Properties

Label 308.4.i.a.221.4
Level $308$
Weight $4$
Character 308.221
Analytic conductor $18.173$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [308,4,Mod(177,308)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(308, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("308.177");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 308 = 2^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 308.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.1725882818\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 4 x^{19} + 194 x^{18} - 432 x^{17} + 24205 x^{16} - 47156 x^{15} + 1632616 x^{14} + \cdots + 7996651776 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{14}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 221.4
Root \(-1.14233 - 1.97858i\) of defining polynomial
Character \(\chi\) \(=\) 308.221
Dual form 308.4.i.a.177.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.64233 + 2.84460i) q^{3} +(-10.0843 - 17.4664i) q^{5} +(15.8994 + 9.49786i) q^{7} +(8.10549 + 14.0391i) q^{9} +(-5.50000 + 9.52628i) q^{11} +18.0138 q^{13} +66.2468 q^{15} +(-3.37085 + 5.83848i) q^{17} +(-79.1022 - 137.009i) q^{19} +(-53.1297 + 29.6288i) q^{21} +(-42.5354 - 73.6735i) q^{23} +(-140.884 + 244.019i) q^{25} -141.934 q^{27} -49.3654 q^{29} +(74.7462 - 129.464i) q^{31} +(-18.0657 - 31.2906i) q^{33} +(5.56034 - 373.485i) q^{35} +(-142.061 - 246.057i) q^{37} +(-29.5847 + 51.2421i) q^{39} -223.913 q^{41} -38.0640 q^{43} +(163.476 - 283.148i) q^{45} +(-205.534 - 355.996i) q^{47} +(162.581 + 302.020i) q^{49} +(-11.0721 - 19.1775i) q^{51} +(178.729 - 309.568i) q^{53} +221.854 q^{55} +519.648 q^{57} +(374.003 - 647.792i) q^{59} +(62.5723 + 108.378i) q^{61} +(-4.46927 + 300.198i) q^{63} +(-181.656 - 314.637i) q^{65} +(-318.986 + 552.499i) q^{67} +279.429 q^{69} -176.322 q^{71} +(-526.722 + 912.308i) q^{73} +(-462.758 - 801.520i) q^{75} +(-177.926 + 99.2238i) q^{77} +(-209.993 - 363.719i) q^{79} +(14.2540 - 24.6887i) q^{81} -1472.87 q^{83} +135.970 q^{85} +(81.0744 - 140.425i) q^{87} +(-671.059 - 1162.31i) q^{89} +(286.409 + 171.093i) q^{91} +(245.516 + 425.247i) q^{93} +(-1595.37 + 2763.27i) q^{95} +1289.25 q^{97} -178.321 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 6 q^{3} - 10 q^{5} - 20 q^{7} - 104 q^{9} - 110 q^{11} + 16 q^{13} + 108 q^{15} - 166 q^{17} - 342 q^{19} - 42 q^{21} + 54 q^{23} - 198 q^{25} + 612 q^{27} - 160 q^{29} - 492 q^{31} - 66 q^{33} + 310 q^{35}+ \cdots + 2288 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/308\mathbb{Z}\right)^\times\).

\(n\) \(45\) \(57\) \(155\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.64233 + 2.84460i −0.316067 + 0.547444i −0.979664 0.200646i \(-0.935696\pi\)
0.663597 + 0.748091i \(0.269029\pi\)
\(4\) 0 0
\(5\) −10.0843 17.4664i −0.901963 1.56225i −0.824943 0.565216i \(-0.808793\pi\)
−0.0770204 0.997030i \(-0.524541\pi\)
\(6\) 0 0
\(7\) 15.8994 + 9.49786i 0.858486 + 0.512836i
\(8\) 0 0
\(9\) 8.10549 + 14.0391i 0.300203 + 0.519967i
\(10\) 0 0
\(11\) −5.50000 + 9.52628i −0.150756 + 0.261116i
\(12\) 0 0
\(13\) 18.0138 0.384318 0.192159 0.981364i \(-0.438451\pi\)
0.192159 + 0.981364i \(0.438451\pi\)
\(14\) 0 0
\(15\) 66.2468 1.14032
\(16\) 0 0
\(17\) −3.37085 + 5.83848i −0.0480912 + 0.0832965i −0.889069 0.457773i \(-0.848647\pi\)
0.840978 + 0.541070i \(0.181980\pi\)
\(18\) 0 0
\(19\) −79.1022 137.009i −0.955120 1.65432i −0.734093 0.679049i \(-0.762393\pi\)
−0.221027 0.975268i \(-0.570941\pi\)
\(20\) 0 0
\(21\) −53.1297 + 29.6288i −0.552089 + 0.307883i
\(22\) 0 0
\(23\) −42.5354 73.6735i −0.385619 0.667912i 0.606236 0.795285i \(-0.292679\pi\)
−0.991855 + 0.127373i \(0.959346\pi\)
\(24\) 0 0
\(25\) −140.884 + 244.019i −1.12707 + 1.95215i
\(26\) 0 0
\(27\) −141.934 −1.01167
\(28\) 0 0
\(29\) −49.3654 −0.316101 −0.158050 0.987431i \(-0.550521\pi\)
−0.158050 + 0.987431i \(0.550521\pi\)
\(30\) 0 0
\(31\) 74.7462 129.464i 0.433059 0.750080i −0.564076 0.825723i \(-0.690768\pi\)
0.997135 + 0.0756430i \(0.0241009\pi\)
\(32\) 0 0
\(33\) −18.0657 31.2906i −0.0952978 0.165061i
\(34\) 0 0
\(35\) 5.56034 373.485i 0.0268534 1.80373i
\(36\) 0 0
\(37\) −142.061 246.057i −0.631207 1.09328i −0.987305 0.158834i \(-0.949226\pi\)
0.356098 0.934449i \(-0.384107\pi\)
\(38\) 0 0
\(39\) −29.5847 + 51.2421i −0.121470 + 0.210393i
\(40\) 0 0
\(41\) −223.913 −0.852911 −0.426456 0.904509i \(-0.640238\pi\)
−0.426456 + 0.904509i \(0.640238\pi\)
\(42\) 0 0
\(43\) −38.0640 −0.134993 −0.0674965 0.997720i \(-0.521501\pi\)
−0.0674965 + 0.997720i \(0.521501\pi\)
\(44\) 0 0
\(45\) 163.476 283.148i 0.541544 0.937982i
\(46\) 0 0
\(47\) −205.534 355.996i −0.637878 1.10484i −0.985898 0.167349i \(-0.946479\pi\)
0.348020 0.937487i \(-0.386854\pi\)
\(48\) 0 0
\(49\) 162.581 + 302.020i 0.473998 + 0.880526i
\(50\) 0 0
\(51\) −11.0721 19.1775i −0.0304001 0.0526545i
\(52\) 0 0
\(53\) 178.729 309.568i 0.463213 0.802309i −0.535906 0.844278i \(-0.680030\pi\)
0.999119 + 0.0419689i \(0.0133630\pi\)
\(54\) 0 0
\(55\) 221.854 0.543904
\(56\) 0 0
\(57\) 519.648 1.20753
\(58\) 0 0
\(59\) 374.003 647.792i 0.825272 1.42941i −0.0764390 0.997074i \(-0.524355\pi\)
0.901711 0.432339i \(-0.142312\pi\)
\(60\) 0 0
\(61\) 62.5723 + 108.378i 0.131337 + 0.227482i 0.924192 0.381928i \(-0.124740\pi\)
