Properties

Label 300.9.g.e.101.8
Level $300$
Weight $9$
Character 300.101
Analytic conductor $122.214$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [300,9,Mod(101,300)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(300, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 9, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("300.101");
 
S:= CuspForms(chi, 9);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 300 = 2^{2} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 300.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(122.213583018\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + 17581 x^{8} - 268094 x^{7} + 129938570 x^{6} - 2805075950 x^{5} + 497042336337 x^{4} + \cdots + 51\!\cdots\!56 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{15}\cdot 3^{17}\cdot 5^{7}\cdot 7^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 101.8
Root \(-23.3576 - 73.0318i\) of defining polynomial
Character \(\chi\) \(=\) 300.101
Dual form 300.9.g.e.101.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(35.0336 + 73.0318i) q^{3} -4179.12 q^{7} +(-4106.29 + 5117.14i) q^{9} +8719.18i q^{11} -16396.6 q^{13} +89507.5i q^{17} -165647. q^{19} +(-146410. - 305209. i) q^{21} +446571. i q^{23} +(-517572. - 120618. i) q^{27} +1.40654e6i q^{29} +820045. q^{31} +(-636778. + 305465. i) q^{33} -219949. q^{37} +(-574432. - 1.19747e6i) q^{39} -2.78325e6i q^{41} -1.47284e6 q^{43} -3.99527e6i q^{47} +1.17003e7 q^{49} +(-6.53690e6 + 3.13577e6i) q^{51} -9.07653e6i q^{53} +(-5.80320e6 - 1.20975e7i) q^{57} -944914. i q^{59} -7.30286e6 q^{61} +(1.71607e7 - 2.13851e7i) q^{63} -1.58736e7 q^{67} +(-3.26139e7 + 1.56450e7i) q^{69} -2.16192e7i q^{71} -3.08890e7 q^{73} -3.64385e7i q^{77} +6.47687e7 q^{79} +(-9.32347e6 - 4.20249e7i) q^{81} +3.12999e7i q^{83} +(-1.02722e8 + 4.92762e7i) q^{87} +5.43004e7i q^{89} +6.85234e7 q^{91} +(2.87291e7 + 5.98894e7i) q^{93} +1.29617e8 q^{97} +(-4.46173e7 - 3.58035e7i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 137 q^{3} - 1048 q^{7} - 12455 q^{9} + 34472 q^{13} - 376030 q^{19} - 142540 q^{21} - 1458782 q^{27} - 410860 q^{31} - 523275 q^{33} - 110344 q^{37} + 3527870 q^{39} - 6252148 q^{43} + 13891530 q^{49}+ \cdots + 52292505 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/300\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(277\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 35.0336 + 73.0318i 0.432514 + 0.901627i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −4179.12 −1.74058 −0.870288 0.492543i \(-0.836067\pi\)
−0.870288 + 0.492543i \(0.836067\pi\)
\(8\) 0 0
\(9\) −4106.29 + 5117.14i −0.625864 + 0.779933i
\(10\) 0 0
\(11\) 8719.18i 0.595532i 0.954639 + 0.297766i \(0.0962415\pi\)
−0.954639 + 0.297766i \(0.903758\pi\)
\(12\) 0 0
\(13\) −16396.6 −0.574091 −0.287045 0.957917i \(-0.592673\pi\)
−0.287045 + 0.957917i \(0.592673\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 89507.5i 1.07168i 0.844321 + 0.535838i \(0.180004\pi\)
−0.844321 + 0.535838i \(0.819996\pi\)
\(18\) 0 0
\(19\) −165647. −1.27107 −0.635533 0.772074i \(-0.719220\pi\)
−0.635533 + 0.772074i \(0.719220\pi\)
\(20\) 0 0
\(21\) −146410. 305209.i −0.752823 1.56935i
\(22\) 0 0
\(23\) 446571.i 1.59580i 0.602788 + 0.797901i \(0.294056\pi\)
−0.602788 + 0.797901i \(0.705944\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −517572. 120618.i −0.973903 0.226964i
\(28\) 0 0
\(29\) 1.40654e6i 1.98866i 0.106350 + 0.994329i \(0.466084\pi\)
−0.106350 + 0.994329i \(0.533916\pi\)
\(30\) 0 0
\(31\) 820045. 0.887955 0.443977 0.896038i \(-0.353567\pi\)
0.443977 + 0.896038i \(0.353567\pi\)
\(32\) 0 0
\(33\) −636778. + 305465.i −0.536948 + 0.257576i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −219949. −0.117359 −0.0586794 0.998277i \(-0.518689\pi\)
−0.0586794 + 0.998277i \(0.518689\pi\)
\(38\) 0 0
\(39\) −574432. 1.19747e6i −0.248302 0.517616i
\(40\) 0 0
\(41\) 2.78325e6i 0.984957i −0.870325 0.492478i \(-0.836091\pi\)
0.870325 0.492478i \(-0.163909\pi\)
\(42\) 0 0
\(43\) −1.47284e6 −0.430806 −0.215403 0.976525i \(-0.569106\pi\)
−0.215403 + 0.976525i \(0.569106\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.99527e6i 0.818757i −0.912365 0.409379i \(-0.865746\pi\)
0.912365 0.409379i \(-0.134254\pi\)
\(48\) 0 0
\(49\) 1.17003e7 2.02960
\(50\) 0 0
\(51\) −6.53690e6 + 3.13577e6i −0.966253 + 0.463515i
\(52\) 0 0
\(53\) 9.07653e6i 1.15031i −0.818043 0.575157i \(-0.804941\pi\)
0.818043 0.575157i \(-0.195059\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −5.80320e6 1.20975e7i −0.549753 1.14603i
\(58\) 0 0
\(59\) 944914.i 0.0779802i −0.999240 0.0389901i \(-0.987586\pi\)
0.999240 0.0389901i \(-0.0124141\pi\)
\(60\) 0 0
\(61\) −7.30286e6 −0.527440 −0.263720 0.964599i \(-0.584950\pi\)
