L(s) = 1 | + (−1.64 + 2.84i)3-s + (−10.0 − 17.4i)5-s + (15.8 + 9.49i)7-s + (8.10 + 14.0i)9-s + (−5.5 + 9.52i)11-s + 18.0·13-s + 66.2·15-s + (−3.37 + 5.83i)17-s + (−79.1 − 137. i)19-s + (−53.1 + 29.6i)21-s + (−42.5 − 73.6i)23-s + (−140. + 244. i)25-s − 141.·27-s − 49.3·29-s + (74.7 − 129. i)31-s + ⋯ |
L(s) = 1 | + (−0.316 + 0.547i)3-s + (−0.901 − 1.56i)5-s + (0.858 + 0.512i)7-s + (0.300 + 0.519i)9-s + (−0.150 + 0.261i)11-s + 0.384·13-s + 1.14·15-s + (−0.0480 + 0.0832i)17-s + (−0.955 − 1.65i)19-s + (−0.552 + 0.307i)21-s + (−0.385 − 0.667i)23-s + (−1.12 + 1.95i)25-s − 1.01·27-s − 0.316·29-s + (0.433 − 0.750i)31-s + ⋯ |
Λ(s)=(=(308s/2ΓC(s)L(s)(−0.566+0.824i)Λ(4−s)
Λ(s)=(=(308s/2ΓC(s+3/2)L(s)(−0.566+0.824i)Λ(1−s)
Degree: |
2 |
Conductor: |
308
= 22⋅7⋅11
|
Sign: |
−0.566+0.824i
|
Analytic conductor: |
18.1725 |
Root analytic conductor: |
4.26293 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ308(221,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 308, ( :3/2), −0.566+0.824i)
|
Particular Values
L(2) |
≈ |
0.7182602694 |
L(21) |
≈ |
0.7182602694 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(−15.8−9.49i)T |
| 11 | 1+(5.5−9.52i)T |
good | 3 | 1+(1.64−2.84i)T+(−13.5−23.3i)T2 |
| 5 | 1+(10.0+17.4i)T+(−62.5+108.i)T2 |
| 13 | 1−18.0T+2.19e3T2 |
| 17 | 1+(3.37−5.83i)T+(−2.45e3−4.25e3i)T2 |
| 19 | 1+(79.1+137.i)T+(−3.42e3+5.94e3i)T2 |
| 23 | 1+(42.5+73.6i)T+(−6.08e3+1.05e4i)T2 |
| 29 | 1+49.3T+2.43e4T2 |
| 31 | 1+(−74.7+129.i)T+(−1.48e4−2.57e4i)T2 |
| 37 | 1+(142.+246.i)T+(−2.53e4+4.38e4i)T2 |
| 41 | 1+223.T+6.89e4T2 |
| 43 | 1+38.0T+7.95e4T2 |
| 47 | 1+(205.+355.i)T+(−5.19e4+8.99e4i)T2 |
| 53 | 1+(−178.+309.i)T+(−7.44e4−1.28e5i)T2 |
| 59 | 1+(−374.+647.i)T+(−1.02e5−1.77e5i)T2 |
| 61 | 1+(−62.5−108.i)T+(−1.13e5+1.96e5i)T2 |
| 67 | 1+(318.−552.i)T+(−1.50e5−2.60e5i)T2 |
| 71 | 1+176.T+3.57e5T2 |
| 73 | 1+(526.−912.i)T+(−1.94e5−3.36e5i)T2 |
| 79 | 1+(209.+363.i)T+(−2.46e5+4.26e5i)T2 |
| 83 | 1+1.47e3T+5.71e5T2 |
| 89 | 1+(671.+1.16e3i)T+(−3.52e5+6.10e5i)T2 |
| 97 | 1−1.28e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.21109792475573018754807819648, −10.02077000342174524706854054578, −8.711797643467720210598921400168, −8.439345255179660065494956090141, −7.24947784241962891782023151590, −5.50666432525965895334548466707, −4.73335592894751859716707161286, −4.14726877480531587492696732148, −1.95048220957497969563436854669, −0.27963632265759171033911880686,
1.55792732092805029998163457571, 3.31192764581667646214187448450, 4.19300246788901096284359532530, 5.97668132775788877591964023319, 6.82718328442729286872384317509, 7.62466269490293310229623289331, 8.361930241918033591813977924928, 10.13693187619668251399261003479, 10.72417372729609724655431748761, 11.63483574366011021863439710382