−0.792855 + 0.609410i \(0.791406\pi\)
\(62\) 0 0
\(63\) −4.46927 + 300.198i −0.00893770 + 0.600340i
\(64\) 0 0
\(65\) −181.656 314.637i −0.346640 0.600399i
\(66\) 0 0
\(67\) −318.986 + 552.499i −0.581646 + 1.00744i 0.413638 + 0.910441i \(0.364258\pi\)
−0.995284 + 0.0969997i \(0.969075\pi\)
\(68\) 0 0
\(69\) 279.429 0.487526
\(70\) 0 0
\(71\) −176.322 −0.294727 −0.147363 0.989082i \(-0.547079\pi\)
−0.147363 + 0.989082i \(0.547079\pi\)
\(72\) 0 0
\(73\) −526.722 + 912.308i −0.844494 + 1.46271i 0.0415651 + 0.999136i \(0.486766\pi\)
−0.886060 + 0.463571i \(0.846568\pi\)
\(74\) 0 0
\(75\) −462.758 801.520i −0.712463 1.23402i
\(76\) 0 0
\(77\) −177.926 + 99.2238i −0.263332 + 0.146852i
\(78\) 0 0
\(79\) −209.993 363.719i −0.299064 0.517994i 0.676858 0.736114i \(-0.263341\pi\)
−0.975922 + 0.218119i \(0.930008\pi\)
\(80\) 0 0
\(81\) 14.2540 24.6887i 0.0195528 0.0338665i
\(82\) 0 0
\(83\) −1472.87 −1.94781 −0.973907 0.226949i \(-0.927125\pi\)
−0.973907 + 0.226949i \(0.927125\pi\)
\(84\) 0 0
\(85\) 135.970 0.173506
\(86\) 0 0
\(87\) 81.0744 140.425i 0.0999091 0.173048i
\(88\) 0 0
\(89\) −671.059 1162.31i −0.799237 1.38432i −0.920114 0.391651i \(-0.871904\pi\)
0.120877 0.992667i \(-0.461429\pi\)
\(90\) 0 0
\(91\) 286.409 + 171.093i 0.329932 + 0.197092i
\(92\) 0 0
\(93\) 245.516 + 425.247i 0.273751 + 0.474151i
\(94\) 0 0
\(95\) −1595.37 + 2763.27i −1.72297 + 2.98426i
\(96\) 0 0
\(97\) 1289.25 1.34952 0.674759 0.738038i \(-0.264248\pi\)
0.674759 + 0.738038i \(0.264248\pi\)
\(98\) 0 0
\(99\) −178.321 −0.181029
\(100\) 0 0
\(101\) 679.118 1176.27i 0.669057 1.15884i −0.309112 0.951026i \(-0.600032\pi\)
0.978168 0.207814i \(-0.0666350\pi\)
\(102\) 0 0
\(103\) 574.860 + 995.687i 0.549929 + 0.952505i 0.998279 + 0.0586465i \(0.0186785\pi\)
−0.448350 + 0.893858i \(0.647988\pi\)
\(104\) 0 0
\(105\) 1053.28 + 629.203i 0.978952 + 0.584799i
\(106\) 0 0
\(107\) −715.764 1239.74i −0.646687 1.12010i −0.983909 0.178670i \(-0.942821\pi\)
0.337222 0.941425i \(-0.390513\pi\)
\(108\) 0 0
\(109\) −559.031 + 968.271i −0.491243 + 0.850858i −0.999949 0.0100822i \(-0.996791\pi\)
0.508706 + 0.860940i \(0.330124\pi\)
\(110\) 0 0
\(111\) 933.245 0.798015
\(112\) 0 0
\(113\) 584.060 0.486228 0.243114 0.969998i \(-0.421831\pi\)
0.243114 + 0.969998i \(0.421831\pi\)
\(114\) 0 0
\(115\) −857.876 + 1485.88i −0.695629 + 1.20486i
\(116\) 0 0
\(117\) 146.011 + 252.898i 0.115373 + 0.199833i
\(118\) 0 0
\(119\) −109.048 + 60.8125i −0.0840031 + 0.0468460i
\(120\) 0 0
\(121\) −60.5000 104.789i −0.0454545 0.0787296i
\(122\) 0 0
\(123\) 367.740 636.944i 0.269577 0.466921i
\(124\) 0 0
\(125\) 3161.79 2.26239
\(126\) 0 0
\(127\) 137.723 0.0962277 0.0481139 0.998842i \(-0.484679\pi\)
0.0481139 + 0.998842i \(0.484679\pi\)
\(128\) 0 0
\(129\) 62.5137 108.277i 0.0426669 0.0739012i
\(130\) 0 0
\(131\) 773.723 + 1340.13i 0.516034 + 0.893798i 0.999827 + 0.0186149i \(0.00592564\pi\)
−0.483792 + 0.875183i \(0.660741\pi\)
\(132\) 0 0
\(133\) 43.6160 2929.66i 0.0284360 1.91003i
\(134\) 0 0
\(135\) 1431.29 + 2479.07i 0.912490 + 1.58048i
\(136\) 0 0
\(137\) 299.607 518.935i 0.186841 0.323617i −0.757355 0.653004i \(-0.773509\pi\)
0.944195 + 0.329386i \(0.106842\pi\)
\(138\) 0 0
\(139\) 1760.91 1.07452 0.537260 0.843417i \(-0.319459\pi\)
0.537260 + 0.843417i \(0.319459\pi\)
\(140\) 0 0
\(141\) 1350.22 0.806448
\(142\) 0 0
\(143\) −99.0759 + 171.605i −0.0579381 + 0.100352i
\(144\) 0 0
\(145\) 497.813 + 862.238i 0.285111 + 0.493827i
\(146\) 0 0
\(147\) −1126.14 33.5388i −0.631854 0.0188179i
\(148\) 0 0
\(149\) 1237.46 + 2143.34i 0.680379 + 1.17845i 0.974865 + 0.222795i \(0.0715181\pi\)
−0.294486 + 0.955656i \(0.595149\pi\)
\(150\) 0 0
\(151\) 209.888 363.537i 0.113116 0.195922i −0.803909 0.594752i \(-0.797250\pi\)
0.917025 + 0.398830i \(0.130584\pi\)
\(152\) 0 0
\(153\) −109.290 −0.0577486
\(154\) 0 0
\(155\) −3015.04 −1.56241
\(156\) 0 0
\(157\) −638.799 + 1106.43i −0.324724 + 0.562439i −0.981457 0.191685i \(-0.938605\pi\)
0.656732 + 0.754124i \(0.271938\pi\)
\(158\) 0 0
\(159\) 587.065 + 1016.83i 0.292813 + 0.507167i
\(160\) 0 0
\(161\) 23.4535 1575.36i 0.0114807 0.771153i
\(162\) 0 0
\(163\) −1326.92 2298.29i −0.637620 1.10439i −0.985954 0.167020i \(-0.946586\pi\)
0.348333 0.937371i \(-0.386748\pi\)
\(164\) 0 0
\(165\) −364.357 + 631.086i −0.171910 + 0.297757i
\(166\) 0 0
\(167\) 3219.63 1.49187 0.745935 0.666019i \(-0.232003\pi\)
0.745935 + 0.666019i \(0.232003\pi\)
\(168\) 0 0
\(169\) −1872.50 −0.852300
\(170\) 0 0
\(171\) 1282.32 2221.05i 0.573460 0.993262i
\(172\) 0 0
\(173\) −455.813 789.491i −0.200317 0.346959i 0.748314 0.663345i \(-0.230864\pi\)
−0.948631 + 0.316386i \(0.897531\pi\)
\(174\) 0 0
\(175\) −4557.63 + 2541.65i −1.96871 + 1.09789i
\(176\) 0 0
\(177\) 1228.48 + 2127.78i 0.521683 + 0.903581i
\(178\) 0 0
\(179\) 746.808 1293.51i 0.311838 0.540120i −0.666922 0.745128i \(-0.732389\pi\)
0.978760 + 0.205008i \(0.0657219\pi\)
\(180\) 0 0
\(181\) −1967.65 −0.808035 −0.404018 0.914751i \(-0.632387\pi\)
−0.404018 + 0.914751i \(0.632387\pi\)
\(182\) 0 0
\(183\) −411.058 −0.166045
\(184\) 0 0
\(185\) −2865.16 + 4962.60i −1.13865 + 1.97220i
\(186\) 0 0
\(187\) −37.0793 64.2233i −0.0145001 0.0251148i
\(188\) 0 0
\(189\) −2256.66 1348.07i −0.868506 0.518822i
