Properties

Label 2156.4.a.m.1.7
Level $2156$
Weight $4$
Character 2156.1
Self dual yes
Analytic conductor $127.208$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2156,4,Mod(1,2156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2156, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2156.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2156 = 2^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2156.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(127.208117972\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 4 x^{9} - 178 x^{8} + 572 x^{7} + 9767 x^{6} - 23476 x^{5} - 169595 x^{4} + 254142 x^{3} + \cdots + 89424 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{7}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 308)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-2.28467\) of defining polynomial
Character \(\chi\) \(=\) 2156.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.28467 q^{3} +20.1685 q^{5} -16.2110 q^{9} +11.0000 q^{11} +18.0138 q^{13} +66.2468 q^{15} +6.74170 q^{17} +158.204 q^{19} +85.0708 q^{23} +281.769 q^{25} -141.934 q^{27} -49.3654 q^{29} -149.492 q^{31} +36.1313 q^{33} +284.122 q^{37} +59.1693 q^{39} -223.913 q^{41} -38.0640 q^{43} -326.951 q^{45} +411.068 q^{47} +22.1442 q^{51} -357.458 q^{53} +221.854 q^{55} +519.648 q^{57} -748.006 q^{59} -125.145 q^{61} +363.312 q^{65} +637.971 q^{67} +279.429 q^{69} -176.322 q^{71} +1053.44 q^{73} +925.516 q^{75} +419.986 q^{79} -28.5081 q^{81} -1472.87 q^{83} +135.970 q^{85} -162.149 q^{87} +1342.12 q^{89} -491.033 q^{93} +3190.75 q^{95} +1289.25 q^{97} -178.321 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 6 q^{3} + 10 q^{5} + 104 q^{9} + 110 q^{11} + 8 q^{13} + 54 q^{15} + 166 q^{17} + 342 q^{19} - 54 q^{23} + 198 q^{25} + 306 q^{27} - 80 q^{29} + 492 q^{31} + 66 q^{33} + 258 q^{37} - 418 q^{39} + 634 q^{41}+ \cdots + 1144 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.28467 0.632134 0.316067 0.948737i \(-0.397638\pi\)
0.316067 + 0.948737i \(0.397638\pi\)
\(4\) 0 0
\(5\) 20.1685 1.80393 0.901963 0.431813i \(-0.142126\pi\)
0.901963 + 0.431813i \(0.142126\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −16.2110 −0.600406
\(10\) 0 0
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) 18.0138 0.384318 0.192159 0.981364i \(-0.438451\pi\)
0.192159 + 0.981364i \(0.438451\pi\)
\(14\) 0 0
\(15\) 66.2468 1.14032
\(16\) 0 0
\(17\) 6.74170 0.0961825 0.0480912 0.998843i \(-0.484686\pi\)
0.0480912 + 0.998843i \(0.484686\pi\)
\(18\) 0 0
\(19\) 158.204 1.91024 0.955120 0.296219i \(-0.0957259\pi\)
0.955120 + 0.296219i \(0.0957259\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 85.0708 0.771239 0.385619 0.922658i \(-0.373988\pi\)
0.385619 + 0.922658i \(0.373988\pi\)
\(24\) 0 0
\(25\) 281.769 2.25415
\(26\) 0 0
\(27\) −141.934 −1.01167
\(28\) 0 0
\(29\) −49.3654 −0.316101 −0.158050 0.987431i \(-0.550521\pi\)
−0.158050 + 0.987431i \(0.550521\pi\)
\(30\) 0 0
\(31\) −149.492 −0.866117 −0.433059 0.901366i \(-0.642566\pi\)
−0.433059 + 0.901366i \(0.642566\pi\)
\(32\) 0 0
\(33\) 36.1313 0.190596
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 284.122 1.26241 0.631207 0.775614i \(-0.282560\pi\)
0.631207 + 0.775614i \(0.282560\pi\)
\(38\) 0 0
\(39\) 59.1693 0.242940
\(40\) 0 0
\(41\) −223.913 −0.852911 −0.426456 0.904509i \(-0.640238\pi\)
−0.426456 + 0.904509i \(0.640238\pi\)
\(42\) 0 0
\(43\) −38.0640 −0.134993 −0.0674965 0.997720i \(-0.521501\pi\)
−0.0674965 + 0.997720i \(0.521501\pi\)
\(44\) 0 0
\(45\) −326.951 −1.08309
\(46\) 0 0
\(47\) 411.068 1.27576 0.637878 0.770138i \(-0.279813\pi\)
0.637878 + 0.770138i \(0.279813\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 22.1442 0.0608002
\(52\) 0 0
\(53\) −357.458 −0.926427 −0.463213 0.886247i \(-0.653304\pi\)
−0.463213 + 0.886247i \(0.653304\pi\)
\(54\) 0 0
\(55\) 221.854 0.543904
\(56\) 0 0
\(57\) 519.648 1.20753
\(58\) 0 0
\(59\) −748.006 −1.65054 −0.825272 0.564735i \(-0.808978\pi\)
−0.825272 + 0.564735i \(0.808978\pi\)
\(60\) 0 0
\(61\) −125.145 −0.262674 −0.131337 0.991338i \(-0.541927\pi\)
−0.131337 + 0.991338i \(0.541927\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 363.312 0.693281
