Properties

Label 308.4.i.a
Level 308308
Weight 44
Character orbit 308.i
Analytic conductor 18.17318.173
Analytic rank 00
Dimension 2020
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [308,4,Mod(177,308)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(308, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("308.177");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 308=22711 308 = 2^{2} \cdot 7 \cdot 11
Weight: k k == 4 4
Character orbit: [χ][\chi] == 308.i (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 18.172588281818.1725882818
Analytic rank: 00
Dimension: 2020
Relative dimension: 1010 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q[x]/(x20)\mathbb{Q}[x]/(x^{20} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x204x19+194x18432x17+24205x1647156x15+1632616x14++7996651776 x^{20} - 4 x^{19} + 194 x^{18} - 432 x^{17} + 24205 x^{16} - 47156 x^{15} + 1632616 x^{14} + \cdots + 7996651776 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 21434 2^{14}\cdot 3^{4}
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β191,\beta_1,\ldots,\beta_{19} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β3β2β1)q3+(β9β5+β31)q5+(β14β8β3+1)q7+(β10+11β3+β111)q9++(11β1111β10++121)q99+O(q100) q + ( - \beta_{3} - \beta_{2} - \beta_1) q^{3} + (\beta_{9} - \beta_{5} + \beta_{3} - 1) q^{5} + ( - \beta_{14} - \beta_{8} - \beta_{3} + \cdots - 1) q^{7} + (\beta_{10} + 11 \beta_{3} + \beta_1 - 11) q^{9}+ \cdots + ( - 11 \beta_{11} - 11 \beta_{10} + \cdots + 121) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 20q6q310q520q7104q9110q11+16q13+108q15166q17342q1942q21+54q23198q25+612q27160q29492q3166q33+310q35++2288q99+O(q100) 20 q - 6 q^{3} - 10 q^{5} - 20 q^{7} - 104 q^{9} - 110 q^{11} + 16 q^{13} + 108 q^{15} - 166 q^{17} - 342 q^{19} - 42 q^{21} + 54 q^{23} - 198 q^{25} + 612 q^{27} - 160 q^{29} - 492 q^{31} - 66 q^{33} + 310 q^{35}+ \cdots + 2288 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x204x19+194x18432x17+24205x1647156x15+1632616x14++7996651776 x^{20} - 4 x^{19} + 194 x^{18} - 432 x^{17} + 24205 x^{16} - 47156 x^{15} + 1632616 x^{14} + \cdots + 7996651776 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (12 ⁣ ⁣84ν19+73 ⁣ ⁣48)/36 ⁣ ⁣48 ( 12\!\cdots\!84 \nu^{19} + \cdots - 73\!\cdots\!48 ) / 36\!\cdots\!48 Copy content Toggle raw display
β3\beta_{3}== (15 ⁣ ⁣63ν19++76 ⁣ ⁣64)/59 ⁣ ⁣88 ( - 15\!\cdots\!63 \nu^{19} + \cdots + 76\!\cdots\!64 ) / 59\!\cdots\!88 Copy content Toggle raw display
β4\beta_{4}== (61 ⁣ ⁣21ν19+18 ⁣ ⁣28)/16 ⁣ ⁣28 ( - 61\!\cdots\!21 \nu^{19} + \cdots - 18\!\cdots\!28 ) / 16\!\cdots\!28 Copy content Toggle raw display
β5\beta_{5}== (40 ⁣ ⁣72ν19+19 ⁣ ⁣36)/91 ⁣ ⁣96 ( - 40\!\cdots\!72 \nu^{19} + \cdots - 19\!\cdots\!36 ) / 91\!\cdots\!96 Copy content Toggle raw display
β6\beta_{6}== (36 ⁣ ⁣40ν19++21 ⁣ ⁣52)/68 ⁣ ⁣72 ( - 36\!\cdots\!40 \nu^{19} + \cdots + 21\!\cdots\!52 ) / 68\!\cdots\!72 Copy content Toggle raw display