\(190\) 0 0
\(191\) −168.090 291.141i −0.0636784 0.110294i 0.832429 0.554132i \(-0.186950\pi\)
−0.896107 + 0.443838i \(0.853617\pi\)
\(192\) 0 0
\(193\) 1140.94 1976.16i 0.425526 0.737033i −0.570943 0.820990i \(-0.693422\pi\)
0.996469 + 0.0839566i \(0.0267557\pi\)
\(194\) 0 0
\(195\) 1193.36 0.438247
\(196\) 0 0
\(197\) 1810.04 0.654619 0.327309 0.944917i \(-0.393858\pi\)
0.327309 + 0.944917i \(0.393858\pi\)
\(198\) 0 0
\(199\) −896.689 + 1553.11i −0.319420 + 0.553252i −0.980367 0.197181i \(-0.936821\pi\)
0.660947 + 0.750433i \(0.270155\pi\)
\(200\) 0 0
\(201\) −1047.76 1814.78i −0.367679 0.636838i
\(202\) 0 0
\(203\) −784.880 468.866i −0.271368 0.162108i
\(204\) 0 0
\(205\) 2258.00 + 3910.96i 0.769294 + 1.33246i
\(206\) 0 0
\(207\) 689.540 1194.32i 0.231528 0.401019i
\(208\) 0 0
\(209\) 1740.25 0.575959
\(210\) 0 0
\(211\) −701.349 −0.228829 −0.114414 0.993433i \(-0.536499\pi\)
−0.114414 + 0.993433i \(0.536499\pi\)
\(212\) 0 0
\(213\) 289.580 501.567i 0.0931535 0.161347i
\(214\) 0 0
\(215\) 383.847 + 664.842i 0.121759 + 0.210892i
\(216\) 0 0
\(217\) 2418.05 1348.47i 0.756443 0.421845i
\(218\) 0 0
\(219\) −1730.10 2996.63i −0.533834 0.924627i
\(220\) 0 0
\(221\) −60.7218 + 105.173i −0.0184823 + 0.0320123i
\(222\) 0 0
\(223\) 3527.11 1.05916 0.529580 0.848260i \(-0.322350\pi\)
0.529580 + 0.848260i \(0.322350\pi\)
\(224\) 0 0
\(225\) −4567.75 −1.35341
\(226\) 0 0
\(227\) 797.408 1381.15i 0.233153 0.403833i −0.725581 0.688137i \(-0.758429\pi\)
0.958734 + 0.284303i \(0.0917623\pi\)
\(228\) 0 0
\(229\) 1482.74 + 2568.18i 0.427870 + 0.741093i 0.996684 0.0813734i \(-0.0259306\pi\)
−0.568813 + 0.822467i \(0.692597\pi\)
\(230\) 0 0
\(231\) 9.96120 669.087i 0.00283722 0.190574i
\(232\) 0 0
\(233\) 1837.81 + 3183.19i 0.516734 + 0.895010i 0.999811 + 0.0194323i \(0.00618588\pi\)
−0.483077 + 0.875578i \(0.660481\pi\)
\(234\) 0 0
\(235\) −4145.32 + 7179.90i −1.15068 + 1.99304i
\(236\) 0 0
\(237\) 1379.51 0.378097
\(238\) 0 0
\(239\) −3671.87 −0.993780 −0.496890 0.867814i \(-0.665525\pi\)
−0.496890 + 0.867814i \(0.665525\pi\)
\(240\) 0 0
\(241\) 1995.43 3456.18i 0.533348 0.923786i −0.465893 0.884841i \(-0.654267\pi\)
0.999241 0.0389450i \(-0.0123997\pi\)
\(242\) 0 0
\(243\) −1869.28 3237.69i −0.493476 0.854725i
\(244\) 0 0
\(245\) 3635.71 5885.37i 0.948070 1.53470i
\(246\) 0 0
\(247\) −1424.93 2468.05i −0.367070 0.635783i
\(248\) 0 0
\(249\) 2418.94 4189.73i 0.615640 1.06632i
\(250\) 0 0
\(251\) 777.368 0.195486 0.0977430 0.995212i \(-0.468838\pi\)
0.0977430 + 0.995212i \(0.468838\pi\)
\(252\) 0 0
\(253\) 935.779 0.232537
\(254\) 0 0
\(255\) −223.308 + 386.781i −0.0548396 + 0.0949849i
\(256\) 0 0
\(257\) 1648.95 + 2856.07i 0.400229 + 0.693216i 0.993753 0.111600i \(-0.0355974\pi\)
−0.593525 + 0.804816i \(0.702264\pi\)
\(258\) 0 0
\(259\) 78.3307 5261.42i 0.0187924 1.26227i
\(260\) 0 0
\(261\) −400.131 693.047i −0.0948945 0.164362i
\(262\) 0 0
\(263\) −2009.46 + 3480.49i −0.471136 + 0.816032i −0.999455 0.0330140i \(-0.989489\pi\)
0.528318 + 0.849046i \(0.322823\pi\)
\(264\) 0 0
\(265\) −7209.39 −1.67121
\(266\) 0 0
\(267\) 4408.41 1.01045
\(268\) 0 0
\(269\) 1433.96 2483.68i 0.325018 0.562948i −0.656498 0.754328i \(-0.727963\pi\)
0.981516 + 0.191380i \(0.0612963\pi\)
\(270\) 0 0
\(271\) −3791.79 6567.57i −0.849943 1.47215i −0.881258 0.472636i \(-0.843303\pi\)
0.0313146 0.999510i \(-0.490031\pi\)
\(272\) 0 0
\(273\) −957.069 + 533.728i −0.212177 + 0.118325i
\(274\) 0 0
\(275\) −1549.73 2684.21i −0.339826 0.588596i
\(276\) 0 0
\(277\) −928.332 + 1607.92i −0.201365 + 0.348774i −0.948968 0.315371i \(-0.897871\pi\)
0.747604 + 0.664145i \(0.231204\pi\)
\(278\) 0 0
\(279\) 2423.42 0.520023
\(280\) 0 0
\(281\) 146.754 0.0311551 0.0155776 0.999879i \(-0.495041\pi\)
0.0155776 + 0.999879i \(0.495041\pi\)
\(282\) 0 0
\(283\) −588.434 + 1019.20i −0.123600 + 0.214081i −0.921185 0.389125i \(-0.872777\pi\)
0.797585 + 0.603207i \(0.206111\pi\)
\(284\) 0 0
\(285\) −5240.26 9076.41i −1.08915 1.88646i
\(286\) 0 0
\(287\) −3560.08 2126.70i −0.732213 0.437404i
\(288\) 0 0
\(289\) 2433.77 + 4215.42i 0.495374 + 0.858014i
\(290\) 0 0
\(291\) −2117.37 + 3667.40i −0.426538 + 0.738786i
\(292\) 0 0
\(293\) −2767.43 −0.551792 −0.275896 0.961187i \(-0.588975\pi\)
−0.275896 + 0.961187i \(0.588975\pi\)
\(294\) 0 0
\(295\) −15086.2 −2.97746
\(296\) 0 0
\(297\) 780.635 1352.10i 0.152515 0.264164i
\(298\) 0 0
\(299\) −766.225 1327.14i −0.148200 0.256691i
\(300\) 0 0
\(301\) −605.194 361.526i −0.115890 0.0692294i
\(302\) 0 0
\(303\) 2230.67 + 3863.64i 0.422934 + 0.732542i
\(304\) 0 0
\(305\) 1261.99 2185.83i 0.236922 0.410361i
\(306\) 0 0
\(307\) 2937.35 0.546069 0.273035 0.962004i \(-0.411973\pi\)
0.273035 + 0.962004i \(0.411973\pi\)
\(308\) 0 0
\(309\) −3776.45 −0.695258
\(310\) 0 0
\(311\) −1617.87 + 2802.24i −0.294987 + 0.510933i −0.974982 0.222284i \(-0.928649\pi\)
0.679995 + 0.733217i \(0.261982\pi\)
\(312\) 0 0
\(313\) −4754.84 8235.63i −0.858657 1.48724i −0.873210 0.487344i \(-0.837966\pi\)
0.0145529 0.999894i \(-0.495367\pi\)
\(314\) 0 0
\(315\) 5288.46 2949.21i 0.945940 0.527522i
\(316\) 0 0
\(317\) 2217.77 + 3841.29i 0.392941 + 0.680595i 0.992836 0.119484i \(-0.0381242\pi\)
−0.599895 + 0.800079i \(0.704791\pi\)
\(318\) 0 0