−0.263720 + 0.964599i \(0.584950\pi\)
\(62\) 0 0
\(63\) 1.71607e7 2.13851e7i 1.08936 1.35753i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −1.58736e7 −0.787728 −0.393864 0.919169i \(-0.628862\pi\)
−0.393864 + 0.919169i \(0.628862\pi\)
\(68\) 0 0
\(69\) −3.26139e7 + 1.56450e7i −1.43882 + 0.690207i
\(70\) 0 0
\(71\) 2.16192e7i 0.850760i −0.905015 0.425380i \(-0.860140\pi\)
0.905015 0.425380i \(-0.139860\pi\)
\(72\) 0 0
\(73\) −3.08890e7 −1.08771 −0.543853 0.839180i \(-0.683035\pi\)
−0.543853 + 0.839180i \(0.683035\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.64385e7i 1.03657i
\(78\) 0 0
\(79\) 6.47687e7 1.66286 0.831432 0.555627i \(-0.187522\pi\)
0.831432 + 0.555627i \(0.187522\pi\)
\(80\) 0 0
\(81\) −9.32347e6 4.20249e7i −0.216590 0.976263i
\(82\) 0 0
\(83\) 3.12999e7i 0.659523i 0.944064 + 0.329762i \(0.106968\pi\)
−0.944064 + 0.329762i \(0.893032\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −1.02722e8 + 4.92762e7i −1.79303 + 0.860122i
\(88\) 0 0
\(89\) 5.43004e7i 0.865451i 0.901526 + 0.432726i \(0.142448\pi\)
−0.901526 + 0.432726i \(0.857552\pi\)
\(90\) 0 0
\(91\) 6.85234e7 0.999248
\(92\) 0 0
\(93\) 2.87291e7 + 5.98894e7i 0.384053 + 0.800604i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1.29617e8 1.46411 0.732056 0.681244i \(-0.238561\pi\)
0.732056 + 0.681244i \(0.238561\pi\)
\(98\) 0 0
\(99\) −4.46173e7 3.58035e7i −0.464475 0.372722i
\(100\) 0 0
\(101\) 1.00294e8i 0.963803i −0.876225 0.481902i \(-0.839946\pi\)
0.876225 0.481902i \(-0.160054\pi\)
\(102\) 0 0
\(103\) −9.72620e7 −0.864160 −0.432080 0.901835i \(-0.642220\pi\)
−0.432080 + 0.901835i \(0.642220\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.96584e8i 1.49973i 0.661592 + 0.749864i \(0.269881\pi\)
−0.661592 + 0.749864i \(0.730119\pi\)
\(108\) 0 0
\(109\) 4.66324e7 0.330355 0.165178 0.986264i \(-0.447180\pi\)
0.165178 + 0.986264i \(0.447180\pi\)
\(110\) 0 0
\(111\) −7.70563e6 1.60633e7i −0.0507593 0.105814i
\(112\) 0 0
\(113\) 2.87687e8i 1.76444i −0.470839 0.882219i \(-0.656049\pi\)
0.470839 0.882219i \(-0.343951\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 6.73292e7 8.39037e7i 0.359302 0.447752i
\(118\) 0 0
\(119\) 3.74063e8i 1.86534i
\(120\) 0 0
\(121\) 1.38335e8 0.645342
\(122\) 0 0
\(123\) 2.03266e8 9.75074e7i 0.888064 0.426007i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −1.08389e8 −0.416648 −0.208324 0.978060i \(-0.566801\pi\)
−0.208324 + 0.978060i \(0.566801\pi\)
\(128\) 0 0
\(129\) −5.15989e7 1.07564e8i −0.186329 0.388426i
\(130\) 0 0
\(131\) 1.57958e8i 0.536361i 0.963369 + 0.268181i \(0.0864224\pi\)
−0.963369 + 0.268181i \(0.913578\pi\)
\(132\) 0 0
\(133\) 6.92257e8 2.21239
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.74008e8i 1.34556i 0.739842 + 0.672781i \(0.234900\pi\)
−0.739842 + 0.672781i \(0.765100\pi\)
\(138\) 0 0
\(139\) −2.05158e8 −0.549578 −0.274789 0.961505i \(-0.588608\pi\)
−0.274789 + 0.961505i \(0.588608\pi\)
\(140\) 0 0
\(141\) 2.91782e8 1.39969e8i 0.738214 0.354124i
\(142\) 0 0
\(143\) 1.42965e8i 0.341889i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 4.09903e8 + 8.54492e8i 0.877832 + 1.82995i
\(148\) 0 0
\(149\) 2.30368e8i 0.467387i −0.972310 0.233694i \(-0.924919\pi\)
0.972310 0.233694i \(-0.0750812\pi\)
\(150\) 0 0
\(151\) 3.62887e8 0.698014 0.349007 0.937120i \(-0.386519\pi\)
0.349007 + 0.937120i \(0.386519\pi\)
\(152\) 0 0
\(153\) −4.58022e8 3.67544e8i −0.835836 0.670724i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −6.59642e8 −1.08570 −0.542850 0.839830i \(-0.682655\pi\)
−0.542850 + 0.839830i \(0.682655\pi\)
\(158\) 0 0
\(159\) 6.62876e8 3.17984e8i 1.03715 0.497527i
\(160\) 0 0
\(161\) 1.86627e9i 2.77761i
\(162\) 0 0
\(163\) −3.13982e8 −0.444789 −0.222395 0.974957i \(-0.571387\pi\)
−0.222395 + 0.974957i \(0.571387\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2.82650e8i 0.363398i 0.983354 + 0.181699i \(0.0581597\pi\)
−0.983354 + 0.181699i \(0.941840\pi\)
\(168\) 0 0
\(169\) −5.46882e8 −0.670420
\(170\) 0 0
\(171\) 6.80193e8 8.47636e8i 0.795514 0.991345i
\(172\) 0 0
\(173\) 7.66398e8i 0.855598i 0.903874 + 0.427799i \(0.140711\pi\)
−0.903874 + 0.427799i \(0.859289\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 6.90088e7 3.31037e7i 0.0703090 0.0337275i
\(178\) 0 0
\(179\) 2.05804e8i 0.200466i 0.994964 + 0.100233i \(0.0319589\pi\)
−0.994964 + 0.100233i \(0.968041\pi\)
\(180\) 0 0
\(181\) 8.08809e8 0.753584 0.376792 0.926298i \(-0.377027\pi\)
0.376792 + 0.926298i \(0.377027\pi\)
\(182\) 0 0
\(183\) −2.55846e8 5.33341e8i −0.228125 0.475555i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −7.80433e8 −0.638218
\(188\) 0 0
\(189\) 2.16300e9 + 5.04077e8i 1.69515 + 0.395048i
\(190\) 0 0
\(191\) 2.34075e9i 1.75882i −0.476065 0.879410i \(-0.657937\pi\)