β7\beta_{7}== (18 ⁣ ⁣25ν19+10 ⁣ ⁣60)/33 ⁣ ⁣56 ( 18\!\cdots\!25 \nu^{19} + \cdots - 10\!\cdots\!60 ) / 33\!\cdots\!56 Copy content Toggle raw display
β8\beta_{8}== (16 ⁣ ⁣11ν19++11 ⁣ ⁣60)/22 ⁣ ⁣04 ( 16\!\cdots\!11 \nu^{19} + \cdots + 11\!\cdots\!60 ) / 22\!\cdots\!04 Copy content Toggle raw display
β9\beta_{9}== (49 ⁣ ⁣59ν19+22 ⁣ ⁣92)/66 ⁣ ⁣12 ( 49\!\cdots\!59 \nu^{19} + \cdots - 22\!\cdots\!92 ) / 66\!\cdots\!12 Copy content Toggle raw display
β10\beta_{10}== (56 ⁣ ⁣23ν19+62 ⁣ ⁣16)/59 ⁣ ⁣88 ( 56\!\cdots\!23 \nu^{19} + \cdots - 62\!\cdots\!16 ) / 59\!\cdots\!88 Copy content Toggle raw display
β11\beta_{11}== (56 ⁣ ⁣35ν19++28 ⁣ ⁣56)/59 ⁣ ⁣88 ( - 56\!\cdots\!35 \nu^{19} + \cdots + 28\!\cdots\!56 ) / 59\!\cdots\!88 Copy content Toggle raw display
β12\beta_{12}== (17 ⁣ ⁣79ν19+75 ⁣ ⁣00)/16 ⁣ ⁣28 ( - 17\!\cdots\!79 \nu^{19} + \cdots - 75\!\cdots\!00 ) / 16\!\cdots\!28 Copy content Toggle raw display
β13\beta_{13}== (77 ⁣ ⁣67ν19++49 ⁣ ⁣12)/66 ⁣ ⁣12 ( - 77\!\cdots\!67 \nu^{19} + \cdots + 49\!\cdots\!12 ) / 66\!\cdots\!12 Copy content Toggle raw display
β14\beta_{14}== (18 ⁣ ⁣59ν19++11 ⁣ ⁣72)/66 ⁣ ⁣12 ( - 18\!\cdots\!59 \nu^{19} + \cdots + 11\!\cdots\!72 ) / 66\!\cdots\!12 Copy content Toggle raw display
β15\beta_{15}== (47 ⁣ ⁣39ν19++44 ⁣ ⁣36)/16 ⁣ ⁣28 ( 47\!\cdots\!39 \nu^{19} + \cdots + 44\!\cdots\!36 ) / 16\!\cdots\!28 Copy content Toggle raw display
β16\beta_{16}== (64 ⁣ ⁣53ν19++97 ⁣ ⁣36)/22 ⁣ ⁣04 ( - 64\!\cdots\!53 \nu^{19} + \cdots + 97\!\cdots\!36 ) / 22\!\cdots\!04 Copy content Toggle raw display
β17\beta_{17}== (78 ⁣ ⁣84ν19++32 ⁣ ⁣28)/18 ⁣ ⁣92 ( 78\!\cdots\!84 \nu^{19} + \cdots + 32\!\cdots\!28 ) / 18\!\cdots\!92 Copy content Toggle raw display
β18\beta_{18}== (29 ⁣ ⁣61ν19++77 ⁣ ⁣24)/66 ⁣ ⁣12 ( - 29\!\cdots\!61 \nu^{19} + \cdots + 77\!\cdots\!24 ) / 66\!\cdots\!12 Copy content Toggle raw display
β19\beta_{19}== (21 ⁣ ⁣23ν19++96 ⁣ ⁣24)/33 ⁣ ⁣56 ( - 21\!\cdots\!23 \nu^{19} + \cdots + 96\!\cdots\!24 ) / 33\!\cdots\!56 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β1137β3+β2+β1 \beta_{11} - 37\beta_{3} + \beta_{2} + \beta_1 Copy content Toggle raw display
ν3\nu^{3}== β17+β162β15+2β145β132β12+β11+19 \beta_{17} + \beta_{16} - 2 \beta_{15} + 2 \beta_{14} - 5 \beta_{13} - 2 \beta_{12} + \beta_{11} + \cdots - 19 Copy content Toggle raw display
ν4\nu^{4}== 6β19+5β18+6β17+26β16+16β15+31β14+2651 - 6 \beta_{19} + 5 \beta_{18} + 6 \beta_{17} + 26 \beta_{16} + 16 \beta_{15} + 31 \beta_{14} + \cdots - 2651 Copy content Toggle raw display
ν5\nu^{5}== 136β19210β18+336β16198β15+280β14+466β13++478 - 136 \beta_{19} - 210 \beta_{18} + 336 \beta_{16} - 198 \beta_{15} + 280 \beta_{14} + 466 \beta_{13} + \cdots + 478 Copy content Toggle raw display
ν6\nu^{6}== 987β172355β161159β152435β14+3631β13++217751 - 987 \beta_{17} - 2355 \beta_{16} - 1159 \beta_{15} - 2435 \beta_{14} + 3631 \beta_{13} + \cdots + 217751 Copy content Toggle raw display