\(66\) 0 0
\(67\) 637.971 1.16329 0.581646 0.813442i \(-0.302409\pi\)
0.581646 + 0.813442i \(0.302409\pi\)
\(68\) 0 0
\(69\) 279.429 0.487526
\(70\) 0 0
\(71\) −176.322 −0.294727 −0.147363 0.989082i \(-0.547079\pi\)
−0.147363 + 0.989082i \(0.547079\pi\)
\(72\) 0 0
\(73\) 1053.44 1.68899 0.844494 0.535564i \(-0.179901\pi\)
0.844494 + 0.535564i \(0.179901\pi\)
\(74\) 0 0
\(75\) 925.516 1.42493
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 419.986 0.598128 0.299064 0.954233i \(-0.403326\pi\)
0.299064 + 0.954233i \(0.403326\pi\)
\(80\) 0 0
\(81\) −28.5081 −0.0391057
\(82\) 0 0
\(83\) −1472.87 −1.94781 −0.973907 0.226949i \(-0.927125\pi\)
−0.973907 + 0.226949i \(0.927125\pi\)
\(84\) 0 0
\(85\) 135.970 0.173506
\(86\) 0 0
\(87\) −162.149 −0.199818
\(88\) 0 0
\(89\) 1342.12 1.59847 0.799237 0.601016i \(-0.205237\pi\)
0.799237 + 0.601016i \(0.205237\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −491.033 −0.547502
\(94\) 0 0
\(95\) 3190.75 3.44593
\(96\) 0 0
\(97\) 1289.25 1.34952 0.674759 0.738038i \(-0.264248\pi\)
0.674759 + 0.738038i \(0.264248\pi\)
\(98\) 0 0
\(99\) −178.321 −0.181029
\(100\) 0 0
\(101\) −1358.24 −1.33811 −0.669057 0.743211i \(-0.733302\pi\)
−0.669057 + 0.743211i \(0.733302\pi\)
\(102\) 0 0
\(103\) −1149.72 −1.09986 −0.549929 0.835212i \(-0.685345\pi\)
−0.549929 + 0.835212i \(0.685345\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1431.53 1.29337 0.646687 0.762755i \(-0.276154\pi\)
0.646687 + 0.762755i \(0.276154\pi\)
\(108\) 0 0
\(109\) 1118.06 0.982486 0.491243 0.871022i \(-0.336543\pi\)
0.491243 + 0.871022i \(0.336543\pi\)
\(110\) 0 0
\(111\) 933.245 0.798015
\(112\) 0 0
\(113\) 584.060 0.486228 0.243114 0.969998i \(-0.421831\pi\)
0.243114 + 0.969998i \(0.421831\pi\)
\(114\) 0 0
\(115\) 1715.75 1.39126
\(116\) 0 0
\(117\) −292.021 −0.230747
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 0 0
\(123\) −735.480 −0.539154
\(124\) 0 0
\(125\) 3161.79 2.26239
\(126\) 0 0
\(127\) 137.723 0.0962277 0.0481139 0.998842i \(-0.484679\pi\)
0.0481139 + 0.998842i \(0.484679\pi\)
\(128\) 0 0
\(129\) −125.027 −0.0853337
\(130\) 0 0
\(131\) −1547.45 −1.03207 −0.516034 0.856568i \(-0.672592\pi\)
−0.516034 + 0.856568i \(0.672592\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −2862.59 −1.82498
\(136\) 0 0
\(137\) −599.214 −0.373681 −0.186841 0.982390i \(-0.559825\pi\)
−0.186841 + 0.982390i \(0.559825\pi\)
\(138\) 0 0
\(139\) 1760.91 1.07452 0.537260 0.843417i \(-0.319459\pi\)
0.537260 + 0.843417i \(0.319459\pi\)
\(140\) 0 0
\(141\) 1350.22 0.806448
\(142\) 0 0
\(143\) 198.152 0.115876
\(144\) 0 0
\(145\) −995.627 −0.570223
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −2474.91 −1.36076 −0.680379 0.732861i \(-0.738185\pi\)
−0.680379 + 0.732861i \(0.738185\pi\)
\(150\) 0 0
\(151\) −419.776 −0.226231 −0.113116 0.993582i \(-0.536083\pi\)
−0.113116 + 0.993582i \(0.536083\pi\)
\(152\) 0 0
\(153\) −109.290 −0.0577486
\(154\) 0 0
\(155\) −3015.04 −1.56241
\(156\) 0 0
\(157\) 1277.60 0.649449 0.324724 0.945809i \(-0.394728\pi\)
0.324724 + 0.945809i \(0.394728\pi\)
\(158\) 0 0
\(159\) −1174.13 −0.585626
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 2653.83 1.27524 0.637620 0.770351i \(-0.279919\pi\)
0.637620 + 0.770351i \(0.279919\pi\)
\(164\) 0 0
\(165\) 728.715 0.343820
\(166\) 0 0
\(167\) 3219.63 1.49187 0.745935 0.666019i \(-0.232003\pi\)
0.745935 + 0.666019i \(0.232003\pi\)
\(168\) 0 0
\(169\) −1872.50 −0.852300
\(170\) 0 0
\(171\) −2564.65 −1.14692
\(172\) 0 0
\(173\) 911.626 0.400634 0.200317 0.979731i \(-0.435803\pi\)
0.200317 + 0.979731i \(0.435803\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −2456.95 −1.04337
\(178\) 0 0
\(179\) −1493.62 −0.623677 −0.311838 0.950135i \(-0.600945\pi\)
−0.311838 + 0.950135i \(0.600945\pi\)
\(180\) 0 0
\(181\) −1967.65 −0.808035 −0.404018 0.914751i \(-0.632387\pi\)
−0.404018 + 0.914751i \(0.632387\pi\)
\(182\) 0 0
\(183\) −411.058 −0.166045
\(184\) 0 0
\(185\) 5730.31 2.27730
\(186\) 0 0
\(187\) 74.1587 0.0290001
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 336.180 0.127357 0.0636784 0.997970i \(-0.479717\pi\)