0.476065 0.879410i \(-0.342063\pi\)
\(192\) 0 0
\(193\) 1.81941e9 1.31130 0.655648 0.755066i \(-0.272395\pi\)
0.655648 + 0.755066i \(0.272395\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2.35043e9i 1.56057i 0.625425 + 0.780284i \(0.284926\pi\)
−0.625425 + 0.780284i \(0.715074\pi\)
\(198\) 0 0
\(199\) −8.79684e8 −0.560938 −0.280469 0.959863i \(-0.590490\pi\)
−0.280469 + 0.959863i \(0.590490\pi\)
\(200\) 0 0
\(201\) −5.56110e8 1.15928e9i −0.340703 0.710237i
\(202\) 0 0
\(203\) 5.87810e9i 3.46141i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −2.28516e9 1.83375e9i −1.24462 0.998755i
\(208\) 0 0
\(209\) 1.44430e9i 0.756960i
\(210\) 0 0
\(211\) −1.01342e9 −0.511281 −0.255641 0.966772i \(-0.582286\pi\)
−0.255641 + 0.966772i \(0.582286\pi\)
\(212\) 0 0
\(213\) 1.57889e9 7.57401e8i 0.767069 0.367966i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −3.42707e9 −1.54555
\(218\) 0 0
\(219\) −1.08215e9 2.25588e9i −0.470448 0.980706i
\(220\) 0 0
\(221\) 1.46762e9i 0.615240i
\(222\) 0 0
\(223\) −5.79370e8 −0.234281 −0.117140 0.993115i \(-0.537373\pi\)
−0.117140 + 0.993115i \(0.537373\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3.33665e9i 1.25663i −0.777959 0.628315i \(-0.783745\pi\)
0.777959 0.628315i \(-0.216255\pi\)
\(228\) 0 0
\(229\) 5.18028e9 1.88370 0.941850 0.336034i \(-0.109086\pi\)
0.941850 + 0.336034i \(0.109086\pi\)
\(230\) 0 0
\(231\) 2.66117e9 1.27657e9i 0.934599 0.448330i
\(232\) 0 0
\(233\) 1.08783e9i 0.369093i −0.982824 0.184547i \(-0.940918\pi\)
0.982824 0.184547i \(-0.0590816\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 2.26908e9 + 4.73017e9i 0.719211 + 1.49928i
\(238\) 0 0
\(239\) 4.07636e8i 0.124934i 0.998047 + 0.0624670i \(0.0198968\pi\)
−0.998047 + 0.0624670i \(0.980103\pi\)
\(240\) 0 0
\(241\) 2.69852e9 0.799939 0.399969 0.916528i \(-0.369021\pi\)
0.399969 + 0.916528i \(0.369021\pi\)
\(242\) 0 0
\(243\) 2.74252e9 2.15319e9i 0.786547 0.617530i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 2.71604e9 0.729707
\(248\) 0 0
\(249\) −2.28589e9 + 1.09655e9i −0.594644 + 0.285253i
\(250\) 0 0
\(251\) 4.51277e9i 1.13697i −0.822694 0.568484i \(-0.807530\pi\)
0.822694 0.568484i \(-0.192470\pi\)
\(252\) 0 0
\(253\) −3.89373e9 −0.950351
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3.72596e9i 0.854093i 0.904230 + 0.427047i \(0.140446\pi\)
−0.904230 + 0.427047i \(0.859554\pi\)
\(258\) 0 0
\(259\) 9.19196e8 0.204272
\(260\) 0 0
\(261\) −7.19746e9 5.77566e9i −1.55102 1.24463i
\(262\) 0 0
\(263\) 2.85403e9i 0.596534i 0.954482 + 0.298267i \(0.0964086\pi\)
−0.954482 + 0.298267i \(0.903591\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −3.96565e9 + 1.90234e9i −0.780315 + 0.374320i
\(268\) 0 0
\(269\) 2.98523e9i 0.570123i −0.958509 0.285062i \(-0.907986\pi\)
0.958509 0.285062i \(-0.0920141\pi\)
\(270\) 0 0
\(271\) 9.76314e9 1.81014 0.905071 0.425261i \(-0.139818\pi\)
0.905071 + 0.425261i \(0.139818\pi\)
\(272\) 0 0
\(273\) 2.40062e9 + 5.00439e9i 0.432189 + 0.900950i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 2.40876e9 0.409142 0.204571 0.978852i \(-0.434420\pi\)
0.204571 + 0.978852i \(0.434420\pi\)
\(278\) 0 0
\(279\) −3.36734e9 + 4.19628e9i −0.555738 + 0.692545i
\(280\) 0 0
\(281\) 9.46751e8i 0.151848i 0.997114 + 0.0759242i \(0.0241907\pi\)
−0.997114 + 0.0759242i \(0.975809\pi\)
\(282\) 0 0
\(283\) −6.94381e9 −1.08256 −0.541280 0.840842i \(-0.682060\pi\)
−0.541280 + 0.840842i \(0.682060\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.16316e10i 1.71439i
\(288\) 0 0
\(289\) −1.03584e9 −0.148492
\(290\) 0 0
\(291\) 4.54095e9 + 9.46615e9i 0.633249 + 1.32008i
\(292\) 0 0
\(293\) 8.17789e9i 1.10961i 0.831980 + 0.554806i \(0.187207\pi\)
−0.831980 + 0.554806i \(0.812793\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 1.05169e9 4.51281e9i 0.135164 0.579991i
\(298\) 0 0
\(299\) 7.32225e9i 0.916135i
\(300\) 0 0
\(301\) 6.15518e9 0.749850
\(302\) 0 0
\(303\) 7.32464e9 3.51365e9i 0.868991 0.416858i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 5.11330e9 0.575636 0.287818 0.957685i \(-0.407070\pi\)
0.287818 + 0.957685i \(0.407070\pi\)
\(308\) 0 0
\(309\) −3.40744e9 7.10322e9i −0.373761 0.779150i
\(310\) 0 0
\(311\) 9.69674e9i 1.03654i 0.855218 + 0.518268i \(0.173423\pi\)
−0.855218 + 0.518268i \(0.826577\pi\)
\(312\) 0 0
\(313\) 1.41774e10 1.47713 0.738565 0.674183i \(-0.235504\pi\)
0.738565 + 0.674183i \(0.235504\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6.22001e9i 0.615962i −0.951392 0.307981i \(-0.900347\pi\)
0.951392 0.307981i \(-0.0996534\pi\)
\(318\) 0 0
\(319\) −1.22639e10 −1.18431
\(320\) 0 0
\(321\) −1.43569e10 + 6.88704e9i −1.35220 + 0.648653i
\(322\) 0 0
\(323\) 1.48266e10i 1.36217i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 1.63370e9 + 3.40565e9i 0.142883 + 0.297857i