ν7\nu^{7}== 14269β19+21739β1814269β1766597β16+34448β15++460398 14269 \beta_{19} + 21739 \beta_{18} - 14269 \beta_{17} - 66597 \beta_{16} + 34448 \beta_{15} + \cdots + 460398 Copy content Toggle raw display
ν8\nu^{8}== 121599β194518β18233769β16127371β15332337β14+204966 121599 \beta_{19} - 4518 \beta_{18} - 233769 \beta_{16} - 127371 \beta_{15} - 332337 \beta_{14} + \cdots - 204966 Copy content Toggle raw display
ν9\nu^{9}== 1443637β17+4976029β161437284β15179278β146234035β13+64005193 1443637 \beta_{17} + 4976029 \beta_{16} - 1437284 \beta_{15} - 179278 \beta_{14} - 6234035 \beta_{13} + \cdots - 64005193 Copy content Toggle raw display
ν10\nu^{10}== 13573437β192707906β18+13573437β17+65049551β16+1679623448 - 13573437 \beta_{19} - 2707906 \beta_{18} + 13573437 \beta_{17} + 65049551 \beta_{16} + \cdots - 1679623448 Copy content Toggle raw display
ν11\nu^{11}== 146326591β19224501367β18+175070226β16116731782β15++676076959 - 146326591 \beta_{19} - 224501367 \beta_{18} + 175070226 \beta_{16} - 116731782 \beta_{15} + \cdots + 676076959 Copy content Toggle raw display
ν12\nu^{12}== 1451952870β174727356764β161202407774β151833479240β14++158340131897 - 1451952870 \beta_{17} - 4727356764 \beta_{16} - 1202407774 \beta_{15} - 1833479240 \beta_{14} + \cdots + 158340131897 Copy content Toggle raw display
ν13\nu^{13}== 14918189656β19+22390586023β1814918189656β1776397571852β16++754868225712 14918189656 \beta_{19} + 22390586023 \beta_{18} - 14918189656 \beta_{17} - 76397571852 \beta_{16} + \cdots + 754868225712 Copy content Toggle raw display
ν14\nu^{14}== 152093627136β19+79318393848β18233867751861β16111296434638β15+412173679878 152093627136 \beta_{19} + 79318393848 \beta_{18} - 233867751861 \beta_{16} - 111296434638 \beta_{15} + \cdots - 412173679878 Copy content Toggle raw display
ν15\nu^{15}== 1526872041136β17+6362779623634β16715604115908β15668564953639β14+89750328272596 1526872041136 \beta_{17} + 6362779623634 \beta_{16} - 715604115908 \beta_{15} - 668564953639 \beta_{14} + \cdots - 89750328272596 Copy content Toggle raw display
ν16\nu^{16}== 15755378016579β199980471229007β18+15755378016579β17+13 ⁣ ⁣47 - 15755378016579 \beta_{19} - 9980471229007 \beta_{18} + 15755378016579 \beta_{17} + \cdots - 13\!\cdots\!47 Copy content Toggle raw display
ν17\nu^{17}== 156570936098419β19219863389279494β18+155429834177496β16++715503907177237 - 156570936098419 \beta_{19} - 219863389279494 \beta_{18} + 155429834177496 \beta_{16} + \cdots + 715503907177237 Copy content Toggle raw display
ν18\nu^{18}== 16 ⁣ ⁣02β17++14 ⁣ ⁣57 - 16\!\cdots\!02 \beta_{17} + \cdots + 14\!\cdots\!57 Copy content Toggle raw display
ν19\nu^{19}== 16 ⁣ ⁣90β19++94 ⁣ ⁣60 16\!\cdots\!90 \beta_{19} + \cdots + 94\!\cdots\!60 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/308Z)×\left(\mathbb{Z}/308\mathbb{Z}\right)^\times.

