Properties

Label 308.2.y.b.289.3
Level $308$
Weight $2$
Character 308.289
Analytic conductor $2.459$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [308,2,Mod(9,308)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(308, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([0, 10, 18]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("308.9");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 308 = 2^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 308.y (of order \(15\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.45939238226\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(6\) over \(\Q(\zeta_{15})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 289.3
Character \(\chi\) \(=\) 308.289
Dual form 308.2.y.b.81.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.599375 - 0.665674i) q^{3} +(-4.03246 + 1.79536i) q^{5} +(0.860089 + 2.50205i) q^{7} +(0.229715 + 2.18559i) q^{9} +(-0.394957 - 3.29302i) q^{11} +(-3.36615 + 2.44565i) q^{13} +(-1.22183 + 3.76040i) q^{15} +(-0.518194 + 4.93028i) q^{17} +(-0.672120 - 0.142864i) q^{19} +(2.18106 + 0.927127i) q^{21} +(-2.70042 + 4.67727i) q^{23} +(9.69171 - 10.7637i) q^{25} +(3.76661 + 2.73660i) q^{27} +(1.02571 - 3.15682i) q^{29} +(6.03074 + 2.68506i) q^{31} +(-2.42881 - 1.71084i) q^{33} +(-7.96036 - 8.54522i) q^{35} +(-1.71306 - 1.90255i) q^{37} +(-0.389581 + 3.70662i) q^{39} +(-1.30788 - 4.02523i) q^{41} +4.76487 q^{43} +(-4.85024 - 8.40087i) q^{45} +(-3.55158 - 0.754911i) q^{47} +(-5.52049 + 4.30397i) q^{49} +(2.97137 + 3.30004i) q^{51} +(-1.29690 - 0.577416i) q^{53} +(7.50483 + 12.5699i) q^{55} +(-0.497953 + 0.361784i) q^{57} +(-5.60294 + 1.19094i) q^{59} +(5.37231 - 2.39191i) q^{61} +(-5.27087 + 2.45456i) q^{63} +(9.18301 - 15.9054i) q^{65} +(0.225280 + 0.390196i) q^{67} +(1.49497 + 4.60104i) q^{69} +(-7.43196 - 5.39964i) q^{71} +(2.52044 - 0.535737i) q^{73} +(-1.35616 - 12.9030i) q^{75} +(7.89961 - 3.82050i) q^{77} +(1.14016 + 10.8479i) q^{79} +(-2.36952 + 0.503656i) q^{81} +(5.68790 + 4.13250i) q^{83} +(-6.76206 - 20.8115i) q^{85} +(-1.48663 - 2.57491i) q^{87} +(1.82999 - 3.16963i) q^{89} +(-9.01432 - 6.31879i) q^{91} +(5.40205 - 2.40515i) q^{93} +(2.96679 - 0.630610i) q^{95} +(4.83319 - 3.51152i) q^{97} +(7.10647 - 1.61967i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - q^{3} + 7 q^{5} - 7 q^{7} + 13 q^{9} - 5 q^{11} - 8 q^{13} - 48 q^{15} + 19 q^{17} + 13 q^{19} - 22 q^{21} - 30 q^{23} - 7 q^{25} + 26 q^{27} - 12 q^{29} + 3 q^{31} - 28 q^{33} + 37 q^{35} + 19 q^{37}+ \cdots + 140 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/308\mathbb{Z}\right)^\times\).

\(n\) \(45\) \(57\) \(155\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.599375 0.665674i 0.346049 0.384327i −0.544845 0.838537i \(-0.683412\pi\)
0.890895 + 0.454210i \(0.150078\pi\)
\(4\) 0 0
\(5\) −4.03246 + 1.79536i −1.80337 + 0.802912i −0.836355 + 0.548189i \(0.815318\pi\)
−0.967014 + 0.254723i \(0.918016\pi\)
\(6\) 0 0
\(7\) 0.860089 + 2.50205i 0.325083 + 0.945685i
\(8\) 0 0
\(9\) 0.229715 + 2.18559i 0.0765716 + 0.728530i
\(10\) 0 0
\(11\) −0.394957 3.29302i −0.119084 0.992884i
\(12\) 0 0
\(13\) −3.36615 + 2.44565i −0.933602 + 0.678301i −0.946872 0.321611i \(-0.895776\pi\)
0.0132703 + 0.999912i \(0.495776\pi\)
\(14\) 0 0
\(15\) −1.22183 + 3.76040i −0.315474 + 0.970930i
\(16\) 0 0
\(17\) −0.518194 + 4.93028i −0.125680 + 1.19577i 0.731897 + 0.681415i \(0.238635\pi\)
−0.857578 + 0.514354i \(0.828032\pi\)
\(18\) 0 0
\(19\) −0.672120 0.142864i −0.154195 0.0327751i 0.130167 0.991492i \(-0.458449\pi\)
−0.284362 + 0.958717i \(0.591782\pi\)
\(20\) 0 0
\(21\) 2.18106 + 0.927127i 0.475947 + 0.202316i
\(22\) 0 0
\(23\) −2.70042 + 4.67727i −0.563077 + 0.975279i 0.434148 + 0.900841i \(0.357049\pi\)
−0.997226 + 0.0744373i \(0.976284\pi\)
\(24\) 0 0
\(25\) 9.69171 10.7637i 1.93834 2.15275i
\(26\) 0 0
\(27\) 3.76661 + 2.73660i 0.724885 + 0.526659i
\(28\) 0 0
\(29\) 1.02571 3.15682i 0.190470 0.586207i −0.809529 0.587079i \(-0.800278\pi\)
1.00000 0.000872197i \(0.000277629\pi\)
\(30\) 0 0
\(31\) 6.03074 + 2.68506i 1.08315 + 0.482250i 0.869133 0.494579i \(-0.164678\pi\)
0.214019 + 0.976829i \(0.431344\pi\)
\(32\) 0 0
\(33\) −2.42881 1.71084i −0.422801 0.297820i
\(34\) 0 0
\(35\) −7.96036 8.54522i −1.34555 1.44441i
\(36\) 0 0
\(37\) −1.71306 1.90255i −0.281625 0.312777i 0.585691 0.810535i \(-0.300823\pi\)
−0.867316 + 0.497758i \(0.834157\pi\)
\(38\) 0 0
\(39\) −0.389581 + 3.70662i −0.0623829 + 0.593534i
\(40\) 0 0
\(41\) −1.30788 4.02523i −0.204256 0.628635i −0.999743 0.0226649i \(-0.992785\pi\)
0.795487 0.605971i \(-0.207215\pi\)
\(42\) 0 0
\(43\) 4.76487 0.726636 0.363318 0.931665i \(-0.381644\pi\)
0.363318 + 0.931665i \(0.381644\pi\)
\(44\) 0 0
\(45\) −4.85024 8.40087i −0.723032 1.25233i
\(46\) 0 0
\(47\) −3.55158 0.754911i −0.518051 0.110115i −0.0585361 0.998285i \(-0.518643\pi\)
−0.459515 + 0.888170i \(0.651977\pi\)
\(48\) 0 0
\(49\) −5.52049 + 4.30397i −0.788642 + 0.614853i
\(50\) 0 0
\(51\) 2.97137 + 3.30004i 0.416075 + 0.462098i
\(52\) 0 0
\(53\) −1.29690 0.577416i −0.178143 0.0793142i 0.315727 0.948850i \(-0.397751\pi\)
−0.493870 + 0.869536i \(0.664418\pi\)
\(54\) 0 0
\(55\) 7.50483 + 12.5699i 1.01195 + 1.69492i
\(56\) 0 0
\(57\) −0.497953 + 0.361784i −0.0659554 + 0.0479194i
\(58\) 0 0
\(59\) −5.60294 + 1.19094i −0.729441 + 0.155047i −0.557638 0.830084i \(-0.688292\pi\)
−0.171803 + 0.985131i \(0.554959\pi\)
\(60\) 0 0
\(61\) 5.37231 2.39191i 0.687854 0.306252i −0.0328850 0.999459i \(-0.510469\pi\)
0.720739 + 0.693207i \(0.243803\pi\)
\(62\) 0 0
\(63\) −5.27087 + 2.45456i −0.664068 + 0.309245i
