i 0.173648 0.984808i
\(589\) −0.442830 + 1.94017i −0.442830 + 1.94017i
\(590\) 0 0
\(591\) 0 0
\(592\) 0.480172 + 0.667879i 0.480172 + 0.667879i
\(593\) 0 0 0.0249307 0.999689i \(-0.492063\pi\)
−0.0249307 + 0.999689i \(0.507937\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1.46428 + 1.35865i 1.46428 + 1.35865i
\(598\) 0 0
\(599\) 0 0 0.456211 0.889872i \(-0.349206\pi\)
−0.456211 + 0.889872i \(0.650794\pi\)
\(600\) 0 0
\(601\) 1.46402 + 0.451591i 1.46402 + 0.451591i 0.921476 0.388435i \(-0.126984\pi\)
0.542546 + 0.840026i \(0.317460\pi\)
\(602\) 0 0
\(603\) 0.952952 1.47546i 0.952952 1.47546i
\(604\) −1.43703 + 0.290503i −1.43703 + 0.290503i
\(605\) 0 0
\(606\) 0 0
\(607\) 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i \(0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0.0681853 + 0.133000i 0.0681853 + 0.133000i 0.921476 0.388435i \(-0.126984\pi\)
−0.853291 + 0.521435i \(0.825397\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 0.583744 0.811938i \(-0.301587\pi\)
−0.583744 + 0.811938i \(0.698413\pi\)
\(618\) 0 0
\(619\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) −1.40012 1.06055i −1.40012 1.06055i
\(625\) −0.969077 + 0.246757i −0.969077 + 0.246757i
\(626\) 0 0
\(627\) 0 0
\(628\) 1.87325 0.577822i 1.87325 0.577822i
\(629\) 0 0
\(630\) 0 0
\(631\) −0.172518 + 0.513474i −0.172518 + 0.513474i −0.998757 0.0498459i \(-0.984127\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(632\) 0 0
\(633\) 0.378222 0.387771i 0.378222 0.387771i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 1.72162 + 0.348032i 1.72162 + 0.348032i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 0.411287 0.911506i \(-0.365079\pi\)
−0.411287 + 0.911506i \(0.634921\pi\)
\(642\) 0 0
\(643\) 0.0329926 + 1.32296i 0.0329926 + 1.32296i 0.766044 + 0.642788i \(0.222222\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −1.31680 1.49211i −1.31680 1.49211i
\(652\) 0.507752 0.384607i 0.507752 0.384607i
\(653\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −0.0872464 1.16422i −0.0872464 1.16422i
\(658\) 0 0
\(659\) 0 0 −0.969077 0.246757i \(-0.920635\pi\)
0.969077 + 0.246757i \(0.0793651\pi\)
\(660\) 0 0
\(661\) −0.921476 0.388435i −0.921476 0.388435i −0.124344 0.992239i \(-0.539683\pi\)
−0.797133 + 0.603804i \(0.793651\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 1.13139 1.57366i 1.13139 1.57366i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 1.25101 1.16077i 1.25101 1.16077i 0.270840 0.962624i \(-0.412698\pi\)
0.980172 0.198146i \(-0.0634921\pi\)
\(674\) 0 0
\(675\) 0.456211 0.889872i 0.456211 0.889872i
\(676\) 1.30003 1.63019i 1.30003 1.63019i
\(677\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(678\) 0 0
\(679\) 0.871885 1.70067i 0.871885 1.70067i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(684\) −0.939693 0.342020i −0.939693 0.342020i
\(685\) 0 0
\(686\) 0 0
\(687\) −0.190506 + 0.159853i −0.190506 + 0.159853i
\(688\) 0.416256 0.811938i 0.416256 0.811938i
\(689\) 0 0
\(690\) 0 0
\(691\) −0.623490 0.781831i −0.623490 0.781831i 0.365341 0.930874i \(-0.380952\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −0.969077 0.246757i −0.969077 0.246757i