nn 4545 5757 155155
χ(n)\chi(n) 1+β3-1 + \beta_{3} 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
177.1
−4.54700 + 7.87564i
−3.86353 + 6.69182i
−2.05350 + 3.55676i
−1.14233 + 1.97858i
0.138808 0.240422i
0.192948 0.334196i
1.43296 2.48195i
2.62470 4.54611i
4.16059 7.20635i
5.05636 8.75787i
−4.54700 7.87564i
−3.86353 6.69182i
−2.05350 3.55676i
−1.14233 1.97858i
0.138808 + 0.240422i
0.192948 + 0.334196i
1.43296 + 2.48195i
2.62470 + 4.54611i
4.16059 + 7.20635i
5.05636 + 8.75787i
0 −5.04700 8.74166i 0 3.77667 6.54138i 0 17.9318 + 4.63153i 0 −37.4445 + 64.8557i 0
177.2 0 −4.36353 7.55785i 0 −6.34995 + 10.9984i 0 −15.6613 + 9.88547i 0 −24.5807 + 42.5751i 0
177.3 0 −2.55350 4.42278i 0 3.75702 6.50735i 0 −2.07070 18.4041i 0 0.459316 0.795558i 0
177.4 0 −1.64233 2.84460i 0 −10.0843 + 17.4664i 0 15.8994 9.49786i 0 8.10549 14.0391i 0
177.5 0 −0.361192 0.625604i 0 5.92984 10.2708i 0 −5.49821 17.6853i 0 13.2391 22.9308i 0
177.6 0 −0.307052 0.531830i 0 −0.388866 + 0.673536i 0 6.69839 + 17.2665i 0 13.3114 23.0561i 0
177.7 0 0.932956 + 1.61593i 0 −7.91970 + 13.7173i 0 −18.5160 + 0.398871i 0 11.7592 20.3675i 0
177.8 0 2.12470 + 3.68009i 0 7.32246 12.6829i 0 −17.0162 + 7.31095i 0 4.47130 7.74452i 0
177.9 0 3.66059 + 6.34032i 0 3.91736 6.78507i 0 16.2143 + 8.94974i 0 −13.2998 + 23.0359i 0
177.10 0 4.55636 + 7.89185i 0 −4.96059 + 8.59200i 0 −7.98145 16.7122i 0 −28.0208 + 48.5335i 0
221.1 0 −5.04700 + 8.74166i 0 3.77667 + 6.54138i 0 17.9318 4.63153i 0 −37.4445 64.8557i 0
221.2 0 −4.36353 + 7.55785i 0 −6.34995 10.9984i 0 −15.6613 9.88547i 0 −24.5807 42.5751i 0
221.3 0 −2.55350 + 4.42278i 0 3.75702 + 6.50735i 0 −2.07070 + 18.4041i 0 0.459316 + 0.795558i 0
221.4 0 −1.64233 + 2.84460i 0 −10.0843 17.4664i 0 15.8994 + 9.49786i 0 8.10549 + 14.0391i 0
221.5 0 −0.361192 + 0.625604i 0 5.92984 + 10.2708i 0 −5.49821 + 17.6853i 0 13.2391 + 22.9308i 0
221.6 0 −0.307052 + 0.531830i 0 −0.388866 0.673536i 0 6.69839 17.2665i 0 13.3114 + 23.0561i 0
221.7 0 0.932956 1.61593i 0 −7.91970 13.7173i 0 −18.5160 0.398871i 0 11.7592 + 20.3675i 0
221.8 0 2.12470 3.68009i 0 7.32246 + 12.6829i 0 −17.0162 7.31095i 0 4.47130 + 7.74452i 0
221.9 0 3.66059 6.34032i 0 3.91736 + 6.78507i 0 16.2143 8.94974i 0 −13.2998 23.0359i 0
221.10 0 4.55636 7.89185i 0 −4.96059 8.59200i 0 −7.98145 + 16.7122i 0 −28.0208 48.5335i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 177.10
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 308.4.i.a 20
7.c even 3 1 inner 308.4.i.a 20
7.c even 3 1 2156.4.a.m 10
7.d odd 6 1 2156.4.a.j 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
