L(s) = 1 | + (0.599 − 0.665i)3-s + (−4.03 + 1.79i)5-s + (0.860 + 2.50i)7-s + (0.229 + 2.18i)9-s + (−0.394 − 3.29i)11-s + (−3.36 + 2.44i)13-s + (−1.22 + 3.76i)15-s + (−0.518 + 4.93i)17-s + (−0.672 − 0.142i)19-s + (2.18 + 0.927i)21-s + (−2.70 + 4.67i)23-s + (9.69 − 10.7i)25-s + (3.76 + 2.73i)27-s + (1.02 − 3.15i)29-s + (6.03 + 2.68i)31-s + ⋯ |
L(s) = 1 | + (0.346 − 0.384i)3-s + (−1.80 + 0.802i)5-s + (0.325 + 0.945i)7-s + (0.0765 + 0.728i)9-s + (−0.119 − 0.992i)11-s + (−0.933 + 0.678i)13-s + (−0.315 + 0.970i)15-s + (−0.125 + 1.19i)17-s + (−0.154 − 0.0327i)19-s + (0.475 + 0.202i)21-s + (−0.563 + 0.975i)23-s + (1.93 − 2.15i)25-s + (0.724 + 0.526i)27-s + (0.190 − 0.586i)29-s + (1.08 + 0.482i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 308 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.276 - 0.960i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 308 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.276 - 0.960i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.482827 + 0.641652i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.482827 + 0.641652i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (-0.860 - 2.50i)T \) |
| 11 | \( 1 + (0.394 + 3.29i)T \) |
good | 3 | \( 1 + (-0.599 + 0.665i)T + (-0.313 - 2.98i)T^{2} \) |
| 5 | \( 1 + (4.03 - 1.79i)T + (3.34 - 3.71i)T^{2} \) |
| 13 | \( 1 + (3.36 - 2.44i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (0.518 - 4.93i)T + (-16.6 - 3.53i)T^{2} \) |
| 19 | \( 1 + (0.672 + 0.142i)T + (17.3 + 7.72i)T^{2} \) |
| 23 | \( 1 + (2.70 - 4.67i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.02 + 3.15i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (-6.03 - 2.68i)T + (20.7 + 23.0i)T^{2} \) |
| 37 | \( 1 + (1.71 + 1.90i)T + (-3.86 + 36.7i)T^{2} \) |
| 41 | \( 1 + (1.30 + 4.02i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 - 4.76T + 43T^{2} \) |
| 47 | \( 1 + (3.55 + 0.754i)T + (42.9 + 19.1i)T^{2} \) |
| 53 | \( 1 + (1.29 + 0.577i)T + (35.4 + 39.3i)T^{2} \) |
| 59 | \( 1 + (5.60 - 1.19i)T + (53.8 - 23.9i)T^{2} \) |
| 61 | \( 1 + (-5.37 + 2.39i)T + (40.8 - 45.3i)T^{2} \) |
| 67 | \( 1 + (-0.225 - 0.390i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (7.43 + 5.39i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-2.52 + 0.535i)T + (66.6 - 29.6i)T^{2} \) |
| 79 | \( 1 + (-1.14 - 10.8i)T + (-77.2 + 16.4i)T^{2} \) |
| 83 | \( 1 + (-5.68 - 4.13i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + (-1.82 + 3.16i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-4.83 + 3.51i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.85545303151644315525165039742, −11.25193644532896253934737983728, −10.36063944301749340500539060264, −8.730971394445857228624319266979, −8.083468820455602458220564159755, −7.43830233730852169366798547590, −6.26416741328062013466936521249, −4.75548752783105289121966232858, −3.53906823720121875625595734869, −2.34379219165138890184372935602,
0.56232238394200371749727788912, 3.16364014185718523159343262840, 4.44506133116627794108843203967, 4.69814580174613838770864530166, 6.94535814112030108345131760111, 7.65687017861867766200764831653, 8.433092894201859486241735598526, 9.544779404324327557017515294878, 10.43259742683773591774922521570, 11.64737010147357683969736685516