0.0636784 + 0.997970i \(0.479717\pi\)
\(192\) 0 0
\(193\) −2281.88 −0.851052 −0.425526 0.904946i \(-0.639911\pi\)
−0.425526 + 0.904946i \(0.639911\pi\)
\(194\) 0 0
\(195\) 1193.36 0.438247
\(196\) 0 0
\(197\) 1810.04 0.654619 0.327309 0.944917i \(-0.393858\pi\)
0.327309 + 0.944917i \(0.393858\pi\)
\(198\) 0 0
\(199\) 1793.38 0.638840 0.319420 0.947613i \(-0.396512\pi\)
0.319420 + 0.947613i \(0.396512\pi\)
\(200\) 0 0
\(201\) 2095.52 0.735357
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −4515.99 −1.53859
\(206\) 0 0
\(207\) −1379.08 −0.463057
\(208\) 0 0
\(209\) 1740.25 0.575959
\(210\) 0 0
\(211\) −701.349 −0.228829 −0.114414 0.993433i \(-0.536499\pi\)
−0.114414 + 0.993433i \(0.536499\pi\)
\(212\) 0 0
\(213\) −579.160 −0.186307
\(214\) 0 0
\(215\) −767.694 −0.243518
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 3460.21 1.06767
\(220\) 0 0
\(221\) 121.444 0.0369646
\(222\) 0 0
\(223\) 3527.11 1.05916 0.529580 0.848260i \(-0.322350\pi\)
0.529580 + 0.848260i \(0.322350\pi\)
\(224\) 0 0
\(225\) −4567.75 −1.35341
\(226\) 0 0
\(227\) −1594.82 −0.466307 −0.233153 0.972440i \(-0.574904\pi\)
−0.233153 + 0.972440i \(0.574904\pi\)
\(228\) 0 0
\(229\) −2965.48 −0.855741 −0.427870 0.903840i \(-0.640736\pi\)
−0.427870 + 0.903840i \(0.640736\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3675.63 −1.03347 −0.516734 0.856146i \(-0.672853\pi\)
−0.516734 + 0.856146i \(0.672853\pi\)
\(234\) 0 0
\(235\) 8290.64 2.30137
\(236\) 0 0
\(237\) 1379.51 0.378097
\(238\) 0 0
\(239\) −3671.87 −0.993780 −0.496890 0.867814i \(-0.665525\pi\)
−0.496890 + 0.867814i \(0.665525\pi\)
\(240\) 0 0
\(241\) −3990.86 −1.06670 −0.533348 0.845896i \(-0.679066\pi\)
−0.533348 + 0.845896i \(0.679066\pi\)
\(242\) 0 0
\(243\) 3738.57 0.986951
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 2849.86 0.734139
\(248\) 0 0
\(249\) −4837.89 −1.23128
\(250\) 0 0
\(251\) 777.368 0.195486 0.0977430 0.995212i \(-0.468838\pi\)
0.0977430 + 0.995212i \(0.468838\pi\)
\(252\) 0 0
\(253\) 935.779 0.232537
\(254\) 0 0
\(255\) 446.616 0.109679
\(256\) 0 0
\(257\) −3297.90 −0.800457 −0.400229 0.916415i \(-0.631069\pi\)
−0.400229 + 0.916415i \(0.631069\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 800.261 0.189789
\(262\) 0 0
\(263\) 4018.93 0.942273 0.471136 0.882060i \(-0.343844\pi\)
0.471136 + 0.882060i \(0.343844\pi\)
\(264\) 0 0
\(265\) −7209.39 −1.67121
\(266\) 0 0
\(267\) 4408.41 1.01045
\(268\) 0 0
\(269\) −2867.91 −0.650036 −0.325018 0.945708i \(-0.605370\pi\)
−0.325018 + 0.945708i \(0.605370\pi\)
\(270\) 0 0
\(271\) 7583.57 1.69989 0.849943 0.526874i \(-0.176636\pi\)
0.849943 + 0.526874i \(0.176636\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3099.46 0.679652
\(276\) 0 0
\(277\) 1856.66 0.402730 0.201365 0.979516i \(-0.435462\pi\)
0.201365 + 0.979516i \(0.435462\pi\)
\(278\) 0 0
\(279\) 2423.42 0.520023
\(280\) 0 0
\(281\) 146.754 0.0311551 0.0155776 0.999879i \(-0.495041\pi\)
0.0155776 + 0.999879i \(0.495041\pi\)
\(282\) 0 0
\(283\) 1176.87 0.247200 0.123600 0.992332i \(-0.460556\pi\)
0.123600 + 0.992332i \(0.460556\pi\)
\(284\) 0 0
\(285\) 10480.5 2.17829
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −4867.55 −0.990749
\(290\) 0 0
\(291\) 4234.75 0.853076
\(292\) 0 0
\(293\) −2767.43 −0.551792 −0.275896 0.961187i \(-0.588975\pi\)
−0.275896 + 0.961187i \(0.588975\pi\)
\(294\) 0 0
\(295\) −15086.2 −2.97746
\(296\) 0 0
\(297\) −1561.27 −0.305030
\(298\) 0 0
\(299\) 1532.45 0.296401
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −4461.35 −0.845867
\(304\) 0 0
\(305\) −2523.98 −0.473845
\(306\) 0 0
\(307\) 2937.35 0.546069 0.273035 0.962004i \(-0.411973\pi\)
0.273035 + 0.962004i \(0.411973\pi\)
\(308\) 0 0
\(309\) −3776.45 −0.695258
\(310\) 0 0
\(311\) 3235.74 0.589975 0.294987 0.955501i \(-0.404685\pi\)
0.294987 + 0.955501i \(0.404685\pi\)
\(312\) 0 0
\(313\) 9509.69 1.71731 0.858657 0.512550i \(-0.171299\pi\)
0.858657 + 0.512550i \(0.171299\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4435.54 −0.785883 −0.392941 0.919563i \(-0.628543\pi\)
−0.392941 + 0.919563i \(0.628543\pi\)
\(318\) 0 0
\(319\) −543.019 −0.0953080