\(64\) 0 0
\(65\) 9.18301 15.9054i 1.13901 1.97283i
\(66\) 0 0
\(67\) 0.225280 + 0.390196i 0.0275223 + 0.0476700i 0.879458 0.475976i \(-0.157905\pi\)
−0.851936 + 0.523646i \(0.824572\pi\)
\(68\) 0 0
\(69\) 1.49497 + 4.60104i 0.179973 + 0.553900i
\(70\) 0 0
\(71\) −7.43196 5.39964i −0.882012 0.640819i 0.0517714 0.998659i \(-0.483513\pi\)
−0.933783 + 0.357840i \(0.883513\pi\)
\(72\) 0 0
\(73\) 2.52044 0.535737i 0.294996 0.0627033i −0.0580364 0.998314i \(-0.518484\pi\)
0.353032 + 0.935611i \(0.385151\pi\)
\(74\) 0 0
\(75\) −1.35616 12.9030i −0.156596 1.48991i
\(76\) 0 0
\(77\) 7.89961 3.82050i 0.900244 0.435386i
\(78\) 0 0
\(79\) 1.14016 + 10.8479i 0.128278 + 1.22049i 0.849427 + 0.527706i \(0.176948\pi\)
−0.721149 + 0.692780i \(0.756386\pi\)
\(80\) 0 0
\(81\) −2.36952 + 0.503656i −0.263280 + 0.0559618i
\(82\) 0 0
\(83\) 5.68790 + 4.13250i 0.624328 + 0.453601i 0.854431 0.519565i \(-0.173906\pi\)
−0.230102 + 0.973166i \(0.573906\pi\)
\(84\) 0 0
\(85\) −6.76206 20.8115i −0.733449 2.25732i
\(86\) 0 0
\(87\) −1.48663 2.57491i −0.159383 0.276060i
\(88\) 0 0
\(89\) 1.82999 3.16963i 0.193978 0.335980i −0.752587 0.658493i \(-0.771194\pi\)
0.946565 + 0.322513i \(0.104528\pi\)
\(90\) 0 0
\(91\) −9.01432 6.31879i −0.944958 0.662389i
\(92\) 0 0
\(93\) 5.40205 2.40515i 0.560166 0.249402i
\(94\) 0 0
\(95\) 2.96679 0.630610i 0.304386 0.0646992i
\(96\) 0 0
\(97\) 4.83319 3.51152i 0.490736 0.356541i −0.314731 0.949181i \(-0.601914\pi\)
0.805467 + 0.592640i \(0.201914\pi\)
\(98\) 0 0
\(99\) 7.10647 1.61967i 0.714227 0.162783i
\(100\) 0 0
\(101\) 9.04158 + 4.02557i 0.899671 + 0.400559i 0.803845 0.594839i \(-0.202784\pi\)
0.0958259 + 0.995398i \(0.469451\pi\)
\(102\) 0 0
\(103\) 1.58177 + 1.75673i 0.155856 + 0.173096i 0.816016 0.578029i \(-0.196178\pi\)
−0.660160 + 0.751125i \(0.729511\pi\)
\(104\) 0 0
\(105\) −10.4596 + 0.177207i −1.02075 + 0.0172937i
\(106\) 0 0
\(107\) 15.8767 + 3.37470i 1.53486 + 0.326244i 0.896342 0.443363i \(-0.146215\pi\)
0.638517 + 0.769608i \(0.279548\pi\)
\(108\) 0 0
\(109\) 9.01410 + 15.6129i 0.863394 + 1.49544i 0.868633 + 0.495457i \(0.164999\pi\)
−0.00523819 + 0.999986i \(0.501667\pi\)
\(110\) 0 0
\(111\) −2.29324 −0.217665
\(112\) 0 0
\(113\) 2.21077 + 6.80406i 0.207972 + 0.640072i 0.999578 + 0.0290405i \(0.00924519\pi\)
−0.791606 + 0.611032i \(0.790755\pi\)
\(114\) 0 0
\(115\) 2.49193 23.7091i 0.232374 2.21089i
\(116\) 0 0
\(117\) −6.11844 6.79522i −0.565650 0.628218i
\(118\) 0 0
\(119\) −12.7815 + 2.94394i −1.17168 + 0.269870i
\(120\) 0 0
\(121\) −10.6880 + 2.60121i −0.971638 + 0.236473i
\(122\) 0 0
\(123\) −3.46340 1.54200i −0.312284 0.139038i
\(124\) 0 0
\(125\) −12.9364 + 39.8143i −1.15707 + 3.56110i
\(126\) 0 0
\(127\) 7.68158 + 5.58100i 0.681630 + 0.495233i 0.873898 0.486109i \(-0.161584\pi\)
−0.192268 + 0.981342i \(0.561584\pi\)
\(128\) 0 0
\(129\) 2.85594 3.17185i 0.251452 0.279266i
\(130\) 0 0
\(131\) −6.94191 + 12.0237i −0.606517 + 1.05052i 0.385292 + 0.922795i \(0.374101\pi\)
−0.991810 + 0.127724i \(0.959233\pi\)
\(132\) 0 0
\(133\) −0.220632 1.80455i −0.0191312 0.156475i
\(134\) 0 0
\(135\) −20.1019 4.27279i −1.73010 0.367743i
\(136\) 0 0
\(137\) −0.578130 + 5.50054i −0.0493930 + 0.469943i 0.941669 + 0.336541i \(0.109257\pi\)
−0.991062 + 0.133402i \(0.957410\pi\)
\(138\) 0 0
\(139\) −1.83605 + 5.65079i −0.155732 + 0.479293i −0.998234 0.0593991i \(-0.981082\pi\)
0.842502 + 0.538693i \(0.181082\pi\)
\(140\) 0 0
\(141\) −2.63125 + 1.91172i −0.221591 + 0.160996i
\(142\) 0 0
\(143\) 9.38307 + 10.1189i 0.784652 + 0.846184i
\(144\) 0 0
\(145\) 1.53150 + 14.5713i 0.127184 + 1.21008i
\(146\) 0 0
\(147\) −0.443806 + 6.25454i −0.0366045 + 0.515866i
\(148\) 0 0
\(149\) 19.6509 8.74916i 1.60987 0.716759i 0.612582 0.790407i \(-0.290131\pi\)
0.997284 + 0.0736480i \(0.0234641\pi\)
\(150\) 0 0
\(151\) 8.47633 9.41391i 0.689794 0.766094i −0.291923 0.956442i \(-0.594295\pi\)
0.981717 + 0.190348i \(0.0609617\pi\)
\(152\) 0 0
\(153\) −10.8946 −0.880777
\(154\) 0 0
\(155\) −29.1393 −2.34053
\(156\) 0 0
\(157\) −11.0356 + 12.2563i −0.880739 + 0.978159i −0.999892 0.0147167i \(-0.995315\pi\)
0.119153 + 0.992876i \(0.461982\pi\)
\(158\) 0 0
\(159\) −1.16170 + 0.517222i −0.0921288 + 0.0410184i
\(160\) 0 0
\(161\) −14.0254 2.73372i −1.10535 0.215447i
\(162\) 0 0
\(163\) 1.13415 + 10.7907i 0.0888337 + 0.845196i 0.944686 + 0.327976i \(0.106366\pi\)
−0.855852 + 0.517220i \(0.826967\pi\)
\(164\) 0 0
\(165\) 12.8656 + 2.53831i 1.00159 + 0.197607i
\(166\) 0 0
\(167\) 16.6920 12.1274i 1.29166 0.938448i 0.291826 0.956471i \(-0.405737\pi\)
0.999838 + 0.0180230i \(0.00573721\pi\)
\(168\) 0 0
\(169\) 1.33253 4.10111i 0.102502 0.315470i
\(170\) 0 0
\(171\) 0.157845 1.50180i 0.0120707 0.114845i
\(172\) 0 0
\(173\) −17.1888 3.65359i −1.30684 0.277777i −0.498703 0.866773i \(-0.666190\pi\)
−0.808136 + 0.588996i \(0.799523\pi\)
\(174\) 0 0
\(175\) 35.2671 + 14.9913i 2.66594 + 1.13324i
\(176\) 0 0
\(177\) −2.56549 + 4.44355i −0.192834 + 0.333998i
\(178\) 0 0
\(179\) 5.31740 5.90557i 0.397441 0.441403i −0.510896 0.859643i \(-0.670686\pi\)
0.908337 + 0.418240i \(0.137353\pi\)
\(180\) 0 0
\(181\) −20.3678 14.7981i −1.51393 1.09993i −0.964397 0.264461i \(-0.914806\pi\)
−0.549532 0.835473i \(-0.685194\pi\)
\(182\) 0 0
\(183\) 1.62780 5.00985i 0.120330 0.370339i
\(184\) 0 0
\(185\) 10.3236 + 4.59636i 0.759006 + 0.337931i
\(186\) 0 0
\(187\) 16.4402 0.240825i 1.20223 0.0176109i
\(188\) 0 0
\(189\) −3.60749 + 11.7780i −0.262406 + 0.856721i
\(190\) 0 0
\(191\) −3.55122 3.94403i −0.256957 0.285380i 0.600839 0.799370i \(-0.294833\pi\)
