Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [308,2,Mod(9,308)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(308, base_ring=CyclotomicField(30))
chi = DirichletCharacter(H, H._module([0, 10, 18]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("308.9");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 308 = 2^{2} \cdot 7 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 308.y (of order \(15\), degree \(8\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.45939238226\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Relative dimension: | \(6\) over \(\Q(\zeta_{15})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{15}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9.1 | 0 | −2.83413 | − | 1.26184i | 0 | 1.32307 | + | 0.281228i | 0 | 1.68941 | + | 2.03615i | 0 | 4.43267 | + | 4.92298i | 0 | ||||||||||
9.2 | 0 | −1.59083 | − | 0.708282i | 0 | 3.53897 | + | 0.752231i | 0 | −1.44841 | − | 2.21407i | 0 | 0.0216755 | + | 0.0240731i | 0 | ||||||||||
9.3 | 0 | −0.416782 | − | 0.185563i | 0 | −0.887136 | − | 0.188567i | 0 | −2.58171 | − | 0.578578i | 0 | −1.86812 | − | 2.07476i | 0 | ||||||||||
9.4 | 0 | 0.298336 | + | 0.132828i | 0 | −3.45675 | − | 0.734755i | 0 | 2.29997 | − | 1.30772i | 0 | −1.93603 | − | 2.15018i | 0 | ||||||||||
9.5 | 0 | 2.27473 | + | 1.01277i | 0 | −1.34506 | − | 0.285901i | 0 | 1.38806 | + | 2.25240i | 0 | 2.14129 | + | 2.37814i | 0 | ||||||||||
9.6 | 0 | 2.61762 | + | 1.16544i | 0 | 1.05782 | + | 0.224846i | 0 | −2.30739 | − | 1.29459i | 0 | 3.48627 | + | 3.87190i | 0 | ||||||||||
25.1 | 0 | −3.17936 | − | 0.675793i | 0 | −0.0774019 | + | 0.736430i | 0 | −2.58614 | + | 0.558460i | 0 | 6.91098 | + | 3.07697i | 0 | ||||||||||
25.2 | 0 | −1.94235 | − | 0.412859i | 0 | −0.0302385 | + | 0.287700i | 0 | 2.64441 | + | 0.0843530i | 0 | 0.861626 | + | 0.383621i | 0 | ||||||||||
25.3 | 0 | −1.23333 | − | 0.262153i | 0 | −0.367897 | + | 3.50030i | 0 | 0.745250 | − | 2.53862i | 0 | −1.28825 | − | 0.573565i | 0 | ||||||||||
25.4 | 0 | −0.876178 | − | 0.186237i | 0 | 0.461396 | − | 4.38989i | 0 | −2.16649 | + | 1.51865i | 0 | −2.00763 | − | 0.893856i | 0 | ||||||||||
25.5 | 0 | 1.54096 | + | 0.327542i | 0 | −0.0703085 | + | 0.668941i | 0 | 1.10028 | + | 2.40611i | 0 | −0.473354 | − | 0.210751i | 0 | ||||||||||
25.6 | 0 | 3.12943 | + | 0.665181i | 0 | −0.358340 | + | 3.40938i | 0 | −2.48911 | − | 0.896852i | 0 | 6.61023 | + | 2.94307i | 0 | ||||||||||
37.1 | 0 | −3.17936 | + | 0.675793i | 0 | −0.0774019 | − | 0.736430i | 0 | −2.58614 | − | 0.558460i | 0 | 6.91098 | − | 3.07697i | 0 | ||||||||||
37.2 | 0 | −1.94235 | + | 0.412859i | 0 | −0.0302385 | − | 0.287700i | 0 | 2.64441 | − | 0.0843530i | 0 | 0.861626 | − | 0.383621i | 0 | ||||||||||
37.3 | 0 | −1.23333 | + | 0.262153i | 0 | −0.367897 | − | 3.50030i | 0 | 0.745250 | + | 2.53862i | 0 | −1.28825 | + | 0.573565i | 0 | ||||||||||
37.4 | 0 | −0.876178 | + | 0.186237i | 0 | 0.461396 | + | 4.38989i | 0 | −2.16649 | − | 1.51865i | 0 | −2.00763 | + | 0.893856i | 0 | ||||||||||
37.5 | 0 | 1.54096 | − | 0.327542i | 0 | −0.0703085 | − | 0.668941i | 0 | 1.10028 | − | 2.40611i | 0 | −0.473354 | + | 0.210751i | 0 | ||||||||||
37.6 | 0 | 3.12943 | − | 0.665181i | 0 | −0.358340 | − | 3.40938i | 0 | −2.48911 | + | 0.896852i | 0 | 6.61023 | − | 2.94307i | 0 | ||||||||||
53.1 | 0 | −0.299509 | − | 2.84964i | 0 | −0.723630 | + | 0.803673i | 0 | −1.94425 | − | 1.79440i | 0 | −5.09630 | + | 1.08325i | 0 | ||||||||||
53.2 | 0 | −0.260276 | − | 2.47636i | 0 | 0.920128 | − | 1.02191i | 0 | 2.57109 | + | 0.624089i | 0 | −3.13018 | + | 0.665340i | 0 | ||||||||||
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
11.c | even | 5 | 1 | inner |
77.m | even | 15 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 308.2.y.b | ✓ | 48 |
7.c | even | 3 | 1 | inner | 308.2.y.b | ✓ | 48 |
11.c | even | 5 | 1 | inner | 308.2.y.b | ✓ | 48 |
77.m | even | 15 | 1 | inner | 308.2.y.b | ✓ | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
308.2.y.b | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
308.2.y.b | ✓ | 48 | 7.c | even | 3 | 1 | inner |
308.2.y.b | ✓ | 48 | 11.c | even | 5 | 1 | inner |
308.2.y.b | ✓ | 48 | 77.m | even | 15 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{48} + T_{3}^{47} - 15 T_{3}^{46} - 8 T_{3}^{45} + 73 T_{3}^{44} - 24 T_{3}^{43} + \cdots + 1982119441 \) acting on \(S_{2}^{\mathrm{new}}(308, [\chi])\).