\(320\) 0 0
\(321\) 4702.09 0.817586
\(322\) 0 0
\(323\) 1066.57 0.183732
\(324\) 0 0
\(325\) 5075.73 0.866310
\(326\) 0 0
\(327\) 3672.46 0.621063
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −2711.75 −0.450307 −0.225153 0.974323i \(-0.572288\pi\)
−0.225153 + 0.974323i \(0.572288\pi\)
\(332\) 0 0
\(333\) −4605.89 −0.757962
\(334\) 0 0
\(335\) 12866.9 2.09849
\(336\) 0 0
\(337\) 3897.67 0.630029 0.315015 0.949087i \(-0.397991\pi\)
0.315015 + 0.949087i \(0.397991\pi\)
\(338\) 0 0
\(339\) 1918.44 0.307361
\(340\) 0 0
\(341\) −1644.42 −0.261144
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 5635.67 0.879462
\(346\) 0 0
\(347\) 208.013 0.0321808 0.0160904 0.999871i \(-0.494878\pi\)
0.0160904 + 0.999871i \(0.494878\pi\)
\(348\) 0 0
\(349\) 2513.14 0.385459 0.192729 0.981252i \(-0.438266\pi\)
0.192729 + 0.981252i \(0.438266\pi\)
\(350\) 0 0
\(351\) −2556.76 −0.388803
\(352\) 0 0
\(353\) 8788.17 1.32506 0.662531 0.749034i \(-0.269482\pi\)
0.662531 + 0.749034i \(0.269482\pi\)
\(354\) 0 0
\(355\) −3556.16 −0.531666
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 7764.82 1.14154 0.570768 0.821111i \(-0.306645\pi\)
0.570768 + 0.821111i \(0.306645\pi\)
\(360\) 0 0
\(361\) 18169.6 2.64902
\(362\) 0 0
\(363\) 397.445 0.0574667
\(364\) 0 0
\(365\) 21246.4 3.04681
\(366\) 0 0
\(367\) −3695.33 −0.525599 −0.262800 0.964850i \(-0.584646\pi\)
−0.262800 + 0.964850i \(0.584646\pi\)
\(368\) 0 0
\(369\) 3629.85 0.512093
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −10739.0 −1.49073 −0.745366 0.666656i \(-0.767725\pi\)
−0.745366 + 0.666656i \(0.767725\pi\)
\(374\) 0 0
\(375\) 10385.4 1.43014
\(376\) 0 0
\(377\) −889.259 −0.121483
\(378\) 0 0
\(379\) 3267.42 0.442839 0.221419 0.975179i \(-0.428931\pi\)
0.221419 + 0.975179i \(0.428931\pi\)
\(380\) 0 0
\(381\) 452.373 0.0608288
\(382\) 0 0
\(383\) 14519.2 1.93707 0.968536 0.248873i \(-0.0800600\pi\)
0.968536 + 0.248873i \(0.0800600\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 617.054 0.0810507
\(388\) 0 0
\(389\) −115.798 −0.0150930 −0.00754652 0.999972i \(-0.502402\pi\)
−0.00754652 + 0.999972i \(0.502402\pi\)
\(390\) 0 0
\(391\) 573.522 0.0741797
\(392\) 0 0
\(393\) −5082.84 −0.652406
\(394\) 0 0
\(395\) 8470.50 1.07898
\(396\) 0 0
\(397\) −10165.3 −1.28509 −0.642545 0.766248i \(-0.722122\pi\)
−0.642545 + 0.766248i \(0.722122\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 13876.0 1.72802 0.864011 0.503473i \(-0.167945\pi\)
0.864011 + 0.503473i \(0.167945\pi\)
\(402\) 0 0
\(403\) −2692.93 −0.332864
\(404\) 0 0
\(405\) −574.965 −0.0705438
\(406\) 0 0
\(407\) 3125.34 0.380632
\(408\) 0 0
\(409\) −11520.6 −1.39281 −0.696403 0.717651i \(-0.745217\pi\)
−0.696403 + 0.717651i \(0.745217\pi\)
\(410\) 0 0
\(411\) −1968.22 −0.236217
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −29705.6 −3.51371
\(416\) 0 0
\(417\) 5783.99 0.679241
\(418\) 0 0
\(419\) −14017.0 −1.63431 −0.817155 0.576419i \(-0.804450\pi\)
−0.817155 + 0.576419i \(0.804450\pi\)
\(420\) 0 0
\(421\) −7481.04 −0.866042 −0.433021 0.901384i \(-0.642552\pi\)
−0.433021 + 0.901384i \(0.642552\pi\)
\(422\) 0 0
\(423\) −6663.82 −0.765972
\(424\) 0 0
\(425\) 1899.60 0.216810
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 650.863 0.0732493
\(430\) 0 0
\(431\) 6857.34 0.766372 0.383186 0.923671i \(-0.374827\pi\)
0.383186 + 0.923671i \(0.374827\pi\)
\(432\) 0 0
\(433\) −6537.32 −0.725551 −0.362775 0.931877i \(-0.618171\pi\)
−0.362775 + 0.931877i \(0.618171\pi\)
\(434\) 0 0
\(435\) −3270.30 −0.360457
\(436\) 0 0
\(437\) 13458.6 1.47325
\(438\) 0 0
\(439\) 5429.91 0.590331 0.295166 0.955446i \(-0.404625\pi\)
0.295166 + 0.955446i \(0.404625\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −3919.73 −0.420388 −0.210194 0.977660i \(-0.567410\pi\)
−0.210194 + 0.977660i \(0.567410\pi\)
\(444\) 0 0
\(445\) 27068.5 2.88353
\(446\) 0 0
\(447\) −8129.27 −0.860181
\(448\) 0 0
\(449\) 9796.86 1.02972 0.514858 0.857275i \(-0.327845\pi\)
0.514858 + 0.857275i \(0.327845\pi\)
\(450\) 0 0
\(451\) −2463.04 −0.257162
\(452\) 0 0
\(453\) −1378.82 −0.143008
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −18507.0 −1.89435 −0.947177 0.320711i \(-0.896078\pi\)