−0.857796 + 0.513990i \(0.828167\pi\)
\(192\) 0 0
\(193\) 1.69762 16.1518i 0.122197 1.16263i −0.745838 0.666127i \(-0.767951\pi\)
0.868035 0.496502i \(-0.165383\pi\)
\(194\) 0 0
\(195\) −5.08376 15.6462i −0.364056 1.12045i
\(196\) 0 0
\(197\) 4.88001 0.347687 0.173843 0.984773i \(-0.444381\pi\)
0.173843 + 0.984773i \(0.444381\pi\)
\(198\) 0 0
\(199\) 2.03855 + 3.53087i 0.144509 + 0.250297i 0.929190 0.369603i \(-0.120506\pi\)
−0.784681 + 0.619900i \(0.787173\pi\)
\(200\) 0 0
\(201\) 0.394770 + 0.0839110i 0.0278449 + 0.00591862i
\(202\) 0 0
\(203\) 8.78073 0.148764i 0.616286 0.0104412i
\(204\) 0 0
\(205\) 12.5007 + 13.8834i 0.873088 + 0.969662i
\(206\) 0 0
\(207\) −10.8429 4.82758i −0.753635 0.335540i
\(208\) 0 0
\(209\) −0.204995 + 2.26973i −0.0141798 + 0.157001i
\(210\) 0 0
\(211\) −8.48368 + 6.16376i −0.584041 + 0.424331i −0.840179 0.542310i \(-0.817550\pi\)
0.256138 + 0.966640i \(0.417550\pi\)
\(212\) 0 0
\(213\) −8.04893 + 1.71085i −0.551503 + 0.117226i
\(214\) 0 0
\(215\) −19.2141 + 8.55468i −1.31039 + 0.583424i
\(216\) 0 0
\(217\) −1.53117 + 17.3986i −0.103943 + 1.18109i
\(218\) 0 0
\(219\) 1.15407 1.99890i 0.0779845 0.135073i
\(220\) 0 0
\(221\) −10.3134 17.8634i −0.693756 1.20162i
\(222\) 0 0
\(223\) −0.475969 1.46488i −0.0318733 0.0980959i 0.933854 0.357654i \(-0.116423\pi\)
−0.965728 + 0.259558i \(0.916423\pi\)
\(224\) 0 0
\(225\) 25.7514 + 18.7095i 1.71676 + 1.24730i
\(226\) 0 0
\(227\) −18.4766 + 3.92732i −1.22633 + 0.260665i −0.775157 0.631769i \(-0.782329\pi\)
−0.451177 + 0.892434i \(0.648996\pi\)
\(228\) 0 0
\(229\) −0.846580 8.05467i −0.0559436 0.532268i −0.986224 0.165418i \(-0.947103\pi\)
0.930280 0.366850i \(-0.119564\pi\)
\(230\) 0 0
\(231\) 2.19163 7.54847i 0.144198 0.496653i
\(232\) 0 0
\(233\) −0.156016 1.48439i −0.0102209 0.0972455i 0.988222 0.153026i \(-0.0489019\pi\)
−0.998443 + 0.0557807i \(0.982235\pi\)
\(234\) 0 0
\(235\) 15.6769 3.33223i 1.02265 0.217371i
\(236\) 0 0
\(237\) 7.90456 + 5.74300i 0.513456 + 0.373048i
\(238\) 0 0
\(239\) 0.0784979 + 0.241592i 0.00507761 + 0.0156273i 0.953563 0.301193i \(-0.0973848\pi\)
−0.948486 + 0.316820i \(0.897385\pi\)
\(240\) 0 0
\(241\) −5.03093 8.71383i −0.324071 0.561307i 0.657253 0.753670i \(-0.271718\pi\)
−0.981324 + 0.192363i \(0.938385\pi\)
\(242\) 0 0
\(243\) −8.06864 + 13.9753i −0.517603 + 0.896515i
\(244\) 0 0
\(245\) 14.5339 27.2669i 0.928539 1.74202i
\(246\) 0 0
\(247\) 2.61185 1.16287i 0.166188 0.0739917i
\(248\) 0 0
\(249\) 6.16009 1.30937i 0.390380 0.0829777i
\(250\) 0 0
\(251\) 3.64939 2.65144i 0.230347 0.167357i −0.466625 0.884455i \(-0.654530\pi\)
0.696972 + 0.717098i \(0.254530\pi\)
\(252\) 0 0
\(253\) 16.4689 + 7.04524i 1.03539 + 0.442931i
\(254\) 0 0
\(255\) −17.9067 7.97256i −1.12136 0.499261i
\(256\) 0 0
\(257\) 3.05864 + 3.39697i 0.190793 + 0.211897i 0.830950 0.556347i \(-0.187797\pi\)
−0.640157 + 0.768244i \(0.721131\pi\)
\(258\) 0 0
\(259\) 3.28688 5.92252i 0.204237 0.368007i
\(260\) 0 0
\(261\) 7.13514 + 1.51662i 0.441654 + 0.0938765i
\(262\) 0 0
\(263\) 10.1326 + 17.5501i 0.624801 + 1.08219i 0.988579 + 0.150701i \(0.0481532\pi\)
−0.363778 + 0.931485i \(0.618513\pi\)
\(264\) 0 0
\(265\) 6.26636 0.384939
\(266\) 0 0
\(267\) −1.01309 3.11797i −0.0620001 0.190817i
\(268\) 0 0
\(269\) −1.82352 + 17.3496i −0.111182 + 1.05783i 0.786623 + 0.617433i \(0.211827\pi\)
−0.897805 + 0.440393i \(0.854839\pi\)
\(270\) 0 0
\(271\) −13.3458 14.8221i −0.810703 0.900376i 0.185914 0.982566i \(-0.440475\pi\)
−0.996617 + 0.0821896i \(0.973809\pi\)
\(272\) 0 0
\(273\) −9.60921 + 2.21327i −0.581576 + 0.133953i
\(274\) 0 0
\(275\) −39.2730 27.6638i −2.36825 1.66819i
\(276\) 0 0
\(277\) −24.4646 10.8924i −1.46994 0.654458i −0.493399 0.869803i \(-0.664246\pi\)
−0.976538 + 0.215345i \(0.930912\pi\)
\(278\) 0 0
\(279\) −4.48308 + 13.7975i −0.268395 + 0.826035i
\(280\) 0 0
\(281\) −2.20627 1.60295i −0.131615 0.0956241i 0.520030 0.854148i \(-0.325921\pi\)
−0.651645 + 0.758524i \(0.725921\pi\)
\(282\) 0 0
\(283\) 12.8829 14.3079i 0.765807 0.850514i −0.226540 0.974002i \(-0.572741\pi\)
0.992346 + 0.123488i \(0.0394079\pi\)
\(284\) 0 0
\(285\) 1.35844 2.35288i 0.0804669 0.139373i
\(286\) 0 0
\(287\) 8.94643 6.73443i 0.528091 0.397521i
\(288\) 0 0
\(289\) −7.41065 1.57518i −0.435921 0.0926578i
\(290\) 0 0
\(291\) 0.559369 5.32204i 0.0327908 0.311984i
\(292\) 0 0
\(293\) 9.45298 29.0933i 0.552249 1.69965i −0.150851 0.988557i \(-0.548201\pi\)
0.703100 0.711091i \(-0.251799\pi\)
\(294\) 0 0
\(295\) 20.4554 14.8617i 1.19096 0.865284i
\(296\) 0 0
\(297\) 7.52405 13.4844i 0.436590 0.782443i
\(298\) 0 0
\(299\) −2.34894 22.3487i −0.135843 1.29246i
\(300\) 0 0
\(301\) 4.09821 + 11.9219i 0.236217 + 0.687169i
\(302\) 0 0
\(303\) 8.09902 3.60591i 0.465276 0.207154i
\(304\) 0 0
\(305\) −17.3692 + 19.2905i −0.994560 + 1.10457i
\(306\) 0 0
\(307\) 1.35405 0.0772796 0.0386398 0.999253i \(-0.487698\pi\)
0.0386398 + 0.999253i \(0.487698\pi\)
\(308\) 0 0
\(309\) 2.11748 0.120459
\(310\) 0 0
\(311\) 16.0347 17.8084i 0.909245 1.00982i −0.0906576 0.995882i \(-0.528897\pi\)
0.999903 0.0139370i \(-0.00443643\pi\)
\(312\) 0 0
\(313\) 9.44814 4.20659i 0.534041 0.237770i −0.121954 0.992536i \(-0.538916\pi\)
0.655995 + 0.754766i \(0.272249\pi\)
\(314\) 0 0
\(315\) 16.8477 19.3610i 0.949262 1.09087i
\(316\) 0 0
\(317\) 1.48267 + 14.1067i 0.0832752 + 0.792311i 0.953852 + 0.300278i \(0.0970794\pi\)
−0.870577 + 0.492033i \(0.836254\pi\)
\(318\) 0 0
\(319\) −10.8006 2.13089i −0.604718 0.119307i
\(320\) 0 0
\(321\) 11.7626 8.54599i 0.656522 0.476991i
\(322\) 0 0
\(323\) 1.05265 3.23971i 0.0585708 0.180262i
\(324\) 0 0