\(319\) 271.510 470.269i 0.0476540 0.0825391i
\(320\) 0 0
\(321\) 4702.09 0.817586
\(322\) 0 0
\(323\) 1066.57 0.183732
\(324\) 0 0
\(325\) −2537.86 + 4395.71i −0.433155 + 0.750246i
\(326\) 0 0
\(327\) −1836.23 3180.45i −0.310532 0.537856i
\(328\) 0 0
\(329\) 113.329 7612.25i 0.0189910 1.27561i
\(330\) 0 0
\(331\) 1355.88 + 2348.45i 0.225153 + 0.389977i 0.956365 0.292173i \(-0.0943784\pi\)
−0.731212 + 0.682150i \(0.761045\pi\)
\(332\) 0 0
\(333\) 2302.94 3988.82i 0.378981 0.656414i
\(334\) 0 0
\(335\) 12866.9 2.09849
\(336\) 0 0
\(337\) 3897.67 0.630029 0.315015 0.949087i \(-0.397991\pi\)
0.315015 + 0.949087i \(0.397991\pi\)
\(338\) 0 0
\(339\) −959.221 + 1661.42i −0.153681 + 0.266183i
\(340\) 0 0
\(341\) 822.209 + 1424.11i 0.130572 + 0.226158i
\(342\) 0 0
\(343\) −283.606 + 6346.11i −0.0446451 + 0.999003i
\(344\) 0 0
\(345\) −2817.83 4880.63i −0.439731 0.761636i
\(346\) 0 0
\(347\) −104.007 + 180.145i −0.0160904 + 0.0278694i −0.873958 0.486001i \(-0.838455\pi\)
0.857868 + 0.513870i \(0.171789\pi\)
\(348\) 0 0
\(349\) 2513.14 0.385459 0.192729 0.981252i \(-0.438266\pi\)
0.192729 + 0.981252i \(0.438266\pi\)
\(350\) 0 0
\(351\) −2556.76 −0.388803
\(352\) 0 0
\(353\) −4394.08 + 7610.78i −0.662531 + 1.14754i 0.317417 + 0.948286i \(0.397184\pi\)
−0.979948 + 0.199252i \(0.936149\pi\)
\(354\) 0 0
\(355\) 1778.08 + 3079.72i 0.265833 + 0.460436i
\(356\) 0 0
\(357\) 6.10504 410.071i 0.000905078 0.0607935i
\(358\) 0 0
\(359\) −3882.41 6724.53i −0.570768 0.988600i −0.996487 0.0837443i \(-0.973312\pi\)
0.425719 0.904855i \(-0.360021\pi\)
\(360\) 0 0
\(361\) −9084.80 + 15735.3i −1.32451 + 2.29412i
\(362\) 0 0
\(363\) 397.445 0.0574667
\(364\) 0 0
\(365\) 21246.4 3.04681
\(366\) 0 0
\(367\) 1847.67 3200.25i 0.262800 0.455182i −0.704185 0.710016i \(-0.748688\pi\)
0.966985 + 0.254834i \(0.0820209\pi\)
\(368\) 0 0
\(369\) −1814.92 3143.54i −0.256047 0.443486i
\(370\) 0 0
\(371\) 5781.91 3224.39i 0.809116 0.451219i
\(372\) 0 0
\(373\) 5369.48 + 9300.22i 0.745366 + 1.29101i 0.950024 + 0.312178i \(0.101058\pi\)
−0.204658 + 0.978833i \(0.565608\pi\)
\(374\) 0 0
\(375\) −5192.71 + 8994.04i −0.715068 + 1.23853i
\(376\) 0 0
\(377\) −889.259 −0.121483
\(378\) 0 0
\(379\) 3267.42 0.442839 0.221419 0.975179i \(-0.428931\pi\)
0.221419 + 0.975179i \(0.428931\pi\)
\(380\) 0 0
\(381\) −226.187 + 391.767i −0.0304144 + 0.0526793i
\(382\) 0 0
\(383\) −7259.62 12574.0i −0.968536 1.67755i −0.699798 0.714341i \(-0.746727\pi\)
−0.268738 0.963213i \(-0.586607\pi\)
\(384\) 0 0
\(385\) 3527.34 + 2107.13i 0.466934 + 0.278934i
\(386\) 0 0
\(387\) −308.527 534.385i −0.0405254 0.0701920i
\(388\) 0 0
\(389\) 57.8990 100.284i 0.00754652 0.0130709i −0.862227 0.506521i \(-0.830931\pi\)
0.869774 + 0.493450i \(0.164265\pi\)
\(390\) 0 0
\(391\) 573.522 0.0741797
\(392\) 0 0
\(393\) −5082.84 −0.652406
\(394\) 0 0
\(395\) −4235.25 + 7335.67i −0.539490 + 0.934424i
\(396\) 0 0
\(397\) 5082.64 + 8803.39i 0.642545 + 1.11292i 0.984863 + 0.173337i \(0.0554549\pi\)
−0.342317 + 0.939584i \(0.611212\pi\)
\(398\) 0 0
\(399\) 8262.09 + 4935.55i 1.03665 + 0.619264i
\(400\) 0 0
\(401\) −6938.02 12017.0i −0.864011 1.49651i −0.868026 0.496519i \(-0.834611\pi\)
0.00401504 0.999992i \(-0.498722\pi\)
\(402\) 0 0
\(403\) 1346.46 2332.14i 0.166432 0.288269i
\(404\) 0 0
\(405\) −574.965 −0.0705438
\(406\) 0 0
\(407\) 3125.34 0.380632
\(408\) 0 0
\(409\) 5760.31 9977.14i 0.696403 1.20621i −0.273302 0.961928i \(-0.588116\pi\)
0.969705 0.244277i \(-0.0785507\pi\)
\(410\) 0 0
\(411\) 984.109 + 1704.53i 0.118108 + 0.204570i
\(412\) 0 0
\(413\) 12099.1 6747.27i 1.44154 0.803902i
\(414\) 0 0
\(415\) 14852.8 + 25725.8i 1.75686 + 3.04296i
\(416\) 0 0
\(417\) −2892.00 + 5009.08i −0.339620 + 0.588240i
\(418\) 0 0
\(419\) −14017.0 −1.63431 −0.817155 0.576419i \(-0.804450\pi\)
−0.817155 + 0.576419i \(0.804450\pi\)
\(420\) 0 0
\(421\) −7481.04 −0.866042 −0.433021 0.901384i \(-0.642552\pi\)
−0.433021 + 0.901384i \(0.642552\pi\)
\(422\) 0 0
\(423\) 3331.91 5771.04i 0.382986 0.663351i
\(424\) 0 0
\(425\) −949.800 1645.10i −0.108405 0.187763i
\(426\) 0 0
\(427\) −34.5016 + 2317.45i −0.00391019 + 0.262645i
\(428\) 0 0
\(429\) −325.431 563.664i −0.0366246 0.0634357i
\(430\) 0 0
\(431\) −3428.67 + 5938.63i −0.383186 + 0.663698i −0.991516 0.129987i \(-0.958506\pi\)
0.608330 + 0.793684i \(0.291840\pi\)
\(432\) 0 0
\(433\) −6537.32 −0.725551 −0.362775 0.931877i \(-0.618171\pi\)
−0.362775 + 0.931877i \(0.618171\pi\)
\(434\) 0 0
\(435\) −3270.30 −0.360457
\(436\) 0 0
\(437\) −6729.29 + 11655.5i −0.736626 + 1.27587i
\(438\) 0 0
\(439\) −2714.96 4702.44i −0.295166 0.511242i 0.679858 0.733344i \(-0.262042\pi\)
−0.975023 + 0.222102i \(0.928708\pi\)
\(440\) 0 0
\(441\) −2922.30 + 4730.52i −0.315549 + 0.510800i
\(442\) 0 0
\(443\) 1959.86 + 3394.58i 0.210194 + 0.364067i 0.951775 0.306797i \(-0.0992571\pi\)
−0.741581 + 0.670863i \(0.765924\pi\)
\(444\) 0 0
\(445\) −13534.2 + 23442.0i −1.44176 + 2.49721i
\(446\) 0 0
\(447\) −8129.27 −0.860181
\(448\) 0 0
\(449\) 9796.86 1.02972 0.514858 0.857275i \(-0.327845\pi\)
0.514858 + 0.857275i \(0.327845\pi\)
\(450\) 0 0
\(451\) 1231.52 2133.06i 0.128581 0.222709i
\(452\) 0 0
\(453\) 689.412 + 1194.10i 0.0715042 + 0.123849i
\(454\) 0 0
\(455\) 100.163 6727.88i 0.0103202 0.693204i
\(456\) 0 0