\(328\) 0 0
\(329\) 1.66967e10i 1.42511i
\(330\) 0 0
\(331\) −2.17671e10 −1.81338 −0.906688 0.421801i \(-0.861398\pi\)
−0.906688 + 0.421801i \(0.861398\pi\)
\(332\) 0 0
\(333\) 9.03176e8 1.12551e9i 0.0734507 0.0915320i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 6.41409e9 0.497297 0.248648 0.968594i \(-0.420014\pi\)
0.248648 + 0.968594i \(0.420014\pi\)
\(338\) 0 0
\(339\) 2.10103e10 1.00787e10i 1.59087 0.763144i
\(340\) 0 0
\(341\) 7.15012e9i 0.528805i
\(342\) 0 0
\(343\) −2.48050e10 −1.79210
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1.74835e10i 1.20590i −0.797780 0.602949i \(-0.793992\pi\)
0.797780 0.602949i \(-0.206008\pi\)
\(348\) 0 0
\(349\) −1.08571e9 −0.0731831 −0.0365916 0.999330i \(-0.511650\pi\)
−0.0365916 + 0.999330i \(0.511650\pi\)
\(350\) 0 0
\(351\) 8.48642e9 + 1.97773e9i 0.559109 + 0.130298i
\(352\) 0 0
\(353\) 1.37210e10i 0.883663i 0.897098 + 0.441831i \(0.145671\pi\)
−0.897098 + 0.441831i \(0.854329\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 2.73185e10 1.31048e10i 1.68184 0.806783i
\(358\) 0 0
\(359\) 7.33089e8i 0.0441346i 0.999756 + 0.0220673i \(0.00702480\pi\)
−0.999756 + 0.0220673i \(0.992975\pi\)
\(360\) 0 0
\(361\) 1.04552e10 0.615608
\(362\) 0 0
\(363\) 4.84637e9 + 1.01028e10i 0.279119 + 0.581858i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −3.00539e10 −1.65667 −0.828337 0.560230i \(-0.810713\pi\)
−0.828337 + 0.560230i \(0.810713\pi\)
\(368\) 0 0
\(369\) 1.42423e10 + 1.14288e10i 0.768200 + 0.616448i
\(370\) 0 0
\(371\) 3.79319e10i 2.00221i
\(372\) 0 0
\(373\) −2.21686e10 −1.14526 −0.572628 0.819816i \(-0.694076\pi\)
−0.572628 + 0.819816i \(0.694076\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2.30625e10i 1.14167i
\(378\) 0 0
\(379\) −3.02473e10 −1.46598 −0.732992 0.680237i \(-0.761877\pi\)
−0.732992 + 0.680237i \(0.761877\pi\)
\(380\) 0 0
\(381\) −3.79725e9 7.91583e9i −0.180206 0.375661i
\(382\) 0 0
\(383\) 4.18683e10i 1.94576i 0.231302 + 0.972882i \(0.425701\pi\)
−0.231302 + 0.972882i \(0.574299\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 6.04791e9 7.53672e9i 0.269626 0.335999i
\(388\) 0 0
\(389\) 1.93799e10i 0.846357i 0.906046 + 0.423179i \(0.139086\pi\)
−0.906046 + 0.423179i \(0.860914\pi\)
\(390\) 0 0
\(391\) −3.99715e10 −1.71018
\(392\) 0 0
\(393\) −1.15360e10 + 5.53385e9i −0.483598 + 0.231984i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −3.39887e10 −1.36827 −0.684136 0.729354i \(-0.739821\pi\)
−0.684136 + 0.729354i \(0.739821\pi\)
\(398\) 0 0
\(399\) 2.42523e10 + 5.05568e10i 0.956888 + 1.99475i
\(400\) 0 0
\(401\) 2.57572e10i 0.996142i −0.867136 0.498071i \(-0.834042\pi\)
0.867136 0.498071i \(-0.165958\pi\)
\(402\) 0 0
\(403\) −1.34460e10 −0.509767
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.91778e9i 0.0698910i
\(408\) 0 0
\(409\) −2.43084e10 −0.868688 −0.434344 0.900747i \(-0.643020\pi\)
−0.434344 + 0.900747i \(0.643020\pi\)
\(410\) 0 0
\(411\) −3.46177e10 + 1.66062e10i −1.21319 + 0.581974i
\(412\) 0 0
\(413\) 3.94891e9i 0.135730i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −7.18743e9 1.49831e10i −0.237700 0.495515i
\(418\) 0 0
\(419\) 3.38028e10i 1.09672i 0.836242 + 0.548361i \(0.184748\pi\)
−0.836242 + 0.548361i \(0.815252\pi\)
\(420\) 0 0
\(421\) 2.54840e10 0.811222 0.405611 0.914046i \(-0.367059\pi\)
0.405611 + 0.914046i \(0.367059\pi\)
\(422\) 0 0
\(423\) 2.04444e10 + 1.64058e10i 0.638575 + 0.512430i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 3.05195e10 0.918050
\(428\) 0 0
\(429\) 1.04410e10 5.00858e9i 0.308257 0.147872i
\(430\) 0 0
\(431\) 2.50760e10i 0.726691i 0.931654 + 0.363346i \(0.118366\pi\)
−0.931654 + 0.363346i \(0.881634\pi\)
\(432\) 0 0
\(433\) −2.53682e9 −0.0721669 −0.0360835 0.999349i \(-0.511488\pi\)
−0.0360835 + 0.999349i \(0.511488\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 7.39729e10i 2.02837i
\(438\) 0 0
\(439\) −4.93433e10 −1.32853 −0.664263 0.747499i \(-0.731255\pi\)
−0.664263 + 0.747499i \(0.731255\pi\)
\(440\) 0 0
\(441\) −4.80447e10 + 5.98719e10i −1.27026 + 1.58295i
\(442\) 0 0
\(443\) 3.86918e10i 1.00463i −0.864686 0.502313i \(-0.832483\pi\)
0.864686 0.502313i \(-0.167517\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 1.68242e10 8.07062e9i 0.421409 0.202151i
\(448\) 0 0
\(449\) 7.02127e10i 1.72755i −0.503879 0.863774i \(-0.668094\pi\)
0.503879 0.863774i \(-0.331906\pi\)
\(450\) 0 0
\(451\) 2.42677e10 0.586573
\(452\) 0 0
\(453\) 1.27133e10 + 2.65023e10i 0.301901 + 0.629348i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 4.15932e9 0.0953582 0.0476791 0.998863i \(-0.484818\pi\)
0.0476791 + 0.998863i \(0.484818\pi\)
\(458\) 0 0
\(459\) 1.07962e10 4.63266e10i 0.243232 1.04371i
\(460\) 0 0
