[N,k,chi] = [300,9,Mod(101,300)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(300, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 0]))
N = Newforms(chi, 9, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("300.101");
S:= CuspForms(chi, 9);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Character values
We give the values of χ \chi χ on generators for ( Z / 300 Z ) × \left(\mathbb{Z}/300\mathbb{Z}\right)^\times ( Z / 3 0 0 Z ) × .
n n n
101 101 1 0 1
151 151 1 5 1
277 277 2 7 7
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
1 1 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 7 5 + 524 T 7 4 − 17747597 T 7 3 + 8663960872 T 7 2 + 64044622169696 T 7 − 64122838801930496 T_{7}^{5} + 524T_{7}^{4} - 17747597T_{7}^{3} + 8663960872T_{7}^{2} + 64044622169696T_{7} - 64122838801930496 T 7 5 + 5 2 4 T 7 4 − 1 7 7 4 7 5 9 7 T 7 3 + 8 6 6 3 9 6 0 8 7 2 T 7 2 + 6 4 0 4 4 6 2 2 1 6 9 6 9 6 T 7 − 6 4 1 2 2 8 3 8 8 0 1 9 3 0 4 9 6
T7^5 + 524*T7^4 - 17747597*T7^3 + 8663960872*T7^2 + 64044622169696*T7 - 64122838801930496
acting on S 9 n e w ( 300 , [ χ ] ) S_{9}^{\mathrm{new}}(300, [\chi]) S 9 n e w ( 3 0 0 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 10 T^{10} T 1 0
T^10
3 3 3
T 10 + ⋯ + 12 ⋯ 01 T^{10} + \cdots + 12\!\cdots\!01 T 1 0 + ⋯ + 1 2 ⋯ 0 1
T^10 + 137*T^9 + 15612*T^8 + 1767987*T^7 + 178053147*T^6 + 15274305432*T^5 + 1168206697467*T^4 + 76106043120627*T^3 + 4409289923541372*T^2 + 253863765872702217*T + 12157665459056928801
5 5 5
T 10 T^{10} T 1 0
T^10
7 7 7
( T 5 + ⋯ − 64 ⋯ 96 ) 2 (T^{5} + \cdots - 64\!\cdots\!96)^{2} ( T 5 + ⋯ − 6 4 ⋯ 9 6 ) 2
(T^5 + 524*T^4 - 17747597*T^3 + 8663960872*T^2 + 64044622169696*T - 64122838801930496)^2
11 11 1 1
T 10 + ⋯ + 20 ⋯ 00 T^{10} + \cdots + 20\!\cdots\!00 T 1 0 + ⋯ + 2 0 ⋯ 0 0
T^10 + 1268461665*T^8 + 526535967702726675*T^6 + 92320384968652777711999875*T^4 + 7151867957670315368981263326765000*T^2 + 201657364937302261606782053895160128000000
13 13 1 3
( T 5 + ⋯ + 17 ⋯ 84 ) 2 (T^{5} + \cdots + 17\!\cdots\!84)^{2} ( T 5 + ⋯ + 1 7 ⋯ 8 4 ) 2
(T^5 - 17236*T^4 - 1937676407*T^3 - 1570604111198*T^2 + 450942961148139356*T + 1705464557695983160984)^2
17 17 1 7
T 10 + ⋯ + 38 ⋯ 00 T^{10} + \cdots + 38\!\cdots\!00 T 1 0 + ⋯ + 3 8 ⋯ 0 0
T^10 + 53775965385*T^8 + 1018214836355097936675*T^6 + 7975598546101289054327915308875*T^4 + 22556514085510677467833198552041196965000*T^2 + 3850747237090008072186612152938158804432192000000
19 19 1 9
( T 5 + ⋯ + 50 ⋯ 11 ) 2 (T^{5} + \cdots + 50\!\cdots\!11)^{2} ( T 5 + ⋯ + 5 0 ⋯ 1 1 ) 2