−0.947177 + 0.320711i \(0.896078\pi\)
\(458\) 0 0
\(459\) −956.874 −0.0973051
\(460\) 0 0
\(461\) −4871.70 −0.492185 −0.246093 0.969246i \(-0.579147\pi\)
−0.246093 + 0.969246i \(0.579147\pi\)
\(462\) 0 0
\(463\) 6158.63 0.618177 0.309088 0.951033i \(-0.399976\pi\)
0.309088 + 0.951033i \(0.399976\pi\)
\(464\) 0 0
\(465\) −9903.40 −0.987654
\(466\) 0 0
\(467\) −3685.92 −0.365234 −0.182617 0.983184i \(-0.558457\pi\)
−0.182617 + 0.983184i \(0.558457\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 4196.48 0.410539
\(472\) 0 0
\(473\) −418.704 −0.0407019
\(474\) 0 0
\(475\) 44577.0 4.30597
\(476\) 0 0
\(477\) 5794.74 0.556232
\(478\) 0 0
\(479\) −10342.0 −0.986506 −0.493253 0.869886i \(-0.664192\pi\)
−0.493253 + 0.869886i \(0.664192\pi\)
\(480\) 0 0
\(481\) 5118.11 0.485168
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 26002.2 2.43443
\(486\) 0 0
\(487\) −10203.9 −0.949454 −0.474727 0.880133i \(-0.657453\pi\)
−0.474727 + 0.880133i \(0.657453\pi\)
\(488\) 0 0
\(489\) 8716.95 0.806123
\(490\) 0 0
\(491\) 2590.24 0.238078 0.119039 0.992890i \(-0.462019\pi\)
0.119039 + 0.992890i \(0.462019\pi\)
\(492\) 0 0
\(493\) −332.807 −0.0304034
\(494\) 0 0
\(495\) −3596.46 −0.326564
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −3706.06 −0.332477 −0.166238 0.986086i \(-0.553162\pi\)
−0.166238 + 0.986086i \(0.553162\pi\)
\(500\) 0 0
\(501\) 10575.4 0.943061
\(502\) 0 0
\(503\) −10724.5 −0.950661 −0.475330 0.879807i \(-0.657671\pi\)
−0.475330 + 0.879807i \(0.657671\pi\)
\(504\) 0 0
\(505\) −27393.6 −2.41386
\(506\) 0 0
\(507\) −6150.54 −0.538768
\(508\) 0 0
\(509\) −1932.44 −0.168279 −0.0841395 0.996454i \(-0.526814\pi\)
−0.0841395 + 0.996454i \(0.526814\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −22454.5 −1.93254
\(514\) 0 0
\(515\) −23188.1 −1.98406
\(516\) 0 0
\(517\) 4521.75 0.384655
\(518\) 0 0
\(519\) 2994.39 0.253254
\(520\) 0 0
\(521\) 7116.60 0.598434 0.299217 0.954185i \(-0.403275\pi\)
0.299217 + 0.954185i \(0.403275\pi\)
\(522\) 0 0
\(523\) 6219.68 0.520015 0.260007 0.965607i \(-0.416275\pi\)
0.260007 + 0.965607i \(0.416275\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1007.83 −0.0833053
\(528\) 0 0
\(529\) −4929.96 −0.405191
\(530\) 0 0
\(531\) 12125.9 0.990997
\(532\) 0 0
\(533\) −4033.53 −0.327789
\(534\) 0 0
\(535\) 28871.8 2.33315
\(536\) 0 0
\(537\) −4906.03 −0.394247
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 11251.8 0.894186 0.447093 0.894488i \(-0.352459\pi\)
0.447093 + 0.894488i \(0.352459\pi\)
\(542\) 0 0
\(543\) −6463.08 −0.510787
\(544\) 0 0
\(545\) 22549.7 1.77233
\(546\) 0 0
\(547\) 4334.19 0.338787 0.169393 0.985548i \(-0.445819\pi\)
0.169393 + 0.985548i \(0.445819\pi\)
\(548\) 0 0
\(549\) 2028.71 0.157711
\(550\) 0 0
\(551\) −7809.82 −0.603829
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 18822.2 1.43956
\(556\) 0 0
\(557\) −936.401 −0.0712327 −0.0356163 0.999366i \(-0.511339\pi\)
−0.0356163 + 0.999366i \(0.511339\pi\)
\(558\) 0 0
\(559\) −685.677 −0.0518802
\(560\) 0 0
\(561\) 243.586 0.0183320
\(562\) 0 0
\(563\) −11738.5 −0.878719 −0.439360 0.898311i \(-0.644795\pi\)
−0.439360 + 0.898311i \(0.644795\pi\)
\(564\) 0 0
\(565\) 11779.6 0.877119
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −23924.6 −1.76269 −0.881345 0.472474i \(-0.843361\pi\)
−0.881345 + 0.472474i \(0.843361\pi\)
\(570\) 0 0
\(571\) −6784.46 −0.497235 −0.248617 0.968602i \(-0.579976\pi\)
−0.248617 + 0.968602i \(0.579976\pi\)
\(572\) 0 0
\(573\) 1104.24 0.0805066
\(574\) 0 0
\(575\) 23970.3 1.73849
\(576\) 0 0
\(577\) −7887.28 −0.569067 −0.284534 0.958666i \(-0.591839\pi\)
−0.284534 + 0.958666i \(0.591839\pi\)
\(578\) 0 0
\(579\) −7495.20 −0.537979
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −3932.04 −0.279328
\(584\) 0 0
\(585\) −5889.63 −0.416250
\(586\) 0 0
\(587\) 11414.7 0.802613 0.401306 0.915944i \(-0.368556\pi\)
0.401306 + 0.915944i \(0.368556\pi\)
\(588\) 0 0
\(589\) −23650.4 −1.65449
\(590\) 0 0
\(591\) 5945.37 0.413807
\(592\) 0 0
\(593\) −13577.7 −0.940252 −0.470126 0.882599i \(-0.655792\pi\)