\(461\) 8.40854e10i 1.86173i 0.365362 + 0.930865i \(0.380945\pi\)
−0.365362 + 0.930865i \(0.619055\pi\)
\(462\) 0 0
\(463\) −6.80644e10 −1.48114 −0.740570 0.671979i \(-0.765444\pi\)
−0.740570 + 0.671979i \(0.765444\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 1.79582e10i 0.377568i 0.982019 + 0.188784i \(0.0604546\pi\)
−0.982019 + 0.188784i \(0.939545\pi\)
\(468\) 0 0
\(469\) 6.63378e10 1.37110
\(470\) 0 0
\(471\) −2.31096e10 4.81748e10i −0.469580 0.978896i
\(472\) 0 0
\(473\) 1.28420e10i 0.256559i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 4.64459e10 + 3.72709e10i 0.897168 + 0.719940i
\(478\) 0 0
\(479\) 8.11511e10i 1.54153i 0.637119 + 0.770766i \(0.280126\pi\)
−0.637119 + 0.770766i \(0.719874\pi\)
\(480\) 0 0
\(481\) 3.60642e9 0.0673746
\(482\) 0 0
\(483\) 1.36297e11 6.53824e10i 2.50437 1.20136i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 2.81287e10 0.500074 0.250037 0.968236i \(-0.419557\pi\)
0.250037 + 0.968236i \(0.419557\pi\)
\(488\) 0 0
\(489\) −1.09999e10 2.29307e10i −0.192378 0.401034i
\(490\) 0 0
\(491\) 2.20521e10i 0.379423i 0.981840 + 0.189711i \(0.0607552\pi\)
−0.981840 + 0.189711i \(0.939245\pi\)
\(492\) 0 0
\(493\) −1.25896e11 −2.13120
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 9.03495e10i 1.48081i
\(498\) 0 0
\(499\) 1.05438e10 0.170058 0.0850289 0.996378i \(-0.472902\pi\)
0.0850289 + 0.996378i \(0.472902\pi\)
\(500\) 0 0
\(501\) −2.06424e10 + 9.90224e9i −0.327650 + 0.157175i
\(502\) 0 0
\(503\) 1.19759e11i 1.87084i 0.353533 + 0.935422i \(0.384980\pi\)
−0.353533 + 0.935422i \(0.615020\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −1.91593e10 3.99398e10i −0.289966 0.604469i
\(508\) 0 0
\(509\) 9.68848e10i 1.44339i −0.692209 0.721697i \(-0.743363\pi\)
0.692209 0.721697i \(-0.256637\pi\)
\(510\) 0 0
\(511\) 1.29089e11 1.89324
\(512\) 0 0
\(513\) 8.57340e10 + 1.99800e10i 1.23789 + 0.288486i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 3.48355e10 0.487596
\(518\) 0 0
\(519\) −5.59714e10 + 2.68497e10i −0.771431 + 0.370058i
\(520\) 0 0
\(521\) 6.75974e9i 0.0917443i −0.998947 0.0458721i \(-0.985393\pi\)
0.998947 0.0458721i \(-0.0146067\pi\)
\(522\) 0 0
\(523\) 5.43309e10 0.726173 0.363086 0.931755i \(-0.381723\pi\)
0.363086 + 0.931755i \(0.381723\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 7.34002e10i 0.951601i
\(528\) 0 0
\(529\) −1.21115e11 −1.54658
\(530\) 0 0
\(531\) 4.83525e9 + 3.88009e9i 0.0608193 + 0.0488049i
\(532\) 0 0
\(533\) 4.56359e10i 0.565454i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −1.50302e10 + 7.21006e9i −0.180746 + 0.0867045i
\(538\) 0 0
\(539\) 1.02017e11i 1.20869i
\(540\) 0 0
\(541\) 1.01482e11 1.18468 0.592338 0.805690i \(-0.298205\pi\)
0.592338 + 0.805690i \(0.298205\pi\)
\(542\) 0 0
\(543\) 2.83355e10 + 5.90688e10i 0.325935 + 0.679452i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −8.55692e10 −0.955803 −0.477901 0.878414i \(-0.658602\pi\)
−0.477901 + 0.878414i \(0.658602\pi\)
\(548\) 0 0
\(549\) 2.99877e10 3.73697e10i 0.330106 0.411368i
\(550\) 0 0
\(551\) 2.32988e11i 2.52771i
\(552\) 0 0
\(553\) −2.70676e11 −2.89434
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.07634e10i 0.111823i 0.998436 + 0.0559114i \(0.0178064\pi\)
−0.998436 + 0.0559114i \(0.982194\pi\)
\(558\) 0 0
\(559\) 2.41496e10 0.247322
\(560\) 0 0
\(561\) −2.73414e10 5.69964e10i −0.276038 0.575435i
\(562\) 0 0
\(563\) 1.84933e11i 1.84069i −0.391110 0.920344i \(-0.627909\pi\)
0.391110 0.920344i \(-0.372091\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 3.89639e10 + 1.75627e11i 0.376991 + 1.69926i
\(568\) 0 0
\(569\) 1.25723e11i 1.19941i −0.800222 0.599703i \(-0.795285\pi\)
0.800222 0.599703i \(-0.204715\pi\)
\(570\) 0 0
\(571\) −7.61496e10 −0.716347 −0.358173 0.933655i \(-0.616600\pi\)
−0.358173 + 0.933655i \(0.616600\pi\)
\(572\) 0 0
\(573\) 1.70949e11 8.20049e10i 1.58580 0.760714i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −7.83948e10 −0.707268 −0.353634 0.935384i \(-0.615054\pi\)
−0.353634 + 0.935384i \(0.615054\pi\)
\(578\) 0 0
\(579\) 6.37405e10 + 1.32875e11i 0.567154 + 1.18230i
\(580\) 0 0
\(581\) 1.30806e11i 1.14795i
\(582\) 0 0
\(583\) 7.91400e10 0.685049
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 2.21499e10i 0.186560i 0.995640 + 0.0932802i \(0.0297353\pi\)
−0.995640 + 0.0932802i \(0.970265\pi\)
\(588\) 0 0
\(589\) −1.35838e11 −1.12865
\(590\) 0 0
\(591\) −1.71656e11 + 8.23441e10i −1.40705 + 0.674967i
\(592\) 0 0
\(593\) 6.03267e10i 0.487855i −0.969793 0.243927i \(-0.921564\pi\)
0.969793 0.243927i \(-0.0784359\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −3.08185e10 6.42449e10i −0.242613 0.505757i
\(598\) 0 0
\(599\) 9.18267e10i 0.713283i −0.934241 0.356641i \(-0.883922\pi\)
0.934241 0.356641i \(-0.116078\pi\)
