L(s) = 1 | + (−1.64 + 2.84i)3-s + (−10.0 − 17.4i)5-s + (15.8 + 9.49i)7-s + (8.10 + 14.0i)9-s + (−5.5 + 9.52i)11-s + 18.0·13-s + 66.2·15-s + (−3.37 + 5.83i)17-s + (−79.1 − 137. i)19-s + (−53.1 + 29.6i)21-s + (−42.5 − 73.6i)23-s + (−140. + 244. i)25-s − 141.·27-s − 49.3·29-s + (74.7 − 129. i)31-s + ⋯ |
L(s) = 1 | + (−0.316 + 0.547i)3-s + (−0.901 − 1.56i)5-s + (0.858 + 0.512i)7-s + (0.300 + 0.519i)9-s + (−0.150 + 0.261i)11-s + 0.384·13-s + 1.14·15-s + (−0.0480 + 0.0832i)17-s + (−0.955 − 1.65i)19-s + (−0.552 + 0.307i)21-s + (−0.385 − 0.667i)23-s + (−1.12 + 1.95i)25-s − 1.01·27-s − 0.316·29-s + (0.433 − 0.750i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 308 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.566 + 0.824i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 308 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.566 + 0.824i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.7182602694\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7182602694\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (-15.8 - 9.49i)T \) |
| 11 | \( 1 + (5.5 - 9.52i)T \) |
good | 3 | \( 1 + (1.64 - 2.84i)T + (-13.5 - 23.3i)T^{2} \) |
| 5 | \( 1 + (10.0 + 17.4i)T + (-62.5 + 108. i)T^{2} \) |
| 13 | \( 1 - 18.0T + 2.19e3T^{2} \) |
| 17 | \( 1 + (3.37 - 5.83i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (79.1 + 137. i)T + (-3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (42.5 + 73.6i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + 49.3T + 2.43e4T^{2} \) |
| 31 | \( 1 + (-74.7 + 129. i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + (142. + 246. i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 + 223.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 38.0T + 7.95e4T^{2} \) |
| 47 | \( 1 + (205. + 355. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-178. + 309. i)T + (-7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (-374. + 647. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-62.5 - 108. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (318. - 552. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 + 176.T + 3.57e5T^{2} \) |
| 73 | \( 1 + (526. - 912. i)T + (-1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (209. + 363. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + 1.47e3T + 5.71e5T^{2} \) |
| 89 | \( 1 + (671. + 1.16e3i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 - 1.28e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.21109792475573018754807819648, −10.02077000342174524706854054578, −8.711797643467720210598921400168, −8.439345255179660065494956090141, −7.24947784241962891782023151590, −5.50666432525965895334548466707, −4.73335592894751859716707161286, −4.14726877480531587492696732148, −1.95048220957497969563436854669, −0.27963632265759171033911880686,
1.55792732092805029998163457571, 3.31192764581667646214187448450, 4.19300246788901096284359532530, 5.97668132775788877591964023319, 6.82718328442729286872384317509, 7.62466269490293310229623289331, 8.361930241918033591813977924928, 10.13693187619668251399261003479, 10.72417372729609724655431748761, 11.63483574366011021863439710382