−0.470126 + 0.882599i \(0.655792\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 5890.65 0.403833
\(598\) 0 0
\(599\) 24789.7 1.69095 0.845476 0.534014i \(-0.179317\pi\)
0.845476 + 0.534014i \(0.179317\pi\)
\(600\) 0 0
\(601\) −27467.5 −1.86426 −0.932132 0.362119i \(-0.882054\pi\)
−0.932132 + 0.362119i \(0.882054\pi\)
\(602\) 0 0
\(603\) −10342.1 −0.698448
\(604\) 0 0
\(605\) 2440.39 0.163993
\(606\) 0 0
\(607\) −16648.6 −1.11325 −0.556627 0.830763i \(-0.687905\pi\)
−0.556627 + 0.830763i \(0.687905\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 7404.91 0.490295
\(612\) 0 0
\(613\) −25766.7 −1.69773 −0.848864 0.528611i \(-0.822713\pi\)
−0.848864 + 0.528611i \(0.822713\pi\)
\(614\) 0 0
\(615\) −14833.5 −0.972594
\(616\) 0 0
\(617\) −21818.5 −1.42363 −0.711815 0.702367i \(-0.752126\pi\)
−0.711815 + 0.702367i \(0.752126\pi\)
\(618\) 0 0
\(619\) 5313.45 0.345017 0.172509 0.985008i \(-0.444813\pi\)
0.172509 + 0.985008i \(0.444813\pi\)
\(620\) 0 0
\(621\) −12074.4 −0.780240
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 28547.5 1.82704
\(626\) 0 0
\(627\) 5716.13 0.364083
\(628\) 0 0
\(629\) 1915.46 0.121422
\(630\) 0 0
\(631\) −26807.8 −1.69129 −0.845645 0.533746i \(-0.820784\pi\)
−0.845645 + 0.533746i \(0.820784\pi\)
\(632\) 0 0
\(633\) −2303.70 −0.144650
\(634\) 0 0
\(635\) 2777.66 0.173588
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 2858.36 0.176956
\(640\) 0 0
\(641\) −4669.35 −0.287720 −0.143860 0.989598i \(-0.545951\pi\)
−0.143860 + 0.989598i \(0.545951\pi\)
\(642\) 0 0
\(643\) 15653.7 0.960067 0.480033 0.877250i \(-0.340625\pi\)
0.480033 + 0.877250i \(0.340625\pi\)
\(644\) 0 0
\(645\) −2521.62 −0.153936
\(646\) 0 0
\(647\) −4680.90 −0.284429 −0.142214 0.989836i \(-0.545422\pi\)
−0.142214 + 0.989836i \(0.545422\pi\)
\(648\) 0 0
\(649\) −8228.07 −0.497658
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 21476.7 1.28706 0.643528 0.765423i \(-0.277470\pi\)
0.643528 + 0.765423i \(0.277470\pi\)
\(654\) 0 0
\(655\) −31209.7 −1.86178
\(656\) 0 0
\(657\) −17077.3 −1.01408
\(658\) 0 0
\(659\) −17974.1 −1.06248 −0.531239 0.847222i \(-0.678273\pi\)
−0.531239 + 0.847222i \(0.678273\pi\)
\(660\) 0 0
\(661\) 13280.8 0.781487 0.390743 0.920500i \(-0.372218\pi\)
0.390743 + 0.920500i \(0.372218\pi\)
\(662\) 0 0
\(663\) 398.902 0.0233666
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −4199.56 −0.243789
\(668\) 0 0
\(669\) 11585.4 0.669531
\(670\) 0 0
\(671\) −1376.59 −0.0791992
\(672\) 0 0
\(673\) 28060.2 1.60719 0.803596 0.595176i \(-0.202917\pi\)
0.803596 + 0.595176i \(0.202917\pi\)
\(674\) 0 0
\(675\) −39992.4 −2.28046
\(676\) 0 0
\(677\) −14484.9 −0.822305 −0.411152 0.911567i \(-0.634874\pi\)
−0.411152 + 0.911567i \(0.634874\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −5238.44 −0.294768
\(682\) 0 0
\(683\) 8480.37 0.475098 0.237549 0.971376i \(-0.423656\pi\)
0.237549 + 0.971376i \(0.423656\pi\)
\(684\) 0 0
\(685\) −12085.3 −0.674093
\(686\) 0 0
\(687\) −9740.62 −0.540943
\(688\) 0 0
\(689\) −6439.18 −0.356042
\(690\) 0 0
\(691\) 24567.9 1.35254 0.676270 0.736654i \(-0.263595\pi\)
0.676270 + 0.736654i \(0.263595\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 35514.9 1.93835
\(696\) 0 0
\(697\) −1509.55 −0.0820351
\(698\) 0 0
\(699\) −12073.2 −0.653291
\(700\) 0 0
\(701\) 23325.9 1.25679 0.628394 0.777895i \(-0.283712\pi\)
0.628394 + 0.777895i \(0.283712\pi\)
\(702\) 0 0
\(703\) 44949.3 2.41151
\(704\) 0 0
\(705\) 27232.0 1.45477
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 29148.6 1.54400 0.772001 0.635621i \(-0.219256\pi\)
0.772001 + 0.635621i \(0.219256\pi\)
\(710\) 0 0
\(711\) −6808.39 −0.359120
\(712\) 0 0
\(713\) −12717.4 −0.667983
\(714\) 0 0
\(715\) 3996.43 0.209032
\(716\) 0 0
\(717\) −12060.9 −0.628202
\(718\) 0 0
\(719\) −13331.2 −0.691472 −0.345736 0.938332i \(-0.612371\pi\)
−0.345736 + 0.938332i \(0.612371\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −13108.6 −0.674295
\(724\) 0 0
\(725\) −13909.6 −0.712539
\(726\) 0 0
\(727\) 18836.0 0.960920 0.480460 0.877017i \(-0.340470\pi\)
0.480460 + 0.877017i \(0.340470\pi\)
\(728\) 0 0
\(729\) 13049.7 0.662991
\(730\) 0 0
\(731\) −256.616 −0.0129840