\(600\) 0 0
\(601\) 2.18686e11 1.67619 0.838093 0.545527i \(-0.183670\pi\)
0.838093 + 0.545527i \(0.183670\pi\)
\(602\) 0 0
\(603\) 6.51817e10 8.12274e10i 0.493010 0.614375i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −5.82890e10 −0.429370 −0.214685 0.976683i \(-0.568872\pi\)
−0.214685 + 0.976683i \(0.568872\pi\)
\(608\) 0 0
\(609\) 4.29288e11 2.05931e11i 3.12090 1.49711i
\(610\) 0 0
\(611\) 6.55089e10i 0.470041i
\(612\) 0 0
\(613\) 7.28755e10 0.516107 0.258053 0.966131i \(-0.416919\pi\)
0.258053 + 0.966131i \(0.416919\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.77077e11i 1.22186i −0.791686 0.610928i \(-0.790796\pi\)
0.791686 0.610928i \(-0.209204\pi\)
\(618\) 0 0
\(619\) 5.29155e10 0.360429 0.180215 0.983627i \(-0.442321\pi\)
0.180215 + 0.983627i \(0.442321\pi\)
\(620\) 0 0
\(621\) 5.38645e10 2.31133e11i 0.362190 1.55416i
\(622\) 0 0
\(623\) 2.26928e11i 1.50638i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 1.05480e11 5.05992e10i 0.682496 0.327396i
\(628\) 0 0
\(629\) 1.96871e10i 0.125771i
\(630\) 0 0
\(631\) 2.70775e11 1.70801 0.854007 0.520261i \(-0.174165\pi\)
0.854007 + 0.520261i \(0.174165\pi\)
\(632\) 0 0
\(633\) −3.55038e10 7.40119e10i −0.221136 0.460985i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −1.91845e11 −1.16518
\(638\) 0 0
\(639\) 1.10629e11 + 8.87749e10i 0.663536 + 0.532460i
\(640\) 0 0
\(641\) 1.61140e11i 0.954489i −0.878771 0.477244i \(-0.841636\pi\)
0.878771 0.477244i \(-0.158364\pi\)
\(642\) 0 0
\(643\) −1.55843e11 −0.911685 −0.455842 0.890061i \(-0.650662\pi\)
−0.455842 + 0.890061i \(0.650662\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.91876e11i 1.09498i 0.836813 + 0.547488i \(0.184416\pi\)
−0.836813 + 0.547488i \(0.815584\pi\)
\(648\) 0 0
\(649\) 8.23888e9 0.0464397
\(650\) 0 0
\(651\) −1.20063e11 2.50285e11i −0.668473 1.39351i
\(652\) 0 0
\(653\) 1.53462e11i 0.844013i −0.906593 0.422006i \(-0.861326\pi\)
0.906593 0.422006i \(-0.138674\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 1.26839e11 1.58063e11i 0.680756 0.848338i
\(658\) 0 0
\(659\) 4.15442e10i 0.220277i 0.993916 + 0.110139i \(0.0351294\pi\)
−0.993916 + 0.110139i \(0.964871\pi\)
\(660\) 0 0
\(661\) −3.07506e11 −1.61082 −0.805411 0.592717i \(-0.798055\pi\)
−0.805411 + 0.592717i \(0.798055\pi\)
\(662\) 0 0
\(663\) 1.07183e11 5.14160e10i 0.554717 0.266100i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −6.28120e11 −3.17350
\(668\) 0 0
\(669\) −2.02974e10 4.23124e10i −0.101330 0.211234i
\(670\) 0 0
\(671\) 6.36750e10i 0.314108i
\(672\) 0 0
\(673\) −4.50513e10 −0.219607 −0.109804 0.993953i \(-0.535022\pi\)
−0.109804 + 0.993953i \(0.535022\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1.78106e10i 0.0847860i −0.999101 0.0423930i \(-0.986502\pi\)
0.999101 0.0423930i \(-0.0134982\pi\)
\(678\) 0 0
\(679\) −5.41684e11 −2.54840
\(680\) 0 0
\(681\) 2.43682e11 1.16895e11i 1.13301 0.543509i
\(682\) 0 0
\(683\) 8.63634e9i 0.0396869i −0.999803 0.0198434i \(-0.993683\pi\)
0.999803 0.0198434i \(-0.00631678\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 1.81484e11 + 3.78326e11i 0.814726 + 1.69840i
\(688\) 0 0
\(689\) 1.48824e11i 0.660385i
\(690\) 0 0
\(691\) 1.18726e11 0.520757 0.260379 0.965507i \(-0.416153\pi\)
0.260379 + 0.965507i \(0.416153\pi\)
\(692\) 0 0
\(693\) 1.86461e11 + 1.49627e11i 0.808454 + 0.648751i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 2.49122e11 1.05556
\(698\) 0 0
\(699\) 7.94459e10 3.81105e10i 0.332784 0.159638i
\(700\) 0 0
\(701\) 3.79013e11i 1.56957i −0.619765 0.784787i \(-0.712772\pi\)
0.619765 0.784787i \(-0.287228\pi\)
\(702\) 0 0
\(703\) 3.64339e10 0.149171
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 4.19140e11i 1.67757i
\(708\) 0 0
\(709\) 7.31698e10 0.289566 0.144783 0.989463i \(-0.453752\pi\)
0.144783 + 0.989463i \(0.453752\pi\)
\(710\) 0 0
\(711\) −2.65959e11 + 3.31430e11i −1.04073 + 1.29692i
\(712\) 0 0
\(713\) 3.66208e11i 1.41700i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −2.97704e10 + 1.42810e10i −0.112644 + 0.0540357i
\(718\) 0 0
\(719\) 1.69806e11i 0.635384i 0.948194 + 0.317692i \(0.102908\pi\)
−0.948194 + 0.317692i \(0.897092\pi\)
\(720\) 0 0
\(721\) 4.06470e11 1.50414
\(722\) 0 0
\(723\) 9.45388e10 + 1.97077e11i 0.345985 + 0.721247i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −9.31171e10 −0.333343 −0.166672 0.986012i \(-0.553302\pi\)
−0.166672 + 0.986012i \(0.553302\pi\)
\(728\) 0 0
\(729\) 2.53332e11 + 1.24857e11i 0.896975 + 0.442082i
\(730\) 0 0
\(731\) 1.31830e11i 0.461685i
\(732\) 0 0
\(733\) −4.98363e11 −1.72635 −0.863176 0.504903i \(-0.831528\pi\)
−0.863176 + 0.504903i \(0.831528\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.38405e11i 0.469117i
\(738\) 0 0