\(701\) 0 0 −0.998757 0.0498459i \(-0.984127\pi\)
0.998757 + 0.0498459i \(0.0158730\pi\)
\(702\) 0 0
\(703\) −0.512867 + 0.643114i −0.512867 + 0.643114i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −0.0673546 0.239393i −0.0673546 0.239393i 0.921476 0.388435i \(-0.126984\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(710\) 0 0
\(711\) −0.310745 + 1.36146i −0.310745 + 1.36146i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.853291 0.521435i \(-0.174603\pi\)
−0.853291 + 0.521435i \(0.825397\pi\)
\(720\) 0 0
\(721\) −1.40012 0.762464i −1.40012 0.762464i
\(722\) 0 0
\(723\) 0.146497 + 1.95486i 0.146497 + 1.95486i
\(724\) 0.245910 1.96231i 0.245910 1.96231i
\(725\) 0 0
\(726\) 0 0
\(727\) −0.110609 0.329212i −0.110609 0.329212i 0.878222 0.478254i \(-0.158730\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(728\) 0 0
\(729\) 0.365341 + 0.930874i 0.365341 + 0.930874i
\(730\) 0 0
\(731\) 0 0
\(732\) −0.0496136 + 1.98944i −0.0496136 + 1.98944i
\(733\) 1.82624 + 0.563320i 1.82624 + 0.563320i 1.00000 \(0\)
0.826239 + 0.563320i \(0.190476\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −1.69810 + 0.169921i −1.69810 + 0.169921i −0.900969 0.433884i \(-0.857143\pi\)
−0.797133 + 0.603804i \(0.793651\pi\)
\(740\) 0 0
\(741\) 0.641701 1.63503i 0.641701 1.63503i
\(742\) 0 0
\(743\) 0 0 0.661686 0.749781i \(-0.269841\pi\)
−0.661686 + 0.749781i \(0.730159\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0.507752 1.51125i 0.507752 1.51125i −0.318487 0.947927i \(-0.603175\pi\)
0.826239 0.563320i \(-0.190476\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0.826239 0.563320i 0.826239 0.563320i
\(757\) 0.544286 1.20626i 0.544286 1.20626i −0.411287 0.911506i \(-0.634921\pi\)
0.955573 0.294755i \(-0.0952381\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(762\) 0 0
\(763\) −0.535631 1.90375i −0.535631 1.90375i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0.365341 + 0.930874i 0.365341 + 0.930874i
\(769\) 1.41178 + 0.595117i 1.41178 + 0.595117i 0.955573 0.294755i \(-0.0952381\pi\)
0.456211 + 0.889872i \(0.349206\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0.573893 + 0.276372i 0.573893 + 0.276372i
\(773\) 0 0 −0.542546 0.840026i \(-0.682540\pi\)
0.542546 + 0.840026i \(0.317460\pi\)
\(774\) 0 0
\(775\) −1.58634 + 1.20161i −1.58634 + 1.20161i
\(776\) 0 0
\(777\) −0.222786 0.791830i −0.222786 0.791830i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −0.733052 0.680173i −0.733052 0.680173i
\(785\) 0 0
\(786\) 0 0
\(787\) 0.870687 + 1.09181i 0.870687 + 1.09181i 0.995031 + 0.0995678i \(0.0317460\pi\)
−0.124344 + 0.992239i \(0.539683\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −3.49108 0.174233i −3.49108 0.174233i
\(794\) 0 0
\(795\) 0 0
\(796\) 1.93575 0.492901i 1.93575 0.492901i
\(797\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) −0.722402 1.60101i −0.722402 1.60101i
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(810\) 0 0
\(811\) −0.708087 0.180301i −0.708087 0.180301i −0.124344 0.992239i \(-0.539683\pi\)
−0.583744 + 0.811938i \(0.698413\pi\)
\(812\) 0 0