\(732\) 0 0
\(733\) 11574.3 0.583229 0.291614 0.956536i \(-0.405808\pi\)
0.291614 + 0.956536i \(0.405808\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 7017.69 0.350746
\(738\) 0 0
\(739\) −16287.5 −0.810750 −0.405375 0.914150i \(-0.632859\pi\)
−0.405375 + 0.914150i \(0.632859\pi\)
\(740\) 0 0
\(741\) 9360.84 0.464074
\(742\) 0 0
\(743\) 18975.7 0.936947 0.468473 0.883478i \(-0.344804\pi\)
0.468473 + 0.883478i \(0.344804\pi\)
\(744\) 0 0
\(745\) −49915.3 −2.45471
\(746\) 0 0
\(747\) 23876.7 1.16948
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −13068.3 −0.634978 −0.317489 0.948262i \(-0.602840\pi\)
−0.317489 + 0.948262i \(0.602840\pi\)
\(752\) 0 0
\(753\) 2553.39 0.123573
\(754\) 0 0
\(755\) −8466.26 −0.408104
\(756\) 0 0
\(757\) 12393.2 0.595030 0.297515 0.954717i \(-0.403842\pi\)
0.297515 + 0.954717i \(0.403842\pi\)
\(758\) 0 0
\(759\) 3073.72 0.146995
\(760\) 0 0
\(761\) −24454.7 −1.16489 −0.582445 0.812870i \(-0.697904\pi\)
−0.582445 + 0.812870i \(0.697904\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −2204.21 −0.104174
\(766\) 0 0
\(767\) −13474.4 −0.634334
\(768\) 0 0
\(769\) 9229.19 0.432787 0.216393 0.976306i \(-0.430571\pi\)
0.216393 + 0.976306i \(0.430571\pi\)
\(770\) 0 0
\(771\) −10832.5 −0.505996
\(772\) 0 0
\(773\) 24943.5 1.16062 0.580308 0.814397i \(-0.302932\pi\)
0.580308 + 0.814397i \(0.302932\pi\)
\(774\) 0 0
\(775\) −42122.3 −1.95236
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −35424.0 −1.62926
\(780\) 0 0
\(781\) −1939.55 −0.0888635
\(782\) 0 0
\(783\) 7006.61 0.319790
\(784\) 0 0
\(785\) 25767.3 1.17156
\(786\) 0 0
\(787\) −8253.16 −0.373816 −0.186908 0.982377i \(-0.559847\pi\)
−0.186908 + 0.982377i \(0.559847\pi\)
\(788\) 0 0
\(789\) 13200.8 0.595643
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −2254.33 −0.100950
\(794\) 0 0
\(795\) −23680.4 −1.05643
\(796\) 0 0
\(797\) 12314.7 0.547315 0.273657 0.961827i \(-0.411767\pi\)
0.273657 + 0.961827i \(0.411767\pi\)
\(798\) 0 0
\(799\) 2771.30 0.122705
\(800\) 0 0
\(801\) −21757.0 −0.959734
\(802\) 0 0
\(803\) 11587.9 0.509249
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −9420.13 −0.410910
\(808\) 0 0
\(809\) −21840.8 −0.949175 −0.474588 0.880208i \(-0.657403\pi\)
−0.474588 + 0.880208i \(0.657403\pi\)
\(810\) 0 0
\(811\) −42180.2 −1.82632 −0.913161 0.407600i \(-0.866366\pi\)
−0.913161 + 0.407600i \(0.866366\pi\)
\(812\) 0 0
\(813\) 24909.5 1.07456
\(814\) 0 0
\(815\) 53523.8 2.30044
\(816\) 0 0
\(817\) −6021.89 −0.257869
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −19618.3 −0.833961 −0.416980 0.908915i \(-0.636912\pi\)
−0.416980 + 0.908915i \(0.636912\pi\)
\(822\) 0 0
\(823\) 23634.6 1.00103 0.500516 0.865727i \(-0.333144\pi\)
0.500516 + 0.865727i \(0.333144\pi\)
\(824\) 0 0
\(825\) 10180.7 0.429631
\(826\) 0 0
\(827\) 1479.01 0.0621888 0.0310944 0.999516i \(-0.490101\pi\)
0.0310944 + 0.999516i \(0.490101\pi\)
\(828\) 0 0
\(829\) 26614.5 1.11503 0.557515 0.830167i \(-0.311755\pi\)
0.557515 + 0.830167i \(0.311755\pi\)
\(830\) 0 0
\(831\) 6098.52 0.254579
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 64935.1 2.69122
\(836\) 0 0
\(837\) 21218.0 0.876226
\(838\) 0 0
\(839\) −56.5620 −0.00232746 −0.00116373 0.999999i \(-0.500370\pi\)
−0.00116373 + 0.999999i \(0.500370\pi\)
\(840\) 0 0
\(841\) −21952.1 −0.900080
\(842\) 0 0
\(843\) 482.037 0.0196942
\(844\) 0 0
\(845\) −37765.6 −1.53749
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 3865.62 0.156263
\(850\) 0 0
\(851\) 24170.5 0.973623
\(852\) 0 0
\(853\) −40634.3 −1.63106 −0.815529 0.578716i \(-0.803554\pi\)
−0.815529 + 0.578716i \(0.803554\pi\)
\(854\) 0 0
\(855\) −51725.1 −2.06896
\(856\) 0 0
\(857\) −35344.6 −1.40881 −0.704403 0.709800i \(-0.748785\pi\)
−0.704403 + 0.709800i \(0.748785\pi\)
\(858\) 0 0
\(859\) 17995.8 0.714796 0.357398 0.933952i \(-0.383664\pi\)
0.357398 + 0.933952i \(0.383664\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 21516.1 0.848688 0.424344 0.905501i \(-0.360505\pi\)
0.424344 + 0.905501i \(0.360505\pi\)
\(864\) 0 0
\(865\) 18386.1 0.722714
\(866\) 0 0
\(867\) −15988.3 −0.626286
\(868\) 0 0
\(869\) 4619.85 0.180343