(T^5 + 188015*T^4 - 46968629750*T^3 - 8398844758919330*T^2 + 306381049281110402645*T + 50885149882295561460504211)^2
23 23 2 3
T 10 + ⋯ + 86 ⋯ 00 T^{10} + \cdots + 86\!\cdots\!00 T 1 0 + ⋯ + 8 6 ⋯ 0 0
T^10 + 746051587740*T^8 + 198023789572011692182800*T^6 + 21648634531869711913840911586248000*T^4 + 820733828938598121567683707536096083653440000*T^2 + 8679538768677920929209386116248885072287608393728000000
29 29 2 9
T 10 + ⋯ + 19 ⋯ 00 T^{10} + \cdots + 19\!\cdots\!00 T 1 0 + ⋯ + 1 9 ⋯ 0 0
T^10 + 3091465344060*T^8 + 2499361470839128211254800*T^6 + 610395414186204148990183682950152000*T^4 + 44252666477887132544267079124201571826911040000*T^2 + 19393229415453155334847675743956585435233188237312000000
31 31 3 1
( T 5 + ⋯ − 82 ⋯ 24 ) 2 (T^{5} + \cdots - 82\!\cdots\!24)^{2} ( T 5 + ⋯ − 8 2 ⋯ 2 4 ) 2
(T^5 + 205430*T^4 - 1973487840065*T^3 - 100893100266576890*T^2 + 945073633118657307789380*T - 82599187564822518054496179224)^2
37 37 3 7
( T 5 + ⋯ + 97 ⋯ 12 ) 2 (T^{5} + \cdots + 97\!\cdots\!12)^{2} ( T 5 + ⋯ + 9 7 ⋯ 1 2 ) 2
(T^5 + 55172*T^4 - 9737860243628*T^3 + 8618634362799961984*T^2 + 2369420193151410490522496*T + 970779960248004955151245312)^2
41 41 4 1
T 10 + ⋯ + 19 ⋯ 00 T^{10} + \cdots + 19\!\cdots\!00 T 1 0 + ⋯ + 1 9 ⋯ 0 0
T^10 + 25839173273985*T^8 + 228464124605111905106346675*T^6 + 809074800069503318271902508757190863875*T^4 + 993195347755887954173611337312761231712130337365000*T^2 + 193519161998826285147988871644278191243426740063113652032000000
43 43 4 3
( T 5 + ⋯ + 25 ⋯ 04 ) 2 (T^{5} + \cdots + 25\!\cdots\!04)^{2} ( T 5 + ⋯ + 2 5 ⋯ 0 4 ) 2
(T^5 + 3126074*T^4 - 6086644598897*T^3 - 19241654012719497278*T^2 + 7149282732885112134006596*T + 25043617575666526025179089424504)^2
47 47 4 7
T 10 + ⋯ + 17 ⋯ 00 T^{10} + \cdots + 17\!\cdots\!00 T 1 0 + ⋯ + 1 7 ⋯ 0 0
T^10 + 166916043859140*T^8 + 10323010299946294853242138800*T^6 + 291865467190280634189153044456438813688000*T^4 + 3719837837164193505173559638116519743187302045143040000*T^2 + 17196181070513522083624437086986021743343498769064704216137728000000
53 53 5 3
T 10 + ⋯ + 48 ⋯ 00 T^{10} + \cdots + 48\!\cdots\!00 T 1 0 + ⋯ + 4 8 ⋯ 0 0
T^10 + 487670439204540*T^8 + 89673822158091612526181206800*T^6 + 7752746758419734155413821146490636488968000*T^4 + 315889239736502567598987216391770100326624590509727040000*T^2 + 4876981312820449640972640581581050824688844418073450342897143808000000
59 59 5 9
T 10 + ⋯ + 50 ⋯ 00 T^{10} + \cdots + 50\!\cdots\!00 T 1 0 + ⋯ + 5 0 ⋯ 0 0