\(325\) −6.29941 + 59.9349i −0.349428 + 3.32459i
\(326\) 0 0
\(327\) 15.7959 + 3.35753i 0.873516 + 0.185672i
\(328\) 0 0
\(329\) −1.16585 9.53551i −0.0642754 0.525709i
\(330\) 0 0
\(331\) 0.241586 0.418440i 0.0132788 0.0229995i −0.859310 0.511456i \(-0.829106\pi\)
0.872588 + 0.488456i \(0.162440\pi\)
\(332\) 0 0
\(333\) 3.76467 4.18109i 0.206303 0.229122i
\(334\) 0 0
\(335\) −1.60897 1.16899i −0.0879076 0.0638686i
\(336\) 0 0
\(337\) −6.14808 + 18.9218i −0.334907 + 1.03074i 0.631861 + 0.775082i \(0.282292\pi\)
−0.966768 + 0.255656i \(0.917708\pi\)
\(338\) 0 0
\(339\) 5.85437 + 2.60653i 0.317966 + 0.141567i
\(340\) 0 0
\(341\) 6.46008 20.9198i 0.349833 1.13287i
\(342\) 0 0
\(343\) −15.5169 10.1107i −0.837832 0.545929i
\(344\) 0 0
\(345\) −14.2889 15.8695i −0.769291 0.854384i
\(346\) 0 0
\(347\) −2.31444 + 22.0204i −0.124245 + 1.18212i 0.737705 + 0.675123i \(0.235910\pi\)
−0.861950 + 0.506993i \(0.830757\pi\)
\(348\) 0 0
\(349\) −4.75386 14.6309i −0.254468 0.783172i −0.993934 0.109978i \(-0.964922\pi\)
0.739466 0.673194i \(-0.235078\pi\)
\(350\) 0 0
\(351\) −19.3717 −1.03399
\(352\) 0 0
\(353\) −2.28348 3.95511i −0.121537 0.210509i 0.798837 0.601548i \(-0.205449\pi\)
−0.920374 + 0.391039i \(0.872116\pi\)
\(354\) 0 0
\(355\) 39.6634 + 8.43071i 2.10511 + 0.447456i
\(356\) 0 0
\(357\) −5.70121 + 10.2728i −0.301740 + 0.543696i
\(358\) 0 0
\(359\) 10.6868 + 11.8688i 0.564025 + 0.626413i 0.955931 0.293592i \(-0.0948507\pi\)
−0.391906 + 0.920005i \(0.628184\pi\)
\(360\) 0 0
\(361\) −16.9260 7.53595i −0.890844 0.396629i
\(362\) 0 0
\(363\) −4.67458 + 8.67383i −0.245352 + 0.455258i
\(364\) 0 0
\(365\) −9.20174 + 6.68545i −0.481641 + 0.349933i
\(366\) 0 0
\(367\) 8.50097 1.80694i 0.443747 0.0943213i 0.0193812 0.999812i \(-0.493830\pi\)
0.424366 + 0.905491i \(0.360497\pi\)
\(368\) 0 0
\(369\) 8.49706 3.78314i 0.442339 0.196942i
\(370\) 0 0
\(371\) 0.329275 3.74153i 0.0170951 0.194251i
\(372\) 0 0
\(373\) 7.29217 12.6304i 0.377574 0.653978i −0.613135 0.789979i \(-0.710092\pi\)
0.990709 + 0.136001i \(0.0434250\pi\)
\(374\) 0 0
\(375\) 18.7495 + 32.4751i 0.968221 + 1.67701i
\(376\) 0 0
\(377\) 4.26778 + 13.1349i 0.219802 + 0.676480i
\(378\) 0 0
\(379\) −20.3656 14.7964i −1.04611 0.760042i −0.0746398 0.997211i \(-0.523781\pi\)
−0.971469 + 0.237168i \(0.923781\pi\)
\(380\) 0 0
\(381\) 8.31927 1.76832i 0.426209 0.0905935i
\(382\) 0 0
\(383\) 2.69604 + 25.6511i 0.137761 + 1.31071i 0.816934 + 0.576731i \(0.195672\pi\)
−0.679173 + 0.733978i \(0.737662\pi\)
\(384\) 0 0
\(385\) −24.9956 + 29.5887i −1.27390 + 1.50798i
\(386\) 0 0
\(387\) 1.09456 + 10.4140i 0.0556396 + 0.529376i
\(388\) 0 0
\(389\) −32.2744 + 6.86014i −1.63638 + 0.347823i −0.932128 0.362129i \(-0.882050\pi\)
−0.704250 + 0.709952i \(0.748717\pi\)
\(390\) 0 0
\(391\) −21.6609 15.7376i −1.09544 0.795884i
\(392\) 0 0
\(393\) 3.84308 + 11.8278i 0.193858 + 0.596632i
\(394\) 0 0
\(395\) −24.0736 41.6968i −1.21128 2.09799i
\(396\) 0 0
\(397\) −0.190703 + 0.330307i −0.00957110 + 0.0165776i −0.870771 0.491688i \(-0.836380\pi\)
0.861200 + 0.508266i \(0.169713\pi\)
\(398\) 0 0
\(399\) −1.33348 0.934735i −0.0667577 0.0467953i
\(400\) 0 0
\(401\) −11.9276 + 5.31049i −0.595634 + 0.265193i −0.682333 0.731041i \(-0.739035\pi\)
0.0866996 + 0.996234i \(0.472368\pi\)
\(402\) 0 0
\(403\) −26.8671 + 5.71077i −1.33834 + 0.284474i
\(404\) 0 0
\(405\) 8.65072 6.28512i 0.429858 0.312310i
\(406\) 0 0
\(407\) −5.58854 + 6.39257i −0.277014 + 0.316868i
\(408\) 0 0
\(409\) 20.7364 + 9.23242i 1.02535 + 0.456514i 0.849324 0.527872i \(-0.177010\pi\)
0.176023 + 0.984386i \(0.443677\pi\)
\(410\) 0 0
\(411\) 3.31505 + 3.68174i 0.163519 + 0.181607i
\(412\) 0 0
\(413\) −7.79883 12.9945i −0.383755 0.639418i
\(414\) 0 0
\(415\) −30.3556 6.45227i −1.49010 0.316730i
\(416\) 0 0
\(417\) 2.66110 + 4.60915i 0.130314 + 0.225711i
\(418\) 0 0
\(419\) 17.5285 0.856321 0.428161 0.903703i \(-0.359162\pi\)
0.428161 + 0.903703i \(0.359162\pi\)
\(420\) 0 0
\(421\) −7.89590 24.3011i −0.384823 1.18436i −0.936609 0.350377i \(-0.886054\pi\)
0.551786 0.833986i \(-0.313946\pi\)
\(422\) 0 0
\(423\) 0.834076 7.93570i 0.0405542 0.385847i
\(424\) 0 0
\(425\) 48.0461 + 53.3606i 2.33058 + 2.58837i
\(426\) 0 0
\(427\) 10.6053 + 11.3845i 0.513228 + 0.550936i
\(428\) 0 0
\(429\) 12.3599 0.181054i 0.596739 0.00874137i
\(430\) 0 0
\(431\) 28.7396 + 12.7957i 1.38434 + 0.616347i 0.957619 0.288037i \(-0.0930026\pi\)
0.426719 + 0.904384i \(0.359669\pi\)
\(432\) 0 0
\(433\) 7.30350 22.4778i 0.350984 1.08022i −0.607318 0.794459i \(-0.707755\pi\)
0.958302 0.285758i \(-0.0922453\pi\)
\(434\) 0 0
\(435\) 10.6177 + 7.71418i 0.509078 + 0.369867i
\(436\) 0 0
\(437\) 2.48322 2.75790i 0.118789 0.131928i
\(438\) 0 0
\(439\) 4.70830 8.15501i 0.224715 0.389217i −0.731519 0.681821i \(-0.761188\pi\)
0.956234 + 0.292604i \(0.0945217\pi\)
\(440\) 0 0
\(441\) −10.6748 11.0768i −0.508326 0.527469i
\(442\) 0 0
\(443\) 6.00844 + 1.27713i 0.285470 + 0.0606784i 0.348421 0.937338i \(-0.386718\pi\)
−0.0629514 + 0.998017i \(0.520051\pi\)
\(444\) 0 0
\(445\) −1.68870 + 16.0669i −0.0800519 + 0.761643i
\(446\) 0 0
\(447\) 5.95420 18.3251i 0.281624 0.866749i
\(448\) 0 0
\(449\) 9.95124 7.23000i 0.469628 0.341205i −0.327668 0.944793i \(-0.606263\pi\)
0.797296 + 0.603588i \(0.206263\pi\)
\(450\) 0 0
\(451\) −12.7386 + 5.89666i −0.599839 + 0.277663i
\(452\) 0 0
\(453\) −1.18609 11.2849i −0.0557276 0.530212i
\(454\) 0 0
\(455\) 47.6944 + 9.29624i 2.23595 + 0.435814i
\(456\) 0 0
\(457\) −4.57921 + 2.03879i −0.214206 + 0.0953708i −0.511035 0.859560i \(-0.670738\pi\)
0.296829 + 0.954931i \(0.404071\pi\)