\(870\) 0 0
\(871\) 11492.3 0.447074
\(872\) 0 0
\(873\) −20900.0 −0.810259
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −29888.4 −1.15081 −0.575405 0.817869i \(-0.695155\pi\)
−0.575405 + 0.817869i \(0.695155\pi\)
\(878\) 0 0
\(879\) −9090.09 −0.348807
\(880\) 0 0
\(881\) −42643.4 −1.63075 −0.815376 0.578932i \(-0.803470\pi\)
−0.815376 + 0.578932i \(0.803470\pi\)
\(882\) 0 0
\(883\) −9486.36 −0.361542 −0.180771 0.983525i \(-0.557859\pi\)
−0.180771 + 0.983525i \(0.557859\pi\)
\(884\) 0 0
\(885\) −49553.0 −1.88215
\(886\) 0 0
\(887\) −15062.8 −0.570191 −0.285096 0.958499i \(-0.592025\pi\)
−0.285096 + 0.958499i \(0.592025\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −313.589 −0.0117908
\(892\) 0 0
\(893\) 65032.8 2.43700
\(894\) 0 0
\(895\) −30124.0 −1.12507
\(896\) 0 0
\(897\) 5033.58 0.187365
\(898\) 0 0
\(899\) 7379.76 0.273781
\(900\) 0 0
\(901\) −2409.87 −0.0891060
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −39684.6 −1.45764
\(906\) 0 0
\(907\) −43136.7 −1.57920 −0.789598 0.613625i \(-0.789711\pi\)
−0.789598 + 0.613625i \(0.789711\pi\)
\(908\) 0 0
\(909\) 22018.3 0.803412
\(910\) 0 0
\(911\) −3708.67 −0.134878 −0.0674390 0.997723i \(-0.521483\pi\)
−0.0674390 + 0.997723i \(0.521483\pi\)
\(912\) 0 0
\(913\) −16201.6 −0.587288
\(914\) 0 0
\(915\) −8290.42 −0.299533
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −48744.9 −1.74967 −0.874834 0.484423i \(-0.839030\pi\)
−0.874834 + 0.484423i \(0.839030\pi\)
\(920\) 0 0
\(921\) 9648.20 0.345189
\(922\) 0 0
\(923\) −3176.24 −0.113269
\(924\) 0 0
\(925\) 80056.6 2.84567
\(926\) 0 0
\(927\) 18638.1 0.660362
\(928\) 0 0
\(929\) −5003.60 −0.176709 −0.0883547 0.996089i \(-0.528161\pi\)
−0.0883547 + 0.996089i \(0.528161\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 10628.3 0.372943
\(934\) 0 0
\(935\) 1495.67 0.0523141
\(936\) 0 0
\(937\) 34591.3 1.20603 0.603014 0.797731i \(-0.293966\pi\)
0.603014 + 0.797731i \(0.293966\pi\)
\(938\) 0 0
\(939\) 31236.1 1.08557
\(940\) 0 0
\(941\) 2704.42 0.0936892 0.0468446 0.998902i \(-0.485083\pi\)
0.0468446 + 0.998902i \(0.485083\pi\)
\(942\) 0 0
\(943\) −19048.5 −0.657798
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 11042.5 0.378915 0.189457 0.981889i \(-0.439327\pi\)
0.189457 + 0.981889i \(0.439327\pi\)
\(948\) 0 0
\(949\) 18976.5 0.649108
\(950\) 0 0
\(951\) −14569.3 −0.496783
\(952\) 0 0
\(953\) 14088.1 0.478864 0.239432 0.970913i \(-0.423039\pi\)
0.239432 + 0.970913i \(0.423039\pi\)
\(954\) 0 0
\(955\) 6780.26 0.229742
\(956\) 0 0
\(957\) −1783.64 −0.0602474
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −7443.00 −0.249840
\(962\) 0 0
\(963\) −23206.5 −0.776550
\(964\) 0 0
\(965\) −46022.0 −1.53524
\(966\) 0 0
\(967\) 42880.4 1.42600 0.712999 0.701165i \(-0.247336\pi\)
0.712999 + 0.701165i \(0.247336\pi\)
\(968\) 0 0
\(969\) 3503.31 0.116143
\(970\) 0 0
\(971\) 51805.1 1.71216 0.856079 0.516845i \(-0.172894\pi\)
0.856079 + 0.516845i \(0.172894\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 16672.1 0.547624
\(976\) 0 0
\(977\) 2321.57 0.0760223 0.0380111 0.999277i \(-0.487898\pi\)
0.0380111 + 0.999277i \(0.487898\pi\)
\(978\) 0 0
\(979\) 14763.3 0.481958
\(980\) 0 0
\(981\) −18124.9 −0.589891
\(982\) 0 0
\(983\) −15591.4 −0.505887 −0.252943 0.967481i \(-0.581399\pi\)
−0.252943 + 0.967481i \(0.581399\pi\)
\(984\) 0 0
\(985\) 36505.8 1.18088
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −3238.13 −0.104112
\(990\) 0 0
\(991\) −11692.2 −0.374787 −0.187394 0.982285i \(-0.560004\pi\)
−0.187394 + 0.982285i \(0.560004\pi\)
\(992\) 0 0
\(993\) −8907.20 −0.284654
\(994\) 0 0
\(995\) 36169.8 1.15242
\(996\) 0 0
\(997\) −30785.4 −0.977917 −0.488959 0.872307i \(-0.662623\pi\)
−0.488959 + 0.872307i \(0.662623\pi\)
\(998\) 0 0
\(999\) −40326.4 −1.27715
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2156.4.a.m.1.7 10
7.2 even 3 308.4.i.a.221.4 yes 20
7.4 even 3 308.4.i.a.177.4 20
7.6 odd 2 2156.4.a.j.1.4 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
308.4.i.a.177.4 20 7.4 even 3
308.4.i.a.221.4 yes 20 7.2 even 3
2156.4.a.j.1.4 10 7.6 odd 2
2156.4.a.m.1.7 10 1.1 even 1 trivial