\(813\) 0.727051 + 0.0727524i 0.727051 + 0.0727524i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0.894330 + 0.180793i 0.894330 + 0.180793i
\(818\) 0 0
\(819\) 0.952952 + 1.47546i 0.952952 + 1.47546i
\(820\) 0 0
\(821\) 0 0 −0.411287 0.911506i \(-0.634921\pi\)
0.411287 + 0.911506i \(0.365079\pi\)
\(822\) 0 0
\(823\) 0.466934 1.38976i 0.466934 1.38976i −0.411287 0.911506i \(-0.634921\pi\)
0.878222 0.478254i \(-0.158730\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 −0.661686 0.749781i \(-0.730159\pi\)
0.661686 + 0.749781i \(0.269841\pi\)
\(828\) 0 0
\(829\) 1.15382 + 0.786662i 1.15382 + 0.786662i 0.980172 0.198146i \(-0.0634921\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(830\) 0 0
\(831\) 0.673306 0.283822i 0.673306 0.283822i
\(832\) −1.65052 + 0.600739i −1.65052 + 0.600739i
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0.148717 1.98450i 0.148717 1.98450i
\(838\) 0 0
\(839\) 0 0 −0.0249307 0.999689i \(-0.507937\pi\)
0.0249307 + 0.999689i \(0.492063\pi\)
\(840\) 0 0
\(841\) −0.318487 0.947927i −0.318487 0.947927i
\(842\) 0 0
\(843\) 0 0
\(844\) −0.120535 0.528100i −0.120535 0.528100i
\(845\) 0 0
\(846\) 0 0
\(847\) 0.980172 + 0.198146i 0.980172 + 0.198146i
\(848\) 0 0
\(849\) 1.19232 + 1.35106i 1.19232 + 1.35106i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0.247121 0.878319i 0.247121 0.878319i −0.733052 0.680173i \(-0.761905\pi\)
0.980172 0.198146i \(-0.0634921\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 0.542546 0.840026i \(-0.317460\pi\)
−0.542546 + 0.840026i \(0.682540\pi\)
\(858\) 0 0
\(859\) −0.884207 0.225147i −0.884207 0.225147i −0.222521 0.974928i \(-0.571429\pi\)
−0.661686 + 0.749781i \(0.730159\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −0.733052 0.680173i −0.733052 0.680173i
\(868\) −1.96783 + 0.296603i −1.96783 + 0.296603i
\(869\) 0 0
\(870\) 0 0
\(871\) 2.84284 1.19836i 2.84284 1.19836i
\(872\) 0 0
\(873\) 1.82624 0.563320i 1.82624 0.563320i
\(874\) 0 0
\(875\) 0 0
\(876\) −1.02531 0.558355i −1.02531 0.558355i
\(877\) 0.507752 + 1.51125i 0.507752 + 1.51125i 0.826239 + 0.563320i \(0.190476\pi\)
−0.318487 + 0.947927i \(0.603175\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(882\) 0 0
\(883\) −0.229801 + 1.30327i −0.229801 + 1.30327i 0.623490 + 0.781831i \(0.285714\pi\)
−0.853291 + 0.521435i \(0.825397\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.878222 0.478254i \(-0.158730\pi\)
−0.878222 + 0.478254i \(0.841270\pi\)
\(888\) 0 0
\(889\) 0.0990311 0.433884i 0.0990311 0.433884i
\(890\) 0 0
\(891\) 0 0
\(892\) −0.708087 1.80418i −0.708087 1.80418i
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −0.500000 0.866025i −0.500000 0.866025i
\(901\) 0 0
\(902\) 0 0
\(903\) −0.668852 + 0.620604i −0.668852 + 0.620604i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0.333345 + 0.650213i 0.333345 + 0.650213i 0.995031 0.0995678i \(-0.0317460\pi\)
−0.661686 + 0.749781i \(0.730159\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(912\) −0.797133 + 0.603804i −0.797133 + 0.603804i
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0.0309227 + 0.246757i 0.0309227 + 0.246757i
\(917\) 0 0
\(918\) 0 0
\(919\) 1.53758 + 0.740458i 1.53758 + 0.740458i 0.995031 0.0995678i \(-0.0317460\pi\)
