L(s) = 1 | + 2·2-s + 4-s − 2·7-s + 2·9-s − 4·14-s + 4·18-s − 2·28-s − 2·29-s + 2·36-s − 4·43-s + 49-s − 2·53-s − 4·58-s − 4·63-s − 2·67-s − 12·79-s + 81-s − 8·86-s + 2·98-s − 4·106-s + 2·107-s − 2·109-s + 2·113-s − 2·116-s − 5·121-s − 8·126-s + 127-s + ⋯ |
L(s) = 1 | + 2·2-s + 4-s − 2·7-s + 2·9-s − 4·14-s + 4·18-s − 2·28-s − 2·29-s + 2·36-s − 4·43-s + 49-s − 2·53-s − 4·58-s − 4·63-s − 2·67-s − 12·79-s + 81-s − 8·86-s + 2·98-s − 4·106-s + 2·107-s − 2·109-s + 2·113-s − 2·116-s − 5·121-s − 8·126-s + 127-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{48} \cdot 7^{12} \cdot 29^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{48} \cdot 7^{12} \cdot 29^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9187158585\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9187158585\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} )^{2} \) |
| 7 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} )^{2} \) |
| 29 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} )^{2} \) |
good | 3 | \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} )^{2} \) |
| 5 | \( 1 - T^{4} + T^{8} - T^{12} + T^{16} - T^{20} + T^{24} \) |
| 11 | \( ( 1 + T^{2} )^{6}( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} ) \) |
| 13 | \( 1 - T^{4} + T^{8} - T^{12} + T^{16} - T^{20} + T^{24} \) |
| 17 | \( ( 1 + T^{4} )^{6} \) |
| 19 | \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} )^{2} \) |
| 23 | \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} )^{2} \) |
| 31 | \( 1 - T^{4} + T^{8} - T^{12} + T^{16} - T^{20} + T^{24} \) |
| 37 | \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} )^{2} \) |
| 41 | \( ( 1 + T^{4} )^{6} \) |
| 43 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} )^{4} \) |
| 47 | \( 1 - T^{4} + T^{8} - T^{12} + T^{16} - T^{20} + T^{24} \) |
| 53 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} )^{2}( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} ) \) |
| 59 | \( ( 1 + T^{4} )^{6} \) |
| 61 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} )^{2} \) |
| 67 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} )^{2}( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} ) \) |
| 71 | \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} )^{2} \) |
| 73 | \( 1 - T^{4} + T^{8} - T^{12} + T^{16} - T^{20} + T^{24} \) |
| 79 | \( ( 1 + T )^{12}( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} ) \) |
| 83 | \( 1 - T^{4} + T^{8} - T^{12} + T^{16} - T^{20} + T^{24} \) |
| 89 | \( 1 - T^{4} + T^{8} - T^{12} + T^{16} - T^{20} + T^{24} \) |
| 97 | \( 1 - T^{4} + T^{8} - T^{12} + T^{16} - T^{20} + T^{24} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{24} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−2.99599150712857934941975770975, −2.96642885580976668833550417873, −2.90351166938755651144905297906, −2.73396214808628871645455393542, −2.48483352522857650389283157982, −2.44720181430312701323687841018, −2.32436560840621680276068853852, −2.27275103590952278915121683865, −2.19839818101697887045045046020, −2.05846576136210007949601661612, −1.92141718426481951010729312967, −1.88226202474570688424354551503, −1.87432723604898567349223508544, −1.74291324757815386648191074569, −1.58437005044490372033492446984, −1.50252191565474728465265066436, −1.41089130116961254677077454335, −1.36883316249414105390877704973, −1.34298662864208781908689187042, −1.14805958862100758529039845766, −1.11764691974148437954694957138, −0.962047704168188146380143389449, −0.55640568988175825485423691521, −0.34124707707942638013141617663, −0.21665812015984317353191543278,
0.21665812015984317353191543278, 0.34124707707942638013141617663, 0.55640568988175825485423691521, 0.962047704168188146380143389449, 1.11764691974148437954694957138, 1.14805958862100758529039845766, 1.34298662864208781908689187042, 1.36883316249414105390877704973, 1.41089130116961254677077454335, 1.50252191565474728465265066436, 1.58437005044490372033492446984, 1.74291324757815386648191074569, 1.87432723604898567349223508544, 1.88226202474570688424354551503, 1.92141718426481951010729312967, 2.05846576136210007949601661612, 2.19839818101697887045045046020, 2.27275103590952278915121683865, 2.32436560840621680276068853852, 2.44720181430312701323687841018, 2.48483352522857650389283157982, 2.73396214808628871645455393542, 2.90351166938755651144905297906, 2.96642885580976668833550417873, 2.99599150712857934941975770975
Plot not available for L-functions of degree greater than 10.