\(458\) 0 0
\(459\) −15.4441 + 17.1524i −0.720867 + 0.800604i
\(460\) 0 0
\(461\) 1.26864 0.0590865 0.0295433 0.999564i \(-0.490595\pi\)
0.0295433 + 0.999564i \(0.490595\pi\)
\(462\) 0 0
\(463\) −1.07973 −0.0501795 −0.0250898 0.999685i \(-0.507987\pi\)
−0.0250898 + 0.999685i \(0.507987\pi\)
\(464\) 0 0
\(465\) −17.4654 + 19.3973i −0.809938 + 0.899527i
\(466\) 0 0
\(467\) −3.64221 + 1.62162i −0.168541 + 0.0750395i −0.489273 0.872131i \(-0.662738\pi\)
0.320732 + 0.947170i \(0.396071\pi\)
\(468\) 0 0
\(469\) −0.782528 + 0.899264i −0.0361338 + 0.0415241i
\(470\) 0 0
\(471\) 1.54422 + 14.6922i 0.0711538 + 0.676983i
\(472\) 0 0
\(473\) −1.88192 15.6908i −0.0865307 0.721465i
\(474\) 0 0
\(475\) −8.05173 + 5.84993i −0.369439 + 0.268413i
\(476\) 0 0
\(477\) 0.964078 2.96713i 0.0441421 0.135855i
\(478\) 0 0
\(479\) −1.29549 + 12.3257i −0.0591923 + 0.563177i 0.924229 + 0.381840i \(0.124709\pi\)
−0.983421 + 0.181338i \(0.941957\pi\)
\(480\) 0 0
\(481\) 10.4194 + 2.21471i 0.475083 + 0.100982i
\(482\) 0 0
\(483\) −10.2262 + 7.69779i −0.465309 + 0.350262i
\(484\) 0 0
\(485\) −13.1852 + 22.8374i −0.598708 + 1.03699i
\(486\) 0 0
\(487\) −15.5663 + 17.2881i −0.705376 + 0.783399i −0.984222 0.176936i \(-0.943381\pi\)
0.278846 + 0.960336i \(0.410048\pi\)
\(488\) 0 0
\(489\) 7.86289 + 5.71273i 0.355572 + 0.258338i
\(490\) 0 0
\(491\) 3.37656 10.3920i 0.152382 0.468984i −0.845504 0.533969i \(-0.820700\pi\)
0.997886 + 0.0649849i \(0.0206999\pi\)
\(492\) 0 0
\(493\) 15.0325 + 6.69290i 0.677030 + 0.301433i
\(494\) 0 0
\(495\) −25.7486 + 19.2900i −1.15731 + 0.867019i
\(496\) 0 0
\(497\) 7.11800 23.2393i 0.319286 1.04242i
\(498\) 0 0
\(499\) −12.6724 14.0741i −0.567293 0.630042i 0.389426 0.921058i \(-0.372673\pi\)
−0.956718 + 0.291016i \(0.906007\pi\)
\(500\) 0 0
\(501\) 1.93185 18.3803i 0.0863085 0.821171i
\(502\) 0 0
\(503\) 4.60103 + 14.1605i 0.205150 + 0.631386i 0.999707 + 0.0241968i \(0.00770285\pi\)
−0.794558 + 0.607189i \(0.792297\pi\)
\(504\) 0 0
\(505\) −43.6871 −1.94405
\(506\) 0 0
\(507\) −1.93132 3.34514i −0.0857727 0.148563i
\(508\) 0 0
\(509\) −2.28273 0.485209i −0.101180 0.0215065i 0.157043 0.987592i \(-0.449804\pi\)
−0.258223 + 0.966085i \(0.583137\pi\)
\(510\) 0 0
\(511\) 3.50825 + 5.84549i 0.155196 + 0.258589i
\(512\) 0 0
\(513\) −2.14065 2.37744i −0.0945122 0.104966i
\(514\) 0 0
\(515\) −9.53239 4.24409i −0.420047 0.187017i
\(516\) 0 0
\(517\) −1.08322 + 11.9936i −0.0476400 + 0.527477i
\(518\) 0 0
\(519\) −12.7346 + 9.25225i −0.558988 + 0.406129i
\(520\) 0 0
\(521\) 15.6945 3.33598i 0.687590 0.146152i 0.149149 0.988815i \(-0.452347\pi\)
0.538441 + 0.842663i \(0.319013\pi\)
\(522\) 0 0
\(523\) 37.4534 16.6753i 1.63772 0.729161i 0.638540 0.769589i \(-0.279539\pi\)
0.999182 + 0.0404282i \(0.0128722\pi\)
\(524\) 0 0
\(525\) 31.1176 14.4909i 1.35808 0.632437i
\(526\) 0 0
\(527\) −16.3632 + 28.3419i −0.712791 + 1.23459i
\(528\) 0 0
\(529\) −3.08459 5.34266i −0.134112 0.232289i
\(530\) 0 0
\(531\) −3.88999 11.9722i −0.168811 0.519547i
\(532\) 0 0
\(533\) 14.2468 + 10.3509i 0.617098 + 0.448348i
\(534\) 0 0
\(535\) −70.0809 + 14.8962i −3.02986 + 0.644017i
\(536\) 0 0
\(537\) −0.744065 7.07930i −0.0321088 0.305494i
\(538\) 0 0
\(539\) 16.3534 + 16.4792i 0.704392 + 0.709811i
\(540\) 0 0
\(541\) 0.965287 + 9.18409i 0.0415009 + 0.394855i 0.995479 + 0.0949793i \(0.0302785\pi\)
−0.953978 + 0.299876i \(0.903055\pi\)
\(542\) 0 0
\(543\) −22.0587 + 4.68871i −0.946628 + 0.201212i
\(544\) 0 0
\(545\) −64.3798 46.7747i −2.75773 2.00361i
\(546\) 0 0
\(547\) 5.56329 + 17.1220i 0.237869 + 0.732086i 0.996728 + 0.0808305i \(0.0257572\pi\)
−0.758859 + 0.651255i \(0.774243\pi\)
\(548\) 0 0
\(549\) 6.46182 + 11.1922i 0.275784 + 0.477672i
\(550\) 0 0
\(551\) −1.14040 + 1.97523i −0.0485826 + 0.0841475i
\(552\) 0 0
\(553\) −26.1614 + 12.1829i −1.11250 + 0.518071i
\(554\) 0 0
\(555\) 9.24739 4.11720i 0.392530 0.174765i
\(556\) 0 0
\(557\) 13.6836 2.90854i 0.579793 0.123239i 0.0913256 0.995821i \(-0.470890\pi\)
0.488467 + 0.872582i \(0.337556\pi\)
\(558\) 0 0
\(559\) −16.0393 + 11.6532i −0.678388 + 0.492878i
\(560\) 0 0
\(561\) 9.69354 11.0882i 0.409262 0.468142i
\(562\) 0 0
\(563\) 1.89574 + 0.844040i 0.0798961 + 0.0355720i 0.446296 0.894886i \(-0.352743\pi\)
−0.366400 + 0.930458i \(0.619410\pi\)
\(564\) 0 0
\(565\) −21.1306 23.4679i −0.888972 0.987303i
\(566\) 0 0
\(567\) −3.29817 5.49546i −0.138510 0.230787i
\(568\) 0 0
\(569\) 26.8985 + 5.71745i 1.12764 + 0.239688i 0.733717 0.679455i \(-0.237784\pi\)
0.393925 + 0.919143i \(0.371117\pi\)
\(570\) 0 0
\(571\) 1.80258 + 3.12216i 0.0754357 + 0.130658i 0.901276 0.433246i \(-0.142632\pi\)
−0.825840 + 0.563905i \(0.809299\pi\)
\(572\) 0 0
\(573\) −4.75395 −0.198599
\(574\) 0 0
\(575\) 24.1732 + 74.3974i 1.00809 + 3.10259i
\(576\) 0 0
\(577\) 1.09176 10.3874i 0.0454506 0.432434i −0.948008 0.318245i \(-0.896907\pi\)
0.993459 0.114189i \(-0.0364268\pi\)
\(578\) 0 0
\(579\) −9.73429 10.8110i −0.404543 0.449291i
\(580\) 0 0
\(581\) −5.44762 + 17.7857i −0.226005 + 0.737876i
\(582\) 0 0
\(583\) −1.38923 + 4.49877i −0.0575359 + 0.186320i
\(584\) 0 0
\(585\) 36.8722 + 16.4166i 1.52448 + 0.678742i
\(586\) 0 0
\(587\) 11.2820 34.7223i 0.465657 1.43314i −0.392498 0.919753i \(-0.628389\pi\)
0.858155 0.513391i \(-0.171611\pi\)
\(588\) 0 0
\(589\) −3.66978 2.66625i −0.151211 0.109861i
\(590\) 0 0
\(591\) 2.92496 3.24850i 0.120317 0.133625i
\(592\) 0 0
\(593\) −4.07690 + 7.06140i −0.167418 + 0.289977i −0.937511 0.347954i \(-0.886876\pi\)
0.770093 + 0.637931i \(0.220210\pi\)
\(594\) 0 0
\(595\) 46.2554 34.8188i 1.89629 1.42743i
\(596\) 0 0