\(457\) 9253.49 + 16027.5i 0.947177 + 1.64056i 0.751333 + 0.659924i \(0.229411\pi\)
0.195844 + 0.980635i \(0.437255\pi\)
\(458\) 0 0
\(459\) 478.437 828.677i 0.0486525 0.0842687i
\(460\) 0 0
\(461\) −4871.70 −0.492185 −0.246093 0.969246i \(-0.579147\pi\)
−0.246093 + 0.969246i \(0.579147\pi\)
\(462\) 0 0
\(463\) 6158.63 0.618177 0.309088 0.951033i \(-0.399976\pi\)
0.309088 + 0.951033i \(0.399976\pi\)
\(464\) 0 0
\(465\) 4951.70 8576.59i 0.493827 0.855333i
\(466\) 0 0
\(467\) 1842.96 + 3192.10i 0.182617 + 0.316302i 0.942771 0.333441i \(-0.108210\pi\)
−0.760154 + 0.649743i \(0.774877\pi\)
\(468\) 0 0
\(469\) −10319.2 + 5754.72i −1.01599 + 0.566585i
\(470\) 0 0
\(471\) −2098.24 3634.26i −0.205269 0.355537i
\(472\) 0 0
\(473\) 209.352 362.608i 0.0203510 0.0352489i
\(474\) 0 0
\(475\) 44577.0 4.30597
\(476\) 0 0
\(477\) 5794.74 0.556232
\(478\) 0 0
\(479\) 5170.98 8956.41i 0.493253 0.854340i −0.506717 0.862113i \(-0.669141\pi\)
0.999970 + 0.00777309i \(0.00247428\pi\)
\(480\) 0 0
\(481\) −2559.06 4432.42i −0.242584 0.420168i
\(482\) 0 0
\(483\) 4442.75 + 2653.98i 0.418535 + 0.250021i
\(484\) 0 0
\(485\) −13001.1 22518.6i −1.21722 2.10828i
\(486\) 0 0
\(487\) 5101.96 8836.86i 0.474727 0.822251i −0.524854 0.851192i \(-0.675880\pi\)
0.999581 + 0.0289408i \(0.00921344\pi\)
\(488\) 0 0
\(489\) 8716.95 0.806123
\(490\) 0 0
\(491\) 2590.24 0.238078 0.119039 0.992890i \(-0.462019\pi\)
0.119039 + 0.992890i \(0.462019\pi\)
\(492\) 0 0
\(493\) 166.403 288.219i 0.0152017 0.0263301i
\(494\) 0 0
\(495\) 1798.23 + 3114.63i 0.163282 + 0.282812i
\(496\) 0 0
\(497\) −2803.42 1674.69i −0.253019 0.151147i
\(498\) 0 0
\(499\) 1853.03 + 3209.54i 0.166238 + 0.287933i 0.937094 0.349076i \(-0.113505\pi\)
−0.770856 + 0.637009i \(0.780171\pi\)
\(500\) 0 0
\(501\) −5287.70 + 9158.56i −0.471531 + 0.816715i
\(502\) 0 0
\(503\) −10724.5 −0.950661 −0.475330 0.879807i \(-0.657671\pi\)
−0.475330 + 0.879807i \(0.657671\pi\)
\(504\) 0 0
\(505\) −27393.6 −2.41386
\(506\) 0 0
\(507\) 3075.27 5326.53i 0.269384 0.466587i
\(508\) 0 0
\(509\) 966.221 + 1673.54i 0.0841395 + 0.145734i 0.905024 0.425360i \(-0.139853\pi\)
−0.820885 + 0.571094i \(0.806519\pi\)
\(510\) 0 0
\(511\) −17039.5 + 9502.42i −1.47512 + 0.822627i
\(512\) 0 0
\(513\) 11227.3 + 19446.2i 0.966268 + 1.67362i
\(514\) 0 0
\(515\) 11594.1 20081.5i 0.992031 1.71825i
\(516\) 0 0
\(517\) 4521.75 0.384655
\(518\) 0 0
\(519\) 2994.39 0.253254
\(520\) 0 0
\(521\) −3558.30 + 6163.16i −0.299217 + 0.518259i −0.975957 0.217963i \(-0.930059\pi\)
0.676740 + 0.736222i \(0.263392\pi\)
\(522\) 0 0
\(523\) −3109.84 5386.40i −0.260007 0.450346i 0.706236 0.707976i \(-0.250392\pi\)
−0.966244 + 0.257630i \(0.917058\pi\)
\(524\) 0 0
\(525\) 255.159 17138.9i 0.0212116 1.42477i
\(526\) 0 0
\(527\) 503.917 + 872.809i 0.0416527 + 0.0721445i
\(528\) 0 0
\(529\) 2464.98 4269.47i 0.202595 0.350906i
\(530\) 0 0
\(531\) 12125.9 0.990997
\(532\) 0 0
\(533\) −4033.53 −0.327789
\(534\) 0 0
\(535\) −14435.9 + 25003.7i −1.16658 + 2.02057i
\(536\) 0 0
\(537\) 2453.02 + 4248.75i 0.197124 + 0.341428i
\(538\) 0 0
\(539\) −3771.33 112.318i −0.301378 0.00897565i
\(540\) 0 0
\(541\) −5625.92 9744.38i −0.447093 0.774388i 0.551102 0.834438i \(-0.314207\pi\)
−0.998195 + 0.0600499i \(0.980874\pi\)
\(542\) 0 0
\(543\) 3231.54 5597.19i 0.255393 0.442354i
\(544\) 0 0
\(545\) 22549.7 1.77233
\(546\) 0 0
\(547\) 4334.19 0.338787 0.169393 0.985548i \(-0.445819\pi\)
0.169393 + 0.985548i \(0.445819\pi\)
\(548\) 0 0
\(549\) −1014.36 + 1756.92i −0.0788556 + 0.136582i
\(550\) 0 0
\(551\) 3904.91 + 6763.50i 0.301914 + 0.522931i
\(552\) 0 0
\(553\) 115.788 7777.39i 0.00890379 0.598062i
\(554\) 0 0
\(555\) −9411.08 16300.5i −0.719780 1.24670i
\(556\) 0 0
\(557\) 468.201 810.947i 0.0356163 0.0616893i −0.847668 0.530527i \(-0.821994\pi\)
0.883284 + 0.468838i \(0.155327\pi\)
\(558\) 0 0
\(559\) −685.677 −0.0518802
\(560\) 0 0
\(561\) 243.586 0.0183320
\(562\) 0 0
\(563\) 5869.25 10165.8i 0.439360 0.760993i −0.558281 0.829652i \(-0.688539\pi\)
0.997640 + 0.0686591i \(0.0218721\pi\)
\(564\) 0 0
\(565\) −5889.81 10201.4i −0.438559 0.759607i
\(566\) 0 0
\(567\) 461.120 257.152i 0.0341538 0.0190465i
\(568\) 0 0
\(569\) 11962.3 + 20719.3i 0.881345 + 1.52653i 0.849847 + 0.527030i \(0.176695\pi\)
0.0314982 + 0.999504i \(0.489972\pi\)
\(570\) 0 0
\(571\) 3392.23 5875.52i 0.248617 0.430618i −0.714525 0.699610i \(-0.753357\pi\)
0.963142 + 0.268992i \(0.0866905\pi\)
\(572\) 0 0
\(573\) 1104.24 0.0805066
\(574\) 0 0
\(575\) 23970.3 1.73849
\(576\) 0 0
\(577\) 3943.64 6830.58i 0.284534 0.492827i −0.687962 0.725746i \(-0.741495\pi\)
0.972496 + 0.232920i \(0.0748280\pi\)
\(578\) 0 0
\(579\) 3747.60 + 6491.03i 0.268990 + 0.465904i
\(580\) 0 0
\(581\) −23417.7 13989.1i −1.67217 0.998910i
\(582\) 0 0
\(583\) 1966.02 + 3405.24i 0.139664 + 0.241905i
\(584\) 0 0
\(585\) 2944.82 5100.57i 0.208125 0.360483i
\(586\) 0 0
\(587\) 11414.7 0.802613 0.401306 0.915944i \(-0.368556\pi\)
0.401306 + 0.915944i \(0.368556\pi\)
\(588\) 0 0
\(589\) −23650.4 −1.65449
\(590\) 0 0
\(591\) −2972.69 + 5148.84i −0.206903 + 0.358367i
\(592\) 0 0
\(593\) 6788.85 + 11758.6i 0.470126 + 0.814282i 0.999416 0.0341584i \(-0.0108751\pi\)
−0.529290 + 0.848441i \(0.677542\pi\)
\(594\) 0 0