T^10 + 846726554633040*T^8 + 180648062825343374597553964800*T^6 + 8217543071491246044688708611256215817728000*T^4 + 63254870214020231636190132999823161437993413205360640000*T^2 + 50054863548440451719565296057748952891553677446691199624675328000000
61 61 6 1
( T 5 + ⋯ − 66 ⋯ 84 ) 2 (T^{5} + \cdots - 66\!\cdots\!84)^{2} ( T 5 + ⋯ − 6 6 ⋯ 8 4 ) 2
(T^5 + 25686770*T^4 + 84012165547345*T^3 - 2002853324338945755200*T^2 - 12856212387017783442548275360*T - 6639776059811494938606703438659584)^2
67 67 6 7
( T 5 + ⋯ + 45 ⋯ 29 ) 2 (T^{5} + \cdots + 45\!\cdots\!29)^{2} ( T 5 + ⋯ + 4 5 ⋯ 2 9 ) 2
(T^5 + 41034629*T^4 - 673682837760902*T^3 - 34628574814595986852358*T^2 + 5476302518598166028043175301*T + 4520351054681837538715299887652755329)^2
71 71 7 1
T 10 + ⋯ + 11 ⋯ 00 T^{10} + \cdots + 11\!\cdots\!00 T 1 0 + ⋯ + 1 1 ⋯ 0 0
T^10 + 1915574595847740*T^8 + 1319479422013054598256268246800*T^6 + 388101932811353811736794808437402085649928000*T^4 + 43431340196540440146852999972580691471978085951163602240000*T^2 + 1129803674509630307714290042981140697043041107978703166555491749888000000
73 73 7 3
( T 5 + ⋯ + 97 ⋯ 92 ) 2 (T^{5} + \cdots + 97\!\cdots\!92)^{2} ( T 5 + ⋯ + 9 7 ⋯ 9 2 ) 2
(T^5 + 16684157*T^4 - 768269139902093*T^3 - 5754633131281952526101*T^2 + 139781917745835424534156186856*T + 97407838270604339117826035802864892)^2
79 79 7 9
( T 5 + ⋯ + 22 ⋯ 28 ) 2 (T^{5} + \cdots + 22\!\cdots\!28)^{2} ( T 5 + ⋯ + 2 2 ⋯ 2 8 ) 2
(T^5 - 18105700*T^4 - 4125707806049540*T^3 + 20687054713812387022960*T^2 + 2944657538048054221979967584960*T + 22296933225652218835190064705734825728)^2
83 83 8 3
T 10 + ⋯ + 60 ⋯ 00 T^{10} + \cdots + 60\!\cdots\!00 T 1 0 + ⋯ + 6 0 ⋯ 0 0
T^10 + 9727958038763385*T^8 + 34528851260443600442127183663675*T^6 + 53648153628384929143295385138875932273940368875*T^4 + 33834055336745891391439582171124213551368452129611575130740000*T^2 + 6064353876732960793746916469982512914989272783675567884386410415731712000000
89 89 8 9
T 10 + ⋯ + 16 ⋯ 00 T^{10} + \cdots + 16\!\cdots\!00 T 1 0 + ⋯ + 1 6 ⋯ 0 0
T^10 + 13259238655442985*T^8 + 44882353334886622858420883523675*T^6 + 47855684237855142656793756560430899495754898875*T^4 + 15214878524807104315571928748320404618891496743170300088640000*T^2 + 16572467227630379906104226866128257809838575899582990738727982333952000000
97 97 9 7
( T 5 + ⋯ + 29 ⋯ 64 ) 2 (T^{5} + \cdots + 29\!\cdots\!64)^{2} ( T 5 + ⋯ + 2 9 ⋯ 6 4 ) 2
(T^5 - 124383556*T^4 - 5971761179411207*T^3 + 475142579046694773700642*T^2 + 25073887958062528236526119236156*T + 294525184718851918118782318428889733464)^2
show more
show less