\(597\) 3.57226 + 0.759307i 0.146203 + 0.0310764i
\(598\) 0 0
\(599\) 3.08912 29.3910i 0.126218 1.20088i −0.729699 0.683769i \(-0.760340\pi\)
0.855917 0.517114i \(-0.172994\pi\)
\(600\) 0 0
\(601\) 8.38018 25.7915i 0.341834 1.05206i −0.621422 0.783476i \(-0.713445\pi\)
0.963257 0.268582i \(-0.0865552\pi\)
\(602\) 0 0
\(603\) −0.801058 + 0.582002i −0.0326216 + 0.0237010i
\(604\) 0 0
\(605\) 38.4288 29.6781i 1.56235 1.20659i
\(606\) 0 0
\(607\) 4.09234 + 38.9360i 0.166103 + 1.58037i 0.686943 + 0.726711i \(0.258952\pi\)
−0.520840 + 0.853654i \(0.674381\pi\)
\(608\) 0 0
\(609\) 5.16392 5.93426i 0.209253 0.240469i
\(610\) 0 0
\(611\) 13.8014 6.14477i 0.558344 0.248591i
\(612\) 0 0
\(613\) −7.24841 + 8.05018i −0.292761 + 0.325144i −0.871525 0.490351i \(-0.836868\pi\)
0.578764 + 0.815495i \(0.303535\pi\)
\(614\) 0 0
\(615\) 16.7345 0.674799
\(616\) 0 0
\(617\) 35.7293 1.43841 0.719204 0.694799i \(-0.244506\pi\)
0.719204 + 0.694799i \(0.244506\pi\)
\(618\) 0 0
\(619\) −15.9304 + 17.6925i −0.640297 + 0.711122i −0.972713 0.232011i \(-0.925469\pi\)
0.332416 + 0.943133i \(0.392136\pi\)
\(620\) 0 0
\(621\) −22.9713 + 10.2275i −0.921806 + 0.410414i
\(622\) 0 0
\(623\) 9.50452 + 1.85255i 0.380790 + 0.0742208i
\(624\) 0 0
\(625\) −11.7455 111.751i −0.469822 4.47006i
\(626\) 0 0
\(627\) 1.38803 + 1.49688i 0.0554327 + 0.0597797i
\(628\) 0 0
\(629\) 10.2678 7.45998i 0.409403 0.297449i
\(630\) 0 0
\(631\) 7.29837 22.4621i 0.290543 0.894200i −0.694139 0.719841i \(-0.744215\pi\)
0.984682 0.174359i \(-0.0557854\pi\)
\(632\) 0 0
\(633\) −0.981859 + 9.34177i −0.0390254 + 0.371302i
\(634\) 0 0
\(635\) −40.9956 8.71387i −1.62686 0.345800i
\(636\) 0 0
\(637\) 8.05679 27.9890i 0.319222 1.10896i
\(638\) 0 0
\(639\) 10.0942 17.4836i 0.399319 0.691640i
\(640\) 0 0
\(641\) −13.2339 + 14.6977i −0.522706 + 0.580524i −0.945467 0.325717i \(-0.894394\pi\)
0.422761 + 0.906241i \(0.361061\pi\)
\(642\) 0 0
\(643\) −0.816222 0.593020i −0.0321886 0.0233864i 0.571575 0.820550i \(-0.306333\pi\)
−0.603763 + 0.797164i \(0.706333\pi\)
\(644\) 0 0
\(645\) −5.82184 + 17.9178i −0.229235 + 0.705512i
\(646\) 0 0
\(647\) −15.8927 7.07590i −0.624807 0.278182i 0.0698114 0.997560i \(-0.477760\pi\)
−0.694619 + 0.719378i \(0.744427\pi\)
\(648\) 0 0
\(649\) 6.13472 + 17.9803i 0.240809 + 0.705787i
\(650\) 0 0
\(651\) 10.6640 + 11.4475i 0.417956 + 0.448664i
\(652\) 0 0
\(653\) −15.5262 17.2436i −0.607587 0.674794i 0.358345 0.933589i \(-0.383341\pi\)
−0.965932 + 0.258795i \(0.916674\pi\)
\(654\) 0 0
\(655\) 6.40594 60.9484i 0.250301 2.38145i
\(656\) 0 0
\(657\) 1.74988 + 5.38559i 0.0682695 + 0.210112i
\(658\) 0 0
\(659\) 48.7099 1.89747 0.948733 0.316078i \(-0.102366\pi\)
0.948733 + 0.316078i \(0.102366\pi\)
\(660\) 0 0
\(661\) −20.0951 34.8057i −0.781609 1.35379i −0.931004 0.365009i \(-0.881066\pi\)
0.149395 0.988778i \(-0.452267\pi\)
\(662\) 0 0
\(663\) −18.0728 3.84149i −0.701889 0.149191i
\(664\) 0 0
\(665\) 4.12952 + 6.88066i 0.160136 + 0.266821i
\(666\) 0 0
\(667\) 11.9955 + 13.3223i 0.464466 + 0.515842i
\(668\) 0 0
\(669\) −1.26042 0.561174i −0.0487306 0.0216963i
\(670\) 0 0
\(671\) −9.99843 16.7464i −0.385985 0.646489i
\(672\) 0 0
\(673\) 10.0399 7.29443i 0.387010 0.281179i −0.377219 0.926124i \(-0.623120\pi\)
0.764229 + 0.644945i \(0.223120\pi\)
\(674\) 0 0
\(675\) 65.9609 14.0204i 2.53884 0.539647i
\(676\) 0 0
\(677\) 5.31910 2.36822i 0.204430 0.0910180i −0.301968 0.953318i \(-0.597644\pi\)
0.506398 + 0.862300i \(0.330977\pi\)
\(678\) 0 0
\(679\) 12.9430 + 9.07266i 0.496705 + 0.348177i
\(680\) 0 0
\(681\) −8.46009 + 14.6533i −0.324191 + 0.561516i
\(682\) 0 0
\(683\) 11.1841 + 19.3714i 0.427948 + 0.741227i 0.996691 0.0812884i \(-0.0259035\pi\)
−0.568743 + 0.822515i \(0.692570\pi\)
\(684\) 0 0
\(685\) −7.54420 23.2186i −0.288249 0.887139i
\(686\) 0 0
\(687\) −5.86920 4.26422i −0.223924 0.162690i
\(688\) 0 0
\(689\) 5.77771 1.22809i 0.220113 0.0467865i
\(690\) 0 0
\(691\) −0.0267020 0.254053i −0.00101579 0.00966462i 0.994002 0.109360i \(-0.0348800\pi\)
−0.995018 + 0.0996949i \(0.968213\pi\)
\(692\) 0 0
\(693\) 10.1647 + 16.3877i 0.386125 + 0.622516i
\(694\) 0 0
\(695\) −2.74143 26.0829i −0.103988 0.989382i
\(696\) 0 0
\(697\) 20.5233 4.36235i 0.777374 0.165236i
\(698\) 0 0
\(699\) −1.08163 0.785850i −0.0409110 0.0297236i
\(700\) 0 0
\(701\) 3.40926 + 10.4926i 0.128766 + 0.396301i 0.994568 0.104085i \(-0.0331914\pi\)
−0.865802 + 0.500386i \(0.833191\pi\)
\(702\) 0 0
\(703\) 0.879577 + 1.52347i 0.0331739 + 0.0574589i
\(704\) 0 0
\(705\) 7.17817 12.4330i 0.270346 0.468252i
\(706\) 0 0
\(707\) −2.29561 + 26.0848i −0.0863351 + 0.981021i
\(708\) 0 0
\(709\) −35.7743 + 15.9277i −1.34353 + 0.598179i −0.947411 0.320020i \(-0.896310\pi\)
−0.396121 + 0.918199i \(0.629644\pi\)
\(710\) 0 0
\(711\) −23.4472 + 4.98385i −0.879338 + 0.186909i
\(712\) 0 0
\(713\) −28.8443 + 20.9566i −1.08023 + 0.784831i
\(714\) 0 0
\(715\) −56.0039 23.9579i −2.09443 0.895975i
\(716\) 0 0
\(717\) 0.207871 + 0.0925501i 0.00776308 + 0.00345635i
\(718\) 0 0
\(719\) −12.9050 14.3325i −0.481277 0.534512i 0.452787 0.891619i \(-0.350430\pi\)
−0.934064 + 0.357107i \(0.883763\pi\)
\(720\) 0 0
\(721\) −3.03497 + 5.46861i −0.113028 + 0.203662i
\(722\) 0 0
\(723\) −8.81598 1.87390i −0.327870 0.0696909i
\(724\) 0 0
\(725\) −24.0383 41.6355i −0.892759 1.54630i
\(726\) 0 0
\(727\) 48.2582 1.78980 0.894899 0.446268i \(-0.147247\pi\)
0.894899 + 0.446268i \(0.147247\pi\)
\(728\) 0 0
\(729\) 2.22110 + 6.83586i 0.0822631 + 0.253180i
\(730\) 0 0
\(731\) −2.46912 + 23.4921i −0.0913238 + 0.868888i
\(732\) 0 0