\(595\) 2161.84 + 1291.42i 0.148953 + 0.0889802i
\(596\) 0 0
\(597\) −2945.32 5101.45i −0.201916 0.349729i
\(598\) 0 0
\(599\) −12394.9 + 21468.5i −0.845476 + 1.46441i 0.0397319 + 0.999210i \(0.487350\pi\)
−0.885208 + 0.465196i \(0.845984\pi\)
\(600\) 0 0
\(601\) −27467.5 −1.86426 −0.932132 0.362119i \(-0.882054\pi\)
−0.932132 + 0.362119i \(0.882054\pi\)
\(602\) 0 0
\(603\) −10342.1 −0.698448
\(604\) 0 0
\(605\) −1220.19 + 2113.44i −0.0819966 + 0.142022i
\(606\) 0 0
\(607\) 8324.29 + 14418.1i 0.556627 + 0.964106i 0.997775 + 0.0666717i \(0.0212380\pi\)
−0.441148 + 0.897434i \(0.645429\pi\)
\(608\) 0 0
\(609\) 2622.77 1462.64i 0.174516 0.0973220i
\(610\) 0 0
\(611\) −3702.45 6412.84i −0.245148 0.424608i
\(612\) 0 0
\(613\) 12883.4 22314.6i 0.848864 1.47028i −0.0333584 0.999443i \(-0.510620\pi\)
0.882223 0.470832i \(-0.156046\pi\)
\(614\) 0 0
\(615\) −14833.5 −0.972594
\(616\) 0 0
\(617\) −21818.5 −1.42363 −0.711815 0.702367i \(-0.752126\pi\)
−0.711815 + 0.702367i \(0.752126\pi\)
\(618\) 0 0
\(619\) −2656.72 + 4601.58i −0.172509 + 0.298794i −0.939296 0.343107i \(-0.888521\pi\)
0.766788 + 0.641901i \(0.221854\pi\)
\(620\) 0 0
\(621\) 6037.20 + 10456.7i 0.390120 + 0.675708i
\(622\) 0 0
\(623\) 370.014 24853.6i 0.0237950 1.59830i
\(624\) 0 0
\(625\) −14273.8 24722.9i −0.913521 1.58226i
\(626\) 0 0
\(627\) −2858.07 + 4950.31i −0.182042 + 0.315305i
\(628\) 0 0
\(629\) 1915.46 0.121422
\(630\) 0 0
\(631\) −26807.8 −1.69129 −0.845645 0.533746i \(-0.820784\pi\)
−0.845645 + 0.533746i \(0.820784\pi\)
\(632\) 0 0
\(633\) 1151.85 1995.06i 0.0723252 0.125271i
\(634\) 0 0
\(635\) −1388.83 2405.53i −0.0867939 0.150331i
\(636\) 0 0
\(637\) 2928.71 + 5440.54i 0.182166 + 0.338402i
\(638\) 0 0
\(639\) −1429.18 2475.41i −0.0884780 0.153248i
\(640\) 0 0
\(641\) 2334.68 4043.78i 0.143860 0.249173i −0.785087 0.619385i \(-0.787382\pi\)
0.928947 + 0.370213i \(0.120715\pi\)
\(642\) 0 0
\(643\) 15653.7 0.960067 0.480033 0.877250i \(-0.340625\pi\)
0.480033 + 0.877250i \(0.340625\pi\)
\(644\) 0 0
\(645\) −2521.62 −0.153936
\(646\) 0 0
\(647\) 2340.45 4053.78i 0.142214 0.246322i −0.786116 0.618079i \(-0.787911\pi\)
0.928330 + 0.371757i \(0.121244\pi\)
\(648\) 0 0
\(649\) 4114.03 + 7125.72i 0.248829 + 0.430984i
\(650\) 0 0
\(651\) −135.375 + 9093.05i −0.00815017 + 0.547442i
\(652\) 0 0
\(653\) −10738.3 18599.3i −0.643528 1.11462i −0.984639 0.174600i \(-0.944137\pi\)
0.341112 0.940023i \(-0.389197\pi\)
\(654\) 0 0
\(655\) 15604.8 27028.4i 0.930888 1.61235i
\(656\) 0 0
\(657\) −17077.3 −1.01408
\(658\) 0 0
\(659\) −17974.1 −1.06248 −0.531239 0.847222i \(-0.678273\pi\)
−0.531239 + 0.847222i \(0.678273\pi\)
\(660\) 0 0
\(661\) −6640.39 + 11501.5i −0.390743 + 0.676787i −0.992548 0.121856i \(-0.961115\pi\)
0.601804 + 0.798643i \(0.294449\pi\)
\(662\) 0 0
\(663\) −199.451 345.459i −0.0116833 0.0202361i
\(664\) 0 0
\(665\) −51610.6 + 28781.6i −3.00958 + 1.67835i
\(666\) 0 0
\(667\) 2099.78 + 3636.92i 0.121895 + 0.211128i
\(668\) 0 0
\(669\) −5792.68 + 10033.2i −0.334765 + 0.579831i
\(670\) 0 0
\(671\) −1376.59 −0.0791992
\(672\) 0 0
\(673\) 28060.2 1.60719 0.803596 0.595176i \(-0.202917\pi\)
0.803596 + 0.595176i \(0.202917\pi\)
\(674\) 0 0
\(675\) 19996.2 34634.5i 1.14023 1.97494i
\(676\) 0 0
\(677\) 7242.46 + 12544.3i 0.411152 + 0.712137i 0.995016 0.0997149i \(-0.0317931\pi\)
−0.583864 + 0.811852i \(0.698460\pi\)
\(678\) 0 0
\(679\) 20498.2 + 12245.1i 1.15854 + 0.692082i
\(680\) 0 0
\(681\) 2619.22 + 4536.62i 0.147384 + 0.255277i
\(682\) 0 0
\(683\) −4240.18 + 7344.21i −0.237549 + 0.411447i −0.960010 0.279964i \(-0.909677\pi\)
0.722461 + 0.691411i \(0.243011\pi\)
\(684\) 0 0
\(685\) −12085.3 −0.674093
\(686\) 0 0
\(687\) −9740.62 −0.540943
\(688\) 0 0
\(689\) 3219.59 5576.49i 0.178021 0.308342i
\(690\) 0 0
\(691\) −12283.9 21276.4i −0.676270 1.17133i −0.976096 0.217340i \(-0.930262\pi\)
0.299826 0.953994i \(-0.403071\pi\)
\(692\) 0 0
\(693\) −2835.19 1693.67i −0.155411 0.0928384i
\(694\) 0 0
\(695\) −17757.4 30756.8i −0.969177 1.67866i
\(696\) 0 0
\(697\) 754.777 1307.31i 0.0410176 0.0710445i
\(698\) 0 0
\(699\) −12073.2 −0.653291
\(700\) 0 0
\(701\) 23325.9 1.25679 0.628394 0.777895i \(-0.283712\pi\)
0.628394 + 0.777895i \(0.283712\pi\)
\(702\) 0 0
\(703\) −22474.6 + 38927.2i −1.20576 + 2.08843i
\(704\) 0 0
\(705\) −13616.0 23583.6i −0.727387 1.25987i
\(706\) 0 0
\(707\) 21969.6 12251.7i 1.16867 0.651732i
\(708\) 0 0
\(709\) −14574.3 25243.4i −0.772001 1.33715i −0.936465 0.350762i \(-0.885923\pi\)
0.164464 0.986383i \(-0.447411\pi\)
\(710\) 0 0
\(711\) 3404.19 5896.24i 0.179560 0.311007i
\(712\) 0 0
\(713\) −12717.4 −0.667983
\(714\) 0 0
\(715\) 3996.43 0.209032
\(716\) 0 0
\(717\) 6030.43 10445.0i 0.314101 0.544039i
\(718\) 0 0
\(719\) 6665.58 + 11545.1i 0.345736 + 0.598832i 0.985487 0.169750i \(-0.0542959\pi\)
−0.639751 + 0.768582i \(0.720963\pi\)
\(720\) 0 0
\(721\) −316.971 + 21290.8i −0.0163726 + 1.09974i
\(722\) 0 0
\(723\) 6554.32 + 11352.4i 0.337148 + 0.583957i
\(724\) 0 0
\(725\) 6954.81 12046.1i 0.356269 0.617077i
\(726\) 0 0
\(727\) 18836.0 0.960920 0.480460 0.877017i \(-0.340470\pi\)
0.480460 + 0.877017i \(0.340470\pi\)
\(728\) 0 0
\(729\) 13049.7 0.662991
\(730\) 0 0
\(731\) 128.308 222.236i 0.00649198 0.0112444i
\(732\) 0 0
