L(s) = 1 | + 2·2-s + 4-s − 2·7-s + 2·9-s − 4·14-s + 4·18-s − 2·28-s − 2·29-s + 2·36-s − 4·43-s + 49-s − 2·53-s − 4·58-s − 4·63-s − 2·67-s − 12·79-s + 81-s − 8·86-s + 2·98-s − 4·106-s + 2·107-s − 2·109-s + 2·113-s − 2·116-s − 5·121-s − 8·126-s + 127-s + ⋯ |
L(s) = 1 | + 2·2-s + 4-s − 2·7-s + 2·9-s − 4·14-s + 4·18-s − 2·28-s − 2·29-s + 2·36-s − 4·43-s + 49-s − 2·53-s − 4·58-s − 4·63-s − 2·67-s − 12·79-s + 81-s − 8·86-s + 2·98-s − 4·106-s + 2·107-s − 2·109-s + 2·113-s − 2·116-s − 5·121-s − 8·126-s + 127-s + ⋯ |
Λ(s)=(=((248⋅712⋅2912)s/2ΓC(s)12L(s)Λ(1−s)
Λ(s)=(=((248⋅712⋅2912)s/2ΓC(s)12L(s)Λ(1−s)
Particular Values
L(21) |
≈ |
0.9187158585 |
L(21) |
≈ |
0.9187158585 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | (1−T+T2−T3+T4−T5+T6)2 |
| 7 | (1+T+T2+T3+T4+T5+T6)2 |
| 29 | (1+T+T2+T3+T4+T5+T6)2 |
good | 3 | (1−T2+T4−T6+T8−T10+T12)2 |
| 5 | 1−T4+T8−T12+T16−T20+T24 |
| 11 | (1+T2)6(1−T2+T4−T6+T8−T10+T12) |
| 13 | 1−T4+T8−T12+T16−T20+T24 |
| 17 | (1+T4)6 |
| 19 | (1−T2+T4−T6+T8−T10+T12)2 |
| 23 | (1−T2+T4−T6+T8−T10+T12)2 |
| 31 | 1−T4+T8−T12+T16−T20+T24 |
| 37 | (1−T2+T4−T6+T8−T10+T12)2 |
| 41 | (1+T4)6 |
| 43 | (1+T+T2+T3+T4+T5+T6)4 |
| 47 | 1−T4+T8−T12+T16−T20+T24 |
| 53 | (1+T+T2+T3+T4+T5+T6)2(1−T2+T4−T6+T8−T10+T12) |
| 59 | (1+T4)6 |
| 61 | (1−T+T2−T3+T4−T5+T6)2(1+T+T2+T3+T4+T5+T6)2 |
| 67 | (1+T+T2+T3+T4+T5+T6)2(1−T2+T4−T6+T8−T10+T12) |
| 71 | (1−T2+T4−T6+T8−T10+T12)2 |
| 73 | 1−T4+T8−T12+T16−T20+T24 |
| 79 | (1+T)12(1−T2+T4−T6+T8−T10+T12) |
| 83 | 1−T4+T8−T12+T16−T20+T24 |
| 89 | 1−T4+T8−T12+T16−T20+T24 |
| 97 | 1−T4+T8−T12+T16−T20+T24 |
show more | |
show less | |
L(s)=p∏ j=1∏24(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−2.99599150712857934941975770975, −2.96642885580976668833550417873, −2.90351166938755651144905297906, −2.73396214808628871645455393542, −2.48483352522857650389283157982, −2.44720181430312701323687841018, −2.32436560840621680276068853852, −2.27275103590952278915121683865, −2.19839818101697887045045046020, −2.05846576136210007949601661612, −1.92141718426481951010729312967, −1.88226202474570688424354551503, −1.87432723604898567349223508544, −1.74291324757815386648191074569, −1.58437005044490372033492446984, −1.50252191565474728465265066436, −1.41089130116961254677077454335, −1.36883316249414105390877704973, −1.34298662864208781908689187042, −1.14805958862100758529039845766, −1.11764691974148437954694957138, −0.962047704168188146380143389449, −0.55640568988175825485423691521, −0.34124707707942638013141617663, −0.21665812015984317353191543278,
0.21665812015984317353191543278, 0.34124707707942638013141617663, 0.55640568988175825485423691521, 0.962047704168188146380143389449, 1.11764691974148437954694957138, 1.14805958862100758529039845766, 1.34298662864208781908689187042, 1.36883316249414105390877704973, 1.41089130116961254677077454335, 1.50252191565474728465265066436, 1.58437005044490372033492446984, 1.74291324757815386648191074569, 1.87432723604898567349223508544, 1.88226202474570688424354551503, 1.92141718426481951010729312967, 2.05846576136210007949601661612, 2.19839818101697887045045046020, 2.27275103590952278915121683865, 2.32436560840621680276068853852, 2.44720181430312701323687841018, 2.48483352522857650389283157982, 2.73396214808628871645455393542, 2.90351166938755651144905297906, 2.96642885580976668833550417873, 2.99599150712857934941975770975
Plot not available for L-functions of degree greater than 10.