308.4.i.a 20 1.a even 1 1 trivial
308.4.i.a 20 7.c even 3 1 inner
2156.4.a.j 10 7.d odd 6 1
2156.4.a.m 10 7.c even 3 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T320+6T319+205T318+738T317+25156T316+81030T315++120251513529 T_{3}^{20} + 6 T_{3}^{19} + 205 T_{3}^{18} + 738 T_{3}^{17} + 25156 T_{3}^{16} + 81030 T_{3}^{15} + \cdots + 120251513529 acting on S4new(308,[χ])S_{4}^{\mathrm{new}}(308, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T20 T^{20} Copy content Toggle raw display
33 T20++120251513529 T^{20} + \cdots + 120251513529 Copy content Toggle raw display
55 T20++58 ⁣ ⁣36 T^{20} + \cdots + 58\!\cdots\!36 Copy content Toggle raw display
77 T20++22 ⁣ ⁣49 T^{20} + \cdots + 22\!\cdots\!49 Copy content Toggle raw display
1111 (T2+11T+121)10 (T^{2} + 11 T + 121)^{10} Copy content Toggle raw display
1313 (T10++10 ⁣ ⁣13)2 (T^{10} + \cdots + 10\!\cdots\!13)^{2} Copy content Toggle raw display
1717 T20++51 ⁣ ⁣44 T^{20} + \cdots + 51\!\cdots\!44 Copy content Toggle raw display
1919 T20++10 ⁣ ⁣04 T^{20} + \cdots + 10\!\cdots\!04 Copy content Toggle raw display
2323 T20++77 ⁣ ⁣64 T^{20} + \cdots + 77\!\cdots\!64 Copy content Toggle raw display
2929 (T10++91 ⁣ ⁣69)2 (T^{10} + \cdots + 91\!\cdots\!69)^{2} Copy content Toggle raw display
3131 T20++10 ⁣ ⁣04 T^{20} + \cdots + 10\!\cdots\!04 Copy content Toggle raw display
3737 T20++76 ⁣ ⁣56 T^{20} + \cdots + 76\!\cdots\!56 Copy content Toggle raw display
4141 (T10++49 ⁣ ⁣92)2 (T^{10} + \cdots + 49\!\cdots\!92)^{2} Copy content Toggle raw display
4343 (T10++83 ⁣ ⁣92)2 (T^{10} + \cdots + 83\!\cdots\!92)^{2} Copy content Toggle raw display
4747 T20++45 ⁣ ⁣84 T^{20} + \cdots + 45\!\cdots\!84 Copy content Toggle raw display
5353 T20++24 ⁣ ⁣56 T^{20} + \cdots + 24\!\cdots\!56 Copy content Toggle raw display
5959 T20++75 ⁣ ⁣61 T^{20} + \cdots + 75\!\cdots\!61 Copy content Toggle raw display
6161 T20++18 ⁣ ⁣56 T^{20} + \cdots + 18\!\cdots\!56 Copy content Toggle raw display
6767 T20++12 ⁣ ⁣04 T^{20} + \cdots + 12\!\cdots\!04 Copy content Toggle raw display
7171 (T10++38 ⁣ ⁣48)2 (T^{10} + \cdots + 38\!\cdots\!48)^{2} Copy content Toggle raw display
7373 T20++47 ⁣ ⁣24 T^{20} + \cdots + 47\!\cdots\!24 Copy content Toggle raw display
7979 T20++10 ⁣ ⁣41 T^{20} + \cdots + 10\!\cdots\!41 Copy content Toggle raw display
8383 (T10++53 ⁣ ⁣04)2 (T^{10} + \cdots + 53\!\cdots\!04)^{2} Copy content Toggle raw display
8989 T20++17 ⁣ ⁣44 T^{20} + \cdots + 17\!\cdots\!44 Copy content Toggle raw display
9797 (T10+18 ⁣ ⁣79)2 (T^{10} + \cdots - 18\!\cdots\!79)^{2} Copy content Toggle raw display
show more
show less