\(733\) −5787.15 10023.6i −0.291614 0.505091i 0.682577 0.730813i \(-0.260859\pi\)
−0.974192 + 0.225723i \(0.927526\pi\)
\(734\) 0 0
\(735\) 10770.5 + 20007.9i 0.540511 + 1.00408i
\(736\) 0 0
\(737\) −3508.84 6077.49i −0.175373 0.303755i
\(738\) 0 0
\(739\) 8143.74 14105.4i 0.405375 0.702130i −0.588990 0.808140i \(-0.700474\pi\)
0.994365 + 0.106010i \(0.0338076\pi\)
\(740\) 0 0
\(741\) 9360.84 0.464074
\(742\) 0 0
\(743\) 18975.7 0.936947 0.468473 0.883478i \(-0.344804\pi\)
0.468473 + 0.883478i \(0.344804\pi\)
\(744\) 0 0
\(745\) 24957.7 43227.9i 1.22735 2.12584i
\(746\) 0 0
\(747\) −11938.3 20677.8i −0.584740 1.01280i
\(748\) 0 0
\(749\) 394.664 26509.3i 0.0192533 1.29323i
\(750\) 0 0
\(751\) 6534.14 + 11317.5i 0.317489 + 0.549907i 0.979963 0.199178i \(-0.0638271\pi\)
−0.662475 + 0.749084i \(0.730494\pi\)
\(752\) 0 0
\(753\) −1276.70 + 2211.30i −0.0617867 + 0.107018i
\(754\) 0 0
\(755\) −8466.26 −0.408104
\(756\) 0 0
\(757\) 12393.2 0.595030 0.297515 0.954717i \(-0.403842\pi\)
0.297515 + 0.954717i \(0.403842\pi\)
\(758\) 0 0
\(759\) −1536.86 + 2661.92i −0.0734974 + 0.127301i
\(760\) 0 0
\(761\) 12227.3 + 21178.4i 0.582445 + 1.00882i 0.995189 + 0.0979767i \(0.0312371\pi\)
−0.412744 + 0.910847i \(0.635430\pi\)
\(762\) 0 0
\(763\) −18084.8 + 10085.3i −0.858077 + 0.478523i
\(764\) 0 0
\(765\) 1102.10 + 1908.90i 0.0520871 + 0.0902175i
\(766\) 0 0
\(767\) 6737.22 11669.2i 0.317167 0.549349i
\(768\) 0 0
\(769\) 9229.19 0.432787 0.216393 0.976306i \(-0.430571\pi\)
0.216393 + 0.976306i \(0.430571\pi\)
\(770\) 0 0
\(771\) −10832.5 −0.505996
\(772\) 0 0
\(773\) −12471.8 + 21601.7i −0.580308 + 1.00512i 0.415134 + 0.909760i \(0.363735\pi\)
−0.995443 + 0.0953630i \(0.969599\pi\)
\(774\) 0 0
\(775\) 21061.2 + 36479.0i 0.976179 + 1.69079i
\(776\) 0 0
\(777\) 14838.0 + 8863.83i 0.685085 + 0.409251i
\(778\) 0 0
\(779\) 17712.0 + 30678.1i 0.814632 + 1.41098i
\(780\) 0 0
\(781\) 969.773 1679.70i 0.0444318 0.0769581i
\(782\) 0 0
\(783\) 7006.61 0.319790
\(784\) 0 0
\(785\) 25767.3 1.17156
\(786\) 0 0
\(787\) 4126.58 7147.44i 0.186908 0.323734i −0.757310 0.653056i \(-0.773487\pi\)
0.944218 + 0.329322i \(0.106820\pi\)
\(788\) 0 0
\(789\) −6600.42 11432.3i −0.297821 0.515842i
\(790\) 0 0
\(791\) 9286.20 + 5547.32i 0.417420 + 0.249355i
\(792\) 0 0
\(793\) 1127.16 + 1952.31i 0.0504751 + 0.0874255i
\(794\) 0 0
\(795\) 11840.2 20507.9i 0.528213 0.914892i
\(796\) 0 0
\(797\) 12314.7 0.547315 0.273657 0.961827i \(-0.411767\pi\)
0.273657 + 0.961827i \(0.411767\pi\)
\(798\) 0 0
\(799\) 2771.30 0.122705
\(800\) 0 0
\(801\) 10878.5 18842.1i 0.479867 0.831154i
\(802\) 0 0
\(803\) −5793.94 10035.4i −0.254625 0.441023i
\(804\) 0 0
\(805\) −27752.4 + 15476.7i −1.21509 + 0.677616i
\(806\) 0 0
\(807\) 4710.06 + 8158.07i 0.205455 + 0.355858i
\(808\) 0 0
\(809\) 10920.4 18914.7i 0.474588 0.822010i −0.524989 0.851109i \(-0.675931\pi\)
0.999577 + 0.0290992i \(0.00926387\pi\)
\(810\) 0 0
\(811\) −42180.2 −1.82632 −0.913161 0.407600i \(-0.866366\pi\)
−0.913161 + 0.407600i \(0.866366\pi\)
\(812\) 0 0
\(813\) 24909.5 1.07456
\(814\) 0 0
\(815\) −26761.9 + 46353.0i −1.15022 + 1.99224i
\(816\) 0 0
\(817\) 3010.94 + 5215.11i 0.128935 + 0.223321i
\(818\) 0 0
\(819\) −80.5086 + 5407.71i −0.00343492 + 0.230721i
\(820\) 0 0
\(821\) 9809.13 + 16989.9i 0.416980 + 0.722231i 0.995634 0.0933421i \(-0.0297550\pi\)
−0.578654 + 0.815573i \(0.696422\pi\)
\(822\) 0 0
\(823\) −11817.3 + 20468.1i −0.500516 + 0.866920i 0.499484 + 0.866323i \(0.333523\pi\)
−1.00000 0.000596246i \(0.999810\pi\)
\(824\) 0 0
\(825\) 10180.7 0.429631
\(826\) 0 0
\(827\) 1479.01 0.0621888 0.0310944 0.999516i \(-0.490101\pi\)
0.0310944 + 0.999516i \(0.490101\pi\)
\(828\) 0 0
\(829\) −13307.3 + 23048.8i −0.557515 + 0.965645i 0.440188 + 0.897906i \(0.354912\pi\)
−0.997703 + 0.0677391i \(0.978421\pi\)
\(830\) 0 0
\(831\) −3049.26 5281.47i −0.127290 0.220472i
\(832\) 0 0
\(833\) −2311.38 68.8376i −0.0961399 0.00286324i
\(834\) 0 0
\(835\) −32467.5 56235.4i −1.34561 2.33067i
\(836\) 0 0
\(837\) −10609.0 + 18375.3i −0.438113 + 0.758834i
\(838\) 0 0
\(839\) −56.5620 −0.00232746 −0.00116373 0.999999i \(-0.500370\pi\)
−0.00116373 + 0.999999i \(0.500370\pi\)
\(840\) 0 0
\(841\) −21952.1 −0.900080
\(842\) 0 0
\(843\) −241.018 + 417.456i −0.00984711 + 0.0170557i
\(844\) 0 0
\(845\) 18882.8 + 32706.0i 0.768743 + 1.33150i
\(846\) 0 0
\(847\) 33.3590 2240.70i 0.00135328 0.0908990i
\(848\) 0 0
\(849\) −1932.81 3347.72i −0.0781317 0.135328i
\(850\) 0 0
\(851\) −12085.2 + 20932.2i −0.486811 + 0.843182i
\(852\) 0 0
\(853\) −40634.3 −1.63106 −0.815529 0.578716i \(-0.803554\pi\)
−0.815529 + 0.578716i \(0.803554\pi\)
\(854\) 0 0
\(855\) −51725.1 −2.06896
\(856\) 0 0
\(857\) 17672.3 30609.3i 0.704403 1.22006i −0.262503 0.964931i \(-0.584548\pi\)
0.966906 0.255131i \(-0.0821187\pi\)
\(858\) 0 0
\(859\) −8997.92 15584.8i −0.357398 0.619032i 0.630127 0.776492i \(-0.283003\pi\)
−0.987525 + 0.157460i \(0.949669\pi\)
\(860\) 0 0
\(861\) 11896.4 6634.28i 0.470882 0.262597i
\(862\) 0 0
\(863\) −10758.1 18633.5i −0.424344 0.734986i 0.572015 0.820243i \(-0.306162\pi\)
−0.996359 + 0.0852576i \(0.972829\pi\)
\(864\) 0 0
\(865\) −9193.07 + 15922.9i −0.361357 + 0.625889i
\(866\) 0 0
\(867\) −15988.3 −0.626286
\(868\) 0 0