0.542546 + 0.840026i \(0.317460\pi\)
\(920\) 0 0
\(921\) −1.43703 + 0.290503i −1.43703 + 0.290503i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −0.806265 + 0.162990i −0.806265 + 0.162990i
\(926\) 0 0
\(927\) −0.431791 1.53468i −0.431791 1.53468i
\(928\) 0 0
\(929\) 0 0 −0.797133 0.603804i \(-0.793651\pi\)
0.797133 + 0.603804i \(0.206349\pi\)
\(930\) 0 0
\(931\) 0.456211 0.889872i 0.456211 0.889872i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1.06358 0.215007i 1.06358 0.215007i 0.365341 0.930874i \(-0.380952\pi\)
0.698237 + 0.715867i \(0.253968\pi\)
\(938\) 0 0
\(939\) 0.603718 1.53825i 0.603718 1.53825i
\(940\) 0 0
\(941\) 0 0 0.980172 0.198146i \(-0.0634921\pi\)
−0.980172 + 0.198146i \(0.936508\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 0.853291 0.521435i \(-0.174603\pi\)
−0.853291 + 0.521435i \(0.825397\pi\)
\(948\) 0.975069 + 0.999689i 0.975069 + 0.999689i
\(949\) 1.02531 1.77589i 1.02531 1.77589i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 0.411287 0.911506i \(-0.365079\pi\)
−0.411287 + 0.911506i \(0.634921\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −1.48017 + 2.56373i −1.48017 + 2.56373i
\(962\) 0 0
\(963\) 0 0
\(964\) 1.72162 + 0.937543i 1.72162 + 0.937543i
\(965\) 0 0
\(966\) 0 0
\(967\) −0.229160 + 0.0965988i −0.229160 + 0.0965988i −0.500000 0.866025i \(-0.666667\pi\)
0.270840 + 0.962624i \(0.412698\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.456211 0.889872i \(-0.650794\pi\)
0.456211 + 0.889872i \(0.349206\pi\)
\(972\) 0.980172 + 0.198146i 0.980172 + 0.198146i
\(973\) −0.0310881 + 0.0389832i −0.0310881 + 0.0389832i
\(974\) 0 0
\(975\) 1.54255 0.840026i 1.54255 0.840026i
\(976\) 1.64427 + 1.12104i 1.64427 + 1.12104i
\(977\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0.988831 1.71271i 0.988831 1.71271i
\(982\) 0 0
\(983\) 0 0 −0.980172 0.198146i \(-0.936508\pi\)
0.980172 + 0.198146i \(0.0634921\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −1.02531 1.42612i −1.02531 1.42612i
\(989\) 0 0
\(990\) 0 0
\(991\) 1.69824 0.715867i 1.69824 0.715867i 0.698237 0.715867i \(-0.253968\pi\)
1.00000 \(0\)
\(992\) 0 0
\(993\) −0.134924 + 1.07667i −0.134924 + 1.07667i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −0.630128 1.39651i −0.630128 1.39651i −0.900969 0.433884i \(-0.857143\pi\)
0.270840 0.962624i \(-0.412698\pi\)
\(998\) 0 0
\(999\) 0.411287 0.712370i 0.411287 0.712370i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2793.1.eo.a.1187.1 yes 36
3.2 odd 2 CM 2793.1.eo.a.1187.1 yes 36
19.17 even 9 2793.1.ei.a.2069.1 yes 36
49.9 even 21 2793.1.ei.a.1871.1 36
57.17 odd 18 2793.1.ei.a.2069.1 yes 36
147.107 odd 42 2793.1.ei.a.1871.1 36
931.891 even 63 inner 2793.1.eo.a.2753.1 yes 36
2793.2753 odd 126 inner 2793.1.eo.a.2753.1 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2793.1.ei.a.1871.1 36 49.9 even 21
2793.1.ei.a.1871.1 36 147.107 odd 42
2793.1.ei.a.2069.1 yes 36 19.17 even 9
2793.1.ei.a.2069.1 yes 36 57.17 odd 18
2793.1.eo.a.1187.1 yes 36 1.1 even 1 trivial
2793.1.eo.a.1187.1 yes 36 3.2 odd 2 CM
2793.1.eo.a.2753.1 yes 36 931.891 even 63 inner
2793.1.eo.a.2753.1 yes 36 2793.2753 odd 126 inner