\(733\) −8.14609 9.04715i −0.300883 0.334164i 0.573677 0.819081i \(-0.305516\pi\)
−0.874560 + 0.484917i \(0.838850\pi\)
\(734\) 0 0
\(735\) −9.43955 26.0179i −0.348183 0.959686i
\(736\) 0 0
\(737\) 1.19595 0.895962i 0.0440533 0.0330032i
\(738\) 0 0
\(739\) −26.0984 11.6197i −0.960044 0.427439i −0.133961 0.990987i \(-0.542770\pi\)
−0.826084 + 0.563547i \(0.809436\pi\)
\(740\) 0 0
\(741\) 0.791386 2.43564i 0.0290723 0.0894753i
\(742\) 0 0
\(743\) −0.0158205 0.0114942i −0.000580396 0.000421683i 0.587495 0.809228i \(-0.300114\pi\)
−0.588075 + 0.808806i \(0.700114\pi\)
\(744\) 0 0
\(745\) −63.5336 + 70.5612i −2.32769 + 2.58516i
\(746\) 0 0
\(747\) −7.72536 + 13.3807i −0.282656 + 0.489575i
\(748\) 0 0
\(749\) 5.21173 + 42.6268i 0.190432 + 1.55755i
\(750\) 0 0
\(751\) 16.1653 + 3.43603i 0.589879 + 0.125383i 0.493174 0.869930i \(-0.335836\pi\)
0.0967046 + 0.995313i \(0.469170\pi\)
\(752\) 0 0
\(753\) 0.422362 4.01851i 0.0153917 0.146443i
\(754\) 0 0
\(755\) −17.2790 + 53.1793i −0.628847 + 1.93539i
\(756\) 0 0
\(757\) −42.3873 + 30.7962i −1.54059 + 1.11931i −0.590629 + 0.806943i \(0.701120\pi\)
−0.949963 + 0.312363i \(0.898880\pi\)
\(758\) 0 0
\(759\) 14.5609 6.74018i 0.528527 0.244653i
\(760\) 0 0
\(761\) −1.22927 11.6958i −0.0445611 0.423971i −0.993947 0.109859i \(-0.964960\pi\)
0.949386 0.314112i \(-0.101707\pi\)
\(762\) 0 0
\(763\) −31.3113 + 35.9822i −1.13354 + 1.30264i
\(764\) 0 0
\(765\) 43.9320 19.5598i 1.58837 0.707186i
\(766\) 0 0
\(767\) 15.9477 17.7117i 0.575838 0.639533i
\(768\) 0 0
\(769\) −5.88557 −0.212239 −0.106119 0.994353i \(-0.533843\pi\)
−0.106119 + 0.994353i \(0.533843\pi\)
\(770\) 0 0
\(771\) 4.09454 0.147461
\(772\) 0 0
\(773\) −1.49809 + 1.66379i −0.0538824 + 0.0598425i −0.769483 0.638667i \(-0.779486\pi\)
0.715601 + 0.698509i \(0.246153\pi\)
\(774\) 0 0
\(775\) 87.3494 38.8904i 3.13768 1.39699i
\(776\) 0 0
\(777\) −1.97239 5.73780i −0.0707591 0.205842i
\(778\) 0 0
\(779\) 0.303991 + 2.89229i 0.0108916 + 0.103627i
\(780\) 0 0
\(781\) −14.8458 + 26.6063i −0.531225 + 0.952047i
\(782\) 0 0
\(783\) 12.5024 9.08355i 0.446801 0.324620i
\(784\) 0 0
\(785\) 22.4961 69.2359i 0.802921 2.47114i
\(786\) 0 0
\(787\) −1.87055 + 17.7971i −0.0666779 + 0.634398i 0.909242 + 0.416268i \(0.136662\pi\)
−0.975920 + 0.218130i \(0.930004\pi\)
\(788\) 0 0
\(789\) 17.7559 + 3.77413i 0.632125 + 0.134362i
\(790\) 0 0
\(791\) −15.1226 + 11.3836i −0.537699 + 0.404753i
\(792\) 0 0
\(793\) −12.2342 + 21.1903i −0.434450 + 0.752490i
\(794\) 0 0
\(795\) 3.75590 4.17135i 0.133208 0.147942i
\(796\) 0 0
\(797\) 1.01634 + 0.738413i 0.0360006 + 0.0261559i 0.605640 0.795739i \(-0.292917\pi\)
−0.569639 + 0.821895i \(0.692917\pi\)
\(798\) 0 0
\(799\) 5.56233 17.1191i 0.196781 0.605630i
\(800\) 0 0
\(801\) 7.34788 + 3.27149i 0.259625 + 0.115592i
\(802\) 0 0
\(803\) −2.75966 8.08829i −0.0973864 0.285430i
\(804\) 0 0
\(805\) 61.4647 14.1570i 2.16635 0.498970i
\(806\) 0 0
\(807\) 10.4562 + 11.6128i 0.368076 + 0.408790i
\(808\) 0 0
\(809\) −2.21899 + 21.1123i −0.0780155 + 0.742268i 0.883670 + 0.468111i \(0.155065\pi\)
−0.961685 + 0.274156i \(0.911601\pi\)
\(810\) 0 0
\(811\) 16.5677 + 50.9900i 0.581769 + 1.79050i 0.611875 + 0.790954i \(0.290415\pi\)
−0.0301064 + 0.999547i \(0.509585\pi\)
\(812\) 0 0
\(813\) −17.8658 −0.626582
\(814\) 0 0
\(815\) −23.9467 41.4769i −0.838817 1.45287i
\(816\) 0 0
\(817\) −3.20256 0.680726i −0.112043 0.0238156i
\(818\) 0 0
\(819\) 11.7396 21.1531i 0.410213 0.739150i
\(820\) 0 0
\(821\) −13.5191 15.0144i −0.471818 0.524007i 0.459518 0.888169i \(-0.348022\pi\)
−0.931336 + 0.364161i \(0.881356\pi\)
\(822\) 0 0
\(823\) 35.3064 + 15.7194i 1.23070 + 0.547945i 0.915975 0.401236i \(-0.131419\pi\)
0.314730 + 0.949181i \(0.398086\pi\)
\(824\) 0 0
\(825\) −41.9544 + 9.56202i −1.46066 + 0.332907i
\(826\) 0 0
\(827\) −9.17686 + 6.66738i −0.319111 + 0.231847i −0.735796 0.677203i \(-0.763192\pi\)
0.416685 + 0.909051i \(0.363192\pi\)
\(828\) 0 0
\(829\) 26.3238 5.59530i 0.914264 0.194333i 0.273323 0.961922i \(-0.411877\pi\)
0.640942 + 0.767590i \(0.278544\pi\)
\(830\) 0 0
\(831\) −21.9142 + 9.75685i −0.760197 + 0.338461i
\(832\) 0 0
\(833\) −18.3591 29.4479i −0.636105 1.02031i
\(834\) 0 0
\(835\) −45.5365 + 78.8715i −1.57585 + 2.72946i
\(836\) 0 0
\(837\) 15.3675 + 26.6173i 0.531179 + 0.920028i
\(838\) 0 0
\(839\) −13.0171 40.0626i −0.449401 1.38311i −0.877585 0.479422i \(-0.840846\pi\)
0.428184 0.903692i \(-0.359154\pi\)
\(840\) 0 0
\(841\) 14.5481 + 10.5698i 0.501657 + 0.364475i
\(842\) 0 0
\(843\) −2.38943 + 0.507889i −0.0822963 + 0.0174926i
\(844\) 0 0
\(845\) 1.98962 + 18.9299i 0.0684449 + 0.651210i
\(846\) 0 0
\(847\) −15.7010 24.5047i −0.539493 0.841990i
\(848\) 0 0
\(849\) −1.80270 17.1516i −0.0618686 0.588640i
\(850\) 0 0
\(851\) 13.5247 2.87477i 0.463621 0.0985457i
\(852\) 0 0
\(853\) 11.6805 + 8.48639i 0.399933 + 0.290568i 0.769514 0.638630i \(-0.220499\pi\)
−0.369581 + 0.929199i \(0.620499\pi\)
\(854\) 0 0
\(855\) 2.05977 + 6.33931i 0.0704426 + 0.216800i
\(856\) 0 0
\(857\) −12.0477 20.8672i −0.411542 0.712811i 0.583517 0.812101i \(-0.301676\pi\)
−0.995059 + 0.0992900i \(0.968343\pi\)
\(858\) 0 0
\(859\) −17.8814 + 30.9715i −0.610105 + 1.05673i 0.381117 + 0.924527i \(0.375539\pi\)
−0.991222 + 0.132206i \(0.957794\pi\)
\(860\) 0 0
\(861\) 0.879337 9.99185i 0.0299677 0.340521i
\(862\) 0 0
\(863\) −8.36832 + 3.72582i −0.284861 + 0.126828i −0.544193 0.838960i \(-0.683164\pi\)
0.259332 + 0.965788i \(0.416498\pi\)
\(864\) 0 0
\(865\) 75.8725 16.1272i 2.57974 0.548341i
\(866\) 0 0
\(867\) −5.49032 + 3.98895i −0.186461 + 0.135472i
\(868\) 0 0
\(869\) 35.2722 8.03905i 1.19653 0.272706i