\(869\) 4619.85 0.180343
\(870\) 0 0
\(871\) −5746.15 + 9952.62i −0.223537 + 0.387178i
\(872\) 0 0
\(873\) 10450.0 + 18099.9i 0.405130 + 0.701705i
\(874\) 0 0
\(875\) 50270.6 + 30030.3i 1.94223 + 1.16024i
\(876\) 0 0
\(877\) 14944.2 + 25884.1i 0.575405 + 0.996630i 0.995998 + 0.0893806i \(0.0284888\pi\)
−0.420593 + 0.907249i \(0.638178\pi\)
\(878\) 0 0
\(879\) 4545.05 7872.25i 0.174403 0.302076i
\(880\) 0 0
\(881\) −42643.4 −1.63075 −0.815376 0.578932i \(-0.803470\pi\)
−0.815376 + 0.578932i \(0.803470\pi\)
\(882\) 0 0
\(883\) −9486.36 −0.361542 −0.180771 0.983525i \(-0.557859\pi\)
−0.180771 + 0.983525i \(0.557859\pi\)
\(884\) 0 0
\(885\) 24776.5 42914.2i 0.941077 1.62999i
\(886\) 0 0
\(887\) 7531.41 + 13044.8i 0.285096 + 0.493800i 0.972632 0.232349i \(-0.0746413\pi\)
−0.687537 + 0.726150i \(0.741308\pi\)
\(888\) 0 0
\(889\) 2189.71 + 1308.07i 0.0826102 + 0.0493491i
\(890\) 0 0
\(891\) 156.794 + 271.576i 0.00589541 + 0.0102111i
\(892\) 0 0
\(893\) −32516.4 + 56320.1i −1.21850 + 2.11050i
\(894\) 0 0
\(895\) −30124.0 −1.12507
\(896\) 0 0
\(897\) 5033.58 0.187365
\(898\) 0 0
\(899\) −3689.88 + 6391.06i −0.136890 + 0.237101i
\(900\) 0 0
\(901\) 1204.94 + 2087.01i 0.0445530 + 0.0771681i
\(902\) 0 0
\(903\) 2022.33 1127.79i 0.0745281 0.0415620i
\(904\) 0 0
\(905\) 19842.3 + 34367.9i 0.728818 + 1.26235i
\(906\) 0 0
\(907\) 21568.3 37357.5i 0.789598 1.36762i −0.136616 0.990624i \(-0.543623\pi\)
0.926213 0.376999i \(-0.123044\pi\)
\(908\) 0 0
\(909\) 22018.3 0.803412
\(910\) 0 0
\(911\) −3708.67 −0.134878 −0.0674390 0.997723i \(-0.521483\pi\)
−0.0674390 + 0.997723i \(0.521483\pi\)
\(912\) 0 0
\(913\) 8100.79 14031.0i 0.293644 0.508606i
\(914\) 0 0
\(915\) 4145.21 + 7179.72i 0.149767 + 0.259403i
\(916\) 0 0
\(917\) −426.622 + 28655.9i −0.0153635 + 1.03195i
\(918\) 0 0
\(919\) 24372.4 + 42214.3i 0.874834 + 1.51526i 0.856939 + 0.515417i \(0.172363\pi\)
0.0178947 + 0.999840i \(0.494304\pi\)
\(920\) 0 0
\(921\) −4824.10 + 8355.59i −0.172595 + 0.298942i
\(922\) 0 0
\(923\) −3176.24 −0.113269
\(924\) 0 0
\(925\) 80056.6 2.84567
\(926\) 0 0
\(927\) −9319.04 + 16141.1i −0.330181 + 0.571890i
\(928\) 0 0
\(929\) 2501.80 + 4333.25i 0.0883547 + 0.153035i 0.906816 0.421527i \(-0.138506\pi\)
−0.818461 + 0.574562i \(0.805172\pi\)
\(930\) 0 0
\(931\) 28519.0 46165.6i 1.00394 1.62515i
\(932\) 0 0
\(933\) −5314.17 9204.41i −0.186472 0.322978i
\(934\) 0 0
\(935\) −747.835 + 1295.29i −0.0261570 + 0.0453053i
\(936\) 0 0
\(937\) 34591.3 1.20603 0.603014 0.797731i \(-0.293966\pi\)
0.603014 + 0.797731i \(0.293966\pi\)
\(938\) 0 0
\(939\) 31236.1 1.08557
\(940\) 0 0
\(941\) −1352.21 + 2342.10i −0.0468446 + 0.0811373i −0.888497 0.458882i \(-0.848250\pi\)
0.841652 + 0.540020i \(0.181583\pi\)
\(942\) 0 0
\(943\) 9524.24 + 16496.5i 0.328899 + 0.569670i
\(944\) 0 0
\(945\) −789.199 + 53010.0i −0.0271668 + 1.82478i
\(946\) 0 0
\(947\) −5521.24 9563.06i −0.189457 0.328150i 0.755612 0.655019i \(-0.227340\pi\)
−0.945069 + 0.326870i \(0.894006\pi\)
\(948\) 0 0
\(949\) −9488.26 + 16434.1i −0.324554 + 0.562144i
\(950\) 0 0
\(951\) −14569.3 −0.496783
\(952\) 0 0
\(953\) 14088.1 0.478864 0.239432 0.970913i \(-0.423039\pi\)
0.239432 + 0.970913i \(0.423039\pi\)
\(954\) 0 0
\(955\) −3390.13 + 5871.88i −0.114871 + 0.198963i
\(956\) 0 0
\(957\) 891.819 + 1544.68i 0.0301237 + 0.0521758i
\(958\) 0 0
\(959\) 9692.34 5405.12i 0.326363 0.182003i
\(960\) 0 0
\(961\) 3721.50 + 6445.83i 0.124920 + 0.216368i
\(962\) 0 0
\(963\) 11603.2 20097.4i 0.388275 0.672512i
\(964\) 0 0
\(965\) −46022.0 −1.53524
\(966\) 0 0
\(967\) 42880.4 1.42600 0.712999 0.701165i \(-0.247336\pi\)
0.712999 + 0.701165i \(0.247336\pi\)
\(968\) 0 0
\(969\) −1751.66 + 3033.96i −0.0580715 + 0.100583i
\(970\) 0 0
\(971\) −25902.6 44864.6i −0.856079 1.48277i −0.875640 0.482964i \(-0.839560\pi\)
0.0195610 0.999809i \(-0.493773\pi\)
\(972\) 0 0
\(973\) 27997.4 + 16724.9i 0.922461 + 0.551053i
\(974\) 0 0
\(975\) −8336.03 14438.4i −0.273812 0.474256i
\(976\) 0 0
\(977\) −1160.79 + 2010.54i −0.0380111 + 0.0658372i −0.884405 0.466720i \(-0.845436\pi\)
0.846394 + 0.532557i \(0.178769\pi\)
\(978\) 0 0
\(979\) 14763.3 0.481958
\(980\) 0 0
\(981\) −18124.9 −0.589891
\(982\) 0 0
\(983\) 7795.68 13502.5i 0.252943 0.438111i −0.711391 0.702796i \(-0.751935\pi\)
0.964335 + 0.264685i \(0.0852680\pi\)
\(984\) 0 0
\(985\) −18252.9 31614.9i −0.590442 1.02268i
\(986\) 0 0
\(987\) 21467.7 + 12824.2i 0.692325 + 0.413576i
\(988\) 0 0
\(989\) 1619.07 + 2804.31i 0.0520559 + 0.0901635i
\(990\) 0 0
\(991\) 5846.09 10125.7i 0.187394 0.324575i −0.756987 0.653430i \(-0.773329\pi\)
0.944381 + 0.328855i \(0.106663\pi\)
\(992\) 0 0
\(993\) −8907.20 −0.284654
\(994\) 0 0
\(995\) 36169.8 1.15242
\(996\) 0 0
\(997\) 15392.7 26660.9i 0.488959 0.846901i −0.510961 0.859604i \(-0.670710\pi\)
0.999919 + 0.0127030i \(0.00404359\pi\)
\(998\) 0 0
\(999\) 20163.2 + 34923.7i 0.638574 + 1.10604i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 308.4.i.a.221.4 yes 20
7.2 even 3 inner 308.4.i.a.177.4 20
7.3 odd 6 2156.4.a.j.1.4 10
7.4 even 3 2156.4.a.m.1.7 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
308.4.i.a.177.4 20 7.2 even 3 inner
308.4.i.a.221.4 yes 20 1.1 even 1 trivial
2156.4.a.j.1.4 10 7.3 odd 6
2156.4.a.m.1.7 10 7.4 even 3