\(739\) −1.79121e11 −0.600578 −0.300289 0.953848i \(-0.597083\pi\)
−0.300289 + 0.953848i \(0.597083\pi\)
\(740\) 0 0
\(741\) 9.51527e10 + 1.98357e11i 0.315608 + 0.657924i
\(742\) 0 0
\(743\) 3.91726e10i 0.128537i −0.997933 0.0642684i \(-0.979529\pi\)
0.997933 0.0642684i \(-0.0204714\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −1.60166e11 1.28526e11i −0.514384 0.412771i
\(748\) 0 0
\(749\) 8.21548e11i 2.61039i
\(750\) 0 0
\(751\) 9.54686e9 0.0300124 0.0150062 0.999887i \(-0.495223\pi\)
0.0150062 + 0.999887i \(0.495223\pi\)
\(752\) 0 0
\(753\) 3.29576e11 1.58099e11i 1.02512 0.491755i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 5.13847e11 1.56477 0.782384 0.622796i \(-0.214003\pi\)
0.782384 + 0.622796i \(0.214003\pi\)
\(758\) 0 0
\(759\) −1.36412e11 2.84366e11i −0.411040 0.856863i
\(760\) 0 0
\(761\) 1.74758e11i 0.521073i 0.965464 + 0.260536i \(0.0838994\pi\)
−0.965464 + 0.260536i \(0.916101\pi\)
\(762\) 0 0
\(763\) −1.94882e11 −0.575009
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.54934e10i 0.0447677i
\(768\) 0 0
\(769\) 7.33447e10 0.209731 0.104866 0.994486i \(-0.466559\pi\)
0.104866 + 0.994486i \(0.466559\pi\)
\(770\) 0 0
\(771\) −2.72113e11 + 1.30534e11i −0.770074 + 0.369407i
\(772\) 0 0
\(773\) 1.35597e11i 0.379780i 0.981805 + 0.189890i \(0.0608131\pi\)
−0.981805 + 0.189890i \(0.939187\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 3.22028e10 + 6.71305e10i 0.0883505 + 0.184177i
\(778\) 0 0
\(779\) 4.61036e11i 1.25194i
\(780\) 0 0
\(781\) 1.88502e11 0.506655
\(782\) 0 0
\(783\) 1.69654e11 7.27986e11i 0.451354 1.93676i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 5.66612e11 1.47702 0.738510 0.674242i \(-0.235530\pi\)
0.738510 + 0.674242i \(0.235530\pi\)
\(788\) 0 0
\(789\) −2.08435e11 + 9.99869e10i −0.537851 + 0.258009i
\(790\) 0 0
\(791\) 1.20228e12i 3.07114i
\(792\) 0 0
\(793\) 1.19742e11 0.302799
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 4.99028e10i 0.123678i 0.998086 + 0.0618389i \(0.0196965\pi\)
−0.998086 + 0.0618389i \(0.980303\pi\)
\(798\) 0 0
\(799\) 3.57607e11 0.877443
\(800\) 0 0
\(801\) −2.77862e11 2.22973e11i −0.674994 0.541655i
\(802\) 0 0
\(803\) 2.69326e11i 0.647764i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 2.18017e11 1.04583e11i 0.514039 0.246586i
\(808\) 0 0
\(809\) 5.76756e11i 1.34647i −0.739427 0.673237i \(-0.764903\pi\)
0.739427 0.673237i \(-0.235097\pi\)
\(810\) 0 0
\(811\) 4.93574e11 1.14096 0.570478 0.821313i \(-0.306758\pi\)
0.570478 + 0.821313i \(0.306758\pi\)
\(812\) 0 0
\(813\) 3.42038e11 + 7.13020e11i 0.782911 + 1.63207i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 2.43971e11 0.547582
\(818\) 0 0
\(819\) −2.81377e11 + 3.50644e11i −0.625393 + 0.779346i
\(820\) 0 0
\(821\) 5.16643e11i 1.13715i 0.822631 + 0.568575i \(0.192505\pi\)
−0.822631 + 0.568575i \(0.807495\pi\)
\(822\) 0 0
\(823\) −7.98184e10 −0.173982 −0.0869909 0.996209i \(-0.527725\pi\)
−0.0869909 + 0.996209i \(0.527725\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 5.20937e11i 1.11369i −0.830618 0.556843i \(-0.812012\pi\)
0.830618 0.556843i \(-0.187988\pi\)
\(828\) 0 0
\(829\) 2.97950e11 0.630850 0.315425 0.948951i \(-0.397853\pi\)
0.315425 + 0.948951i \(0.397853\pi\)
\(830\) 0 0
\(831\) 8.43874e10 + 1.75916e11i 0.176959 + 0.368893i
\(832\) 0 0
\(833\) 1.04726e12i 2.17508i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −4.24432e11 9.89122e10i −0.864782 0.201534i
\(838\) 0 0
\(839\) 6.40063e11i 1.29174i 0.763448 + 0.645870i \(0.223505\pi\)
−0.763448 + 0.645870i \(0.776495\pi\)
\(840\) 0 0
\(841\) −1.47811e12 −2.95476
\(842\) 0 0
\(843\) −6.91429e10 + 3.31681e10i −0.136911 + 0.0656765i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −5.78118e11 −1.12327
\(848\) 0 0
\(849\) −2.43267e11 5.07119e11i −0.468222 0.976066i
\(850\) 0 0
\(851\) 9.82230e10i 0.187282i
\(852\) 0 0
\(853\) −4.75342e11 −0.897863 −0.448932 0.893566i \(-0.648195\pi\)
−0.448932 + 0.893566i \(0.648195\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 3.20049e11i 0.593326i −0.954982 0.296663i \(-0.904126\pi\)
0.954982 0.296663i \(-0.0958738\pi\)
\(858\) 0 0
\(859\) −6.92943e11 −1.27270 −0.636349 0.771402i \(-0.719556\pi\)
−0.636349 + 0.771402i \(0.719556\pi\)
\(860\) 0 0
\(861\) −8.49473e11 + 4.07495e11i −1.54574 + 0.741498i
\(862\) 0 0
\(863\) 7.38964e11i 1.33223i −0.745848 0.666117i \(-0.767955\pi\)
0.745848 0.666117i \(-0.232045\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −3.62893e10 7.56493e10i −0.0642246 0.133884i
\(868\) 0 0
\(869\) 5.64730e11i 0.990288i
\(870\) 0 0
\(871\) 2.60273e11 0.452228
\(872\) 0 0
\(873\) −5.32244e11 + 6.63267e11i −0.916334 + 1.14191i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1.59450e11 0.269543 0.134771 0.990877i \(-0.456970\pi\)
0.134771 + 0.990877i \(0.456970\pi\)