\(870\) 0 0
\(871\) −1.71261 0.762502i −0.0580295 0.0258364i
\(872\) 0 0
\(873\) 8.78499 + 9.75672i 0.297327 + 0.330215i
\(874\) 0 0
\(875\) −110.744 + 1.87623i −3.74382 + 0.0634282i
\(876\) 0 0
\(877\) 12.5623 + 2.67020i 0.424198 + 0.0901661i 0.415064 0.909792i \(-0.363759\pi\)
0.00913404 + 0.999958i \(0.497093\pi\)
\(878\) 0 0
\(879\) −13.7007 23.7304i −0.462115 0.800406i
\(880\) 0 0
\(881\) 15.9926 0.538804 0.269402 0.963028i \(-0.413174\pi\)
0.269402 + 0.963028i \(0.413174\pi\)
\(882\) 0 0
\(883\) −7.12592 21.9313i −0.239806 0.738048i −0.996447 0.0842175i \(-0.973161\pi\)
0.756641 0.653830i \(-0.226839\pi\)
\(884\) 0 0
\(885\) 2.36741 22.5244i 0.0795796 0.757150i
\(886\) 0 0
\(887\) −26.5988 29.5409i −0.893099 0.991887i 0.106898 0.994270i \(-0.465908\pi\)
−0.999997 + 0.00238316i \(0.999241\pi\)
\(888\) 0 0
\(889\) −7.35707 + 24.0198i −0.246748 + 0.805600i
\(890\) 0 0
\(891\) 2.59441 + 7.60395i 0.0869160 + 0.254742i
\(892\) 0 0
\(893\) 2.27924 + 1.01478i 0.0762717 + 0.0339584i
\(894\) 0 0
\(895\) −10.8395 + 33.3606i −0.362325 + 1.11512i
\(896\) 0 0
\(897\) −16.2848 11.8316i −0.543735 0.395046i
\(898\) 0 0
\(899\) 14.6621 16.2839i 0.489007 0.543097i
\(900\) 0 0
\(901\) 3.51887 6.09486i 0.117231 0.203049i
\(902\) 0 0
\(903\) 10.3925 + 4.41764i 0.345840 + 0.147010i
\(904\) 0 0
\(905\) 108.700 + 23.1050i 3.61332 + 0.768035i
\(906\) 0 0
\(907\) −5.87566 + 55.9032i −0.195098 + 1.85624i 0.259762 + 0.965673i \(0.416356\pi\)
−0.454860 + 0.890563i \(0.650311\pi\)
\(908\) 0 0
\(909\) −6.72126 + 20.6859i −0.222930 + 0.686108i
\(910\) 0 0
\(911\) 24.0010 17.4377i 0.795187 0.577737i −0.114311 0.993445i \(-0.536466\pi\)
0.909498 + 0.415708i \(0.136466\pi\)
\(912\) 0 0
\(913\) 11.3620 20.3626i 0.376026 0.673902i
\(914\) 0 0
\(915\) 2.43048 + 23.1245i 0.0803493 + 0.764472i
\(916\) 0 0
\(917\) −36.0546 7.02750i −1.19063 0.232069i
\(918\) 0 0
\(919\) 38.2693 17.0386i 1.26239 0.562051i 0.337153 0.941450i \(-0.390536\pi\)
0.925233 + 0.379399i \(0.123869\pi\)
\(920\) 0 0
\(921\) 0.811583 0.901354i 0.0267426 0.0297006i
\(922\) 0 0
\(923\) 38.2227 1.25812
\(924\) 0 0
\(925\) −37.0810 −1.21921
\(926\) 0 0
\(927\) −3.47614 + 3.86064i −0.114171 + 0.126800i
\(928\) 0 0
\(929\) −38.0046 + 16.9208i −1.24689 + 0.555152i −0.920744 0.390167i \(-0.872417\pi\)
−0.326148 + 0.945319i \(0.605751\pi\)
\(930\) 0 0
\(931\) 4.32531 2.10411i 0.141756 0.0689593i
\(932\) 0 0
\(933\) −2.24374 21.3478i −0.0734568 0.698895i
\(934\) 0 0
\(935\) −65.8620 + 30.4873i −2.15392 + 0.997041i
\(936\) 0 0
\(937\) −12.0025 + 8.72031i −0.392104 + 0.284880i −0.766317 0.642462i \(-0.777913\pi\)
0.374213 + 0.927343i \(0.377913\pi\)
\(938\) 0 0
\(939\) 2.86277 8.81070i 0.0934230 0.287526i
\(940\) 0 0
\(941\) −1.02215 + 9.72514i −0.0333212 + 0.317030i 0.965147 + 0.261707i \(0.0842855\pi\)
−0.998469 + 0.0553230i \(0.982381\pi\)
\(942\) 0 0
\(943\) 22.3589 + 4.75254i 0.728107 + 0.154764i
\(944\) 0 0
\(945\) −6.59870 53.9709i −0.214656 1.75567i
\(946\) 0 0
\(947\) −23.3535 + 40.4494i −0.758886 + 1.31443i 0.184533 + 0.982826i \(0.440923\pi\)
−0.943419 + 0.331603i \(0.892410\pi\)
\(948\) 0 0
\(949\) −7.17397 + 7.96750i −0.232877 + 0.258636i
\(950\) 0 0
\(951\) 10.2791 + 7.46823i 0.333324 + 0.242174i
\(952\) 0 0
\(953\) −11.0408 + 33.9801i −0.357646 + 1.10072i 0.596813 + 0.802380i \(0.296433\pi\)
−0.954459 + 0.298342i \(0.903567\pi\)
\(954\) 0 0
\(955\) 21.4011 + 9.52840i 0.692524 + 0.308332i
\(956\) 0 0
\(957\) −7.89209 + 5.91247i −0.255115 + 0.191123i
\(958\) 0 0
\(959\) −14.2599 + 3.28445i −0.460475 + 0.106060i
\(960\) 0 0
\(961\) 8.41720 + 9.34825i 0.271523 + 0.301556i
\(962\) 0 0
\(963\) −3.72859 + 35.4752i −0.120152 + 1.14317i
\(964\) 0 0
\(965\) 22.1527 + 68.1791i 0.713122 + 2.19476i
\(966\) 0 0
\(967\) −54.6267 −1.75668 −0.878338 0.478041i \(-0.841347\pi\)
−0.878338 + 0.478041i \(0.841347\pi\)
\(968\) 0 0
\(969\) −1.52566 2.64252i −0.0490113 0.0848900i
\(970\) 0 0
\(971\) 41.3334 + 8.78569i 1.32645 + 0.281946i 0.816046 0.577987i \(-0.196162\pi\)
0.510407 + 0.859933i \(0.329495\pi\)
\(972\) 0 0
\(973\) −15.7177 + 0.266291i −0.503887 + 0.00853691i
\(974\) 0 0
\(975\) 36.1213 + 40.1168i 1.15681 + 1.28477i
\(976\) 0 0
\(977\) 45.9896 + 20.4759i 1.47134 + 0.655081i 0.976815 0.214084i \(-0.0686767\pi\)
0.494521 + 0.869166i \(0.335343\pi\)
\(978\) 0 0
\(979\) −11.1604 4.77432i −0.356689 0.152588i
\(980\) 0 0
\(981\) −32.0527 + 23.2876i −1.02336 + 0.743517i
\(982\) 0 0
\(983\) 57.3962 12.1999i 1.83065 0.389117i 0.842018 0.539449i \(-0.181368\pi\)
0.988636 + 0.150332i \(0.0480343\pi\)
\(984\) 0 0
\(985\) −19.6784 + 8.76140i −0.627007 + 0.279162i
\(986\) 0 0
\(987\) −7.04632 4.93927i −0.224287 0.157219i
\(988\) 0 0
\(989\) −12.8672 + 22.2866i −0.409152 + 0.708672i
\(990\) 0 0
\(991\) −11.4388 19.8126i −0.363366 0.629368i 0.625147 0.780507i \(-0.285039\pi\)
−0.988512 + 0.151139i \(0.951706\pi\)
\(992\) 0 0
\(993\) −0.133744 0.411620i −0.00424422 0.0130624i
\(994\) 0 0
\(995\) −14.5595 10.5781i −0.461569 0.335349i
\(996\) 0 0
\(997\) 11.6048 2.46667i 0.367527 0.0781203i −0.0204461 0.999791i \(-0.506509\pi\)
0.387973 + 0.921671i \(0.373175\pi\)
\(998\) 0 0
\(999\) −1.24592 11.8541i −0.0394191 0.375048i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 308.2.y.b.289.3 yes 48
7.4 even 3 inner 308.2.y.b.25.4 48
11.4 even 5 inner 308.2.y.b.37.4 yes 48
77.4 even 15 inner 308.2.y.b.81.3 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
308.2.y.b.25.4 48 7.4 even 3 inner
308.2.y.b.37.4 yes 48 11.4 even 5 inner
308.2.y.b.81.3 yes 48 77.4 even 15 inner
308.2.y.b.289.3 yes 48 1.1 even 1 trivial