Properties

Label 2-300-3.2-c8-0-0
Degree $2$
Conductor $300$
Sign $0.432 + 0.901i$
Analytic cond. $122.213$
Root an. cond. $11.0550$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (35.0 + 73.0i)3-s − 4.17e3·7-s + (−4.10e3 + 5.11e3i)9-s + 8.71e3i·11-s − 1.63e4·13-s + 8.95e4i·17-s − 1.65e5·19-s + (−1.46e5 − 3.05e5i)21-s + 4.46e5i·23-s + (−5.17e5 − 1.20e5i)27-s + 1.40e6i·29-s + 8.20e5·31-s + (−6.36e5 + 3.05e5i)33-s − 2.19e5·37-s + (−5.74e5 − 1.19e6i)39-s + ⋯
L(s)  = 1  + (0.432 + 0.901i)3-s − 1.74·7-s + (−0.625 + 0.779i)9-s + 0.595i·11-s − 0.574·13-s + 1.07i·17-s − 1.27·19-s + (−0.752 − 1.56i)21-s + 1.59i·23-s + (−0.973 − 0.226i)27-s + 1.98i·29-s + 0.887·31-s + (−0.536 + 0.257i)33-s − 0.117·37-s + (−0.248 − 0.517i)39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.432 + 0.901i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (0.432 + 0.901i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(300\)    =    \(2^{2} \cdot 3 \cdot 5^{2}\)
Sign: $0.432 + 0.901i$
Analytic conductor: \(122.213\)
Root analytic conductor: \(11.0550\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{300} (101, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 300,\ (\ :4),\ 0.432 + 0.901i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(0.1408374007\)
\(L(\frac12)\) \(\approx\) \(0.1408374007\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-35.0 - 73.0i)T \)
5 \( 1 \)
good7 \( 1 + 4.17e3T + 5.76e6T^{2} \)
11 \( 1 - 8.71e3iT - 2.14e8T^{2} \)
13 \( 1 + 1.63e4T + 8.15e8T^{2} \)
17 \( 1 - 8.95e4iT - 6.97e9T^{2} \)
19 \( 1 + 1.65e5T + 1.69e10T^{2} \)
23 \( 1 - 4.46e5iT - 7.83e10T^{2} \)
29 \( 1 - 1.40e6iT - 5.00e11T^{2} \)
31 \( 1 - 8.20e5T + 8.52e11T^{2} \)
37 \( 1 + 2.19e5T + 3.51e12T^{2} \)
41 \( 1 + 2.78e6iT - 7.98e12T^{2} \)
43 \( 1 + 1.47e6T + 1.16e13T^{2} \)
47 \( 1 + 3.99e6iT - 2.38e13T^{2} \)
53 \( 1 + 9.07e6iT - 6.22e13T^{2} \)
59 \( 1 + 9.44e5iT - 1.46e14T^{2} \)
61 \( 1 + 7.30e6T + 1.91e14T^{2} \)
67 \( 1 + 1.58e7T + 4.06e14T^{2} \)
71 \( 1 + 2.16e7iT - 6.45e14T^{2} \)
73 \( 1 + 3.08e7T + 8.06e14T^{2} \)
79 \( 1 - 6.47e7T + 1.51e15T^{2} \)
83 \( 1 - 3.12e7iT - 2.25e15T^{2} \)
89 \( 1 - 5.43e7iT - 3.93e15T^{2} \)
97 \( 1 - 1.29e8T + 7.83e15T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.70191222741522978927131503839, −10.10619477109549403330073045631, −9.364913628421556878265230185452, −8.559304430907591549480563368167, −7.24228709727210030897826231606, −6.26052298817231934822995933982, −5.11566002628483559262321713814, −3.87538948919651445798268982803, −3.19218439941378898263223271913, −1.97196665773014739657197072128, 0.03879981790019337183862862323, 0.66425291116710845582678824431, 2.46371926196683697387227384579, 2.97370102803661177608632614294, 4.34653003159402871282690543196, 6.16642197940923060506825195436, 6.46085224631077605843627646049, 7.58656520132490994376980885825, 8.631533237437179415508634258558, 9.474481045717671696695652197170

Graph of the $Z$-function along the critical line