\(878\) 0 0
\(879\) −5.97246e11 + 2.86501e11i −1.00046 + 0.479922i
\(880\) 0 0
\(881\) 6.87039e11i 1.14045i −0.821487 0.570227i \(-0.806855\pi\)
0.821487 0.570227i \(-0.193145\pi\)
\(882\) 0 0
\(883\) −6.85979e11 −1.12841 −0.564207 0.825634i \(-0.690818\pi\)
−0.564207 + 0.825634i \(0.690818\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1.22765e11i 0.198326i −0.995071 0.0991630i \(-0.968383\pi\)
0.995071 0.0991630i \(-0.0316165\pi\)
\(888\) 0 0
\(889\) 4.52970e11 0.725208
\(890\) 0 0
\(891\) 3.66423e11 8.12931e10i 0.581396 0.128986i
\(892\) 0 0
\(893\) 6.61803e11i 1.04069i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 5.34757e11 2.56525e11i 0.826013 0.396241i
\(898\) 0 0
\(899\) 1.15343e12i 1.76584i
\(900\) 0 0
\(901\) 8.12418e11 1.23277
\(902\) 0 0
\(903\) 2.15638e11 + 4.49524e11i 0.324321 + 0.676085i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −6.58589e11 −0.973162 −0.486581 0.873635i \(-0.661756\pi\)
−0.486581 + 0.873635i \(0.661756\pi\)
\(908\) 0 0
\(909\) 5.13217e11 + 4.11835e11i 0.751702 + 0.603209i
\(910\) 0 0
\(911\) 8.84636e11i 1.28437i 0.766549 + 0.642186i \(0.221972\pi\)
−0.766549 + 0.642186i \(0.778028\pi\)
\(912\) 0 0
\(913\) −2.72909e11 −0.392767
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 6.60127e11i 0.933578i
\(918\) 0 0
\(919\) −1.60467e11 −0.224970 −0.112485 0.993653i \(-0.535881\pi\)
−0.112485 + 0.993653i \(0.535881\pi\)
\(920\) 0 0
\(921\) 1.79137e11 + 3.73434e11i 0.248970 + 0.519009i
\(922\) 0 0
\(923\) 3.54482e11i 0.488414i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 3.99386e11 4.97703e11i 0.540846 0.673986i
\(928\) 0 0
\(929\) 3.79729e11i 0.509814i 0.966966 + 0.254907i \(0.0820448\pi\)
−0.966966 + 0.254907i \(0.917955\pi\)
\(930\) 0 0
\(931\) −1.93811e12 −2.57976
\(932\) 0 0
\(933\) −7.08170e11 + 3.39712e11i −0.934569 + 0.448316i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −6.57277e11 −0.852688 −0.426344 0.904561i \(-0.640199\pi\)
−0.426344 + 0.904561i \(0.640199\pi\)
\(938\) 0 0
\(939\) 4.96685e11 + 1.03540e12i 0.638879 + 1.33182i
\(940\) 0 0
\(941\) 5.64330e11i 0.719738i 0.933003 + 0.359869i \(0.117179\pi\)
−0.933003 + 0.359869i \(0.882821\pi\)
\(942\) 0 0
\(943\) 1.24292e12 1.57180
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.05278e12i 1.30899i −0.756067 0.654494i \(-0.772882\pi\)
0.756067 0.654494i \(-0.227118\pi\)
\(948\) 0 0
\(949\) 5.06474e11 0.624442
\(950\) 0 0
\(951\) 4.54259e11 2.17910e11i 0.555369 0.266412i
\(952\) 0 0
\(953\) 1.45077e11i 0.175884i 0.996126 + 0.0879420i \(0.0280290\pi\)
−0.996126 + 0.0879420i \(0.971971\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −4.29648e11 8.95653e11i −0.512230 1.06781i
\(958\) 0 0
\(959\) 1.98094e12i 2.34205i
\(960\) 0 0
\(961\) −1.80418e11 −0.211536
\(962\) 0 0
\(963\) −1.00595e12 8.07230e11i −1.16969 0.938625i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 1.48562e12 1.69903 0.849515 0.527564i \(-0.176895\pi\)
0.849515 + 0.527564i \(0.176895\pi\)
\(968\) 0 0
\(969\) 1.08281e12 5.19430e11i 1.22817 0.589158i
\(970\) 0 0
\(971\) 6.58861e10i 0.0741169i −0.999313 0.0370584i \(-0.988201\pi\)
0.999313 0.0370584i \(-0.0117988\pi\)
\(972\) 0 0
\(973\) 8.57381e11 0.956583
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 4.29683e11i 0.471596i −0.971802 0.235798i \(-0.924230\pi\)
0.971802 0.235798i \(-0.0757703\pi\)
\(978\) 0 0
\(979\) −4.73455e11 −0.515404
\(980\) 0 0
\(981\) −1.91486e11 + 2.38624e11i −0.206757 + 0.257655i
\(982\) 0 0
\(983\) 3.39473e11i 0.363573i −0.983338 0.181786i \(-0.941812\pi\)
0.983338 0.181786i \(-0.0581879\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −1.21939e12 + 5.84947e11i −1.28492 + 0.616379i
\(988\) 0 0
\(989\) 6.57727e11i 0.687481i
\(990\) 0 0
\(991\) −1.40952e12 −1.46143 −0.730714 0.682684i \(-0.760813\pi\)
−0.730714 + 0.682684i \(0.760813\pi\)
\(992\) 0 0
\(993\) −7.62579e11 1.58969e12i −0.784311 1.63499i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1.13181e12 1.14549 0.572746 0.819733i \(-0.305878\pi\)
0.572746 + 0.819733i \(0.305878\pi\)
\(998\) 0 0
\(999\) 1.13840e11 + 2.65299e10i 0.114296 + 0.0266363i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 300.9.g.e.101.8 yes 10
3.2 odd 2 inner 300.9.g.e.101.7 10
5.2 odd 4 300.9.b.e.149.17 20
5.3 odd 4 300.9.b.e.149.4 20
5.4 even 2 300.9.g.g.101.3 yes 10
15.2 even 4 300.9.b.e.149.3 20
15.8 even 4 300.9.b.e.149.18 20
15.14 odd 2 300.9.g.g.101.4 yes 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
300.9.b.e.149.3 20 15.2 even 4
300.9.b.e.149.4 20 5.3 odd 4
300.9.b.e.149.17 20 5.2 odd 4
300.9.b.e.149.18 20 15.8 even 4
300.9.g.e.101.7 10 3.2 odd 2 inner
300.9.g.e.101.8 yes 10 1.1 even 1 trivial
300.9.g.g.101.3 yes 10 5.4 even 2
300.9.g.g.101.4 yes 10 15.14 odd 2