Properties

Label 3248.1.dt.b.2323.1
Level $3248$
Weight $1$
Character 3248.2323
Analytic conductor $1.621$
Analytic rank $0$
Dimension $12$
Projective image $D_{28}$
CM discriminant -7
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3248,1,Mod(27,3248)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3248, base_ring=CyclotomicField(28))
 
chi = DirichletCharacter(H, H._module([14, 7, 14, 15]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3248.27");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3248 = 2^{4} \cdot 7 \cdot 29 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3248.dt (of order \(28\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.62096316103\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\Q(\zeta_{28})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{10} + x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{28}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{28} + \cdots)\)

Embedding invariants

Embedding label 2323.1
Root \(0.974928 - 0.222521i\) of defining polynomial
Character \(\chi\) \(=\) 3248.2323
Dual form 3248.1.dt.b.2939.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.222521 - 0.974928i) q^{2} +(-0.900969 - 0.433884i) q^{4} +(-0.900969 - 0.433884i) q^{7} +(-0.623490 + 0.781831i) q^{8} +(-0.623490 - 0.781831i) q^{9} +O(q^{10})\) \(q+(0.222521 - 0.974928i) q^{2} +(-0.900969 - 0.433884i) q^{4} +(-0.900969 - 0.433884i) q^{7} +(-0.623490 + 0.781831i) q^{8} +(-0.623490 - 0.781831i) q^{9} +(0.974928 - 1.22252i) q^{11} +(-0.623490 + 0.781831i) q^{14} +(0.623490 + 0.781831i) q^{16} +(-0.900969 + 0.433884i) q^{18} +(-0.974928 - 1.22252i) q^{22} +(-0.193096 + 0.846011i) q^{23} +(-0.433884 - 0.900969i) q^{25} +(0.623490 + 0.781831i) q^{28} +(-0.900969 + 0.433884i) q^{29} +(0.900969 - 0.433884i) q^{32} +(0.222521 + 0.974928i) q^{36} +(-1.21572 - 1.52446i) q^{37} +(-0.445042 + 1.94986i) q^{43} +(-1.40881 + 0.678448i) q^{44} +(0.781831 + 0.376510i) q^{46} +(0.623490 + 0.781831i) q^{49} +(-0.974928 + 0.222521i) q^{50} +(-1.68280 - 1.05737i) q^{53} +(0.900969 - 0.433884i) q^{56} +(0.222521 + 0.974928i) q^{58} +(0.222521 + 0.974928i) q^{63} +(-0.222521 - 0.974928i) q^{64} +(0.0739590 - 0.656405i) q^{67} +(-0.347948 - 0.277479i) q^{71} +1.00000 q^{72} +(-1.75676 + 0.846011i) q^{74} +(-1.40881 + 0.678448i) q^{77} +(-0.0250721 + 0.222521i) q^{79} +(-0.222521 + 0.974928i) q^{81} +(1.80194 + 0.867767i) q^{86} +(0.347948 + 1.52446i) q^{88} +(0.541044 - 0.678448i) q^{92} +(0.900969 - 0.433884i) q^{98} -1.56366 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{2} - 2 q^{4} - 2 q^{7} + 2 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + 2 q^{2} - 2 q^{4} - 2 q^{7} + 2 q^{8} + 2 q^{9} + 2 q^{14} - 2 q^{16} - 2 q^{18} - 2 q^{28} - 2 q^{29} + 2 q^{32} + 2 q^{36} - 4 q^{43} - 2 q^{49} - 2 q^{53} + 2 q^{56} + 2 q^{58} + 2 q^{63} - 2 q^{64} - 2 q^{67} + 12 q^{72} - 12 q^{79} - 2 q^{81} + 4 q^{86} + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3248\mathbb{Z}\right)^\times\).

\(n\) \(465\) \(785\) \(2031\) \(2437\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{28}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.222521 0.974928i 0.222521 0.974928i
\(3\) 0 0 0.433884 0.900969i \(-0.357143\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(4\) −0.900969 0.433884i −0.900969 0.433884i
\(5\) 0 0 0.532032 0.846724i \(-0.321429\pi\)
−0.532032 + 0.846724i \(0.678571\pi\)
\(6\) 0 0
\(7\) −0.900969 0.433884i −0.900969 0.433884i
\(8\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(9\) −0.623490 0.781831i −0.623490 0.781831i
\(10\) 0 0
\(11\) 0.974928 1.22252i 0.974928 1.22252i 1.00000i \(-0.5\pi\)
0.974928 0.222521i \(-0.0714286\pi\)
\(12\) 0 0
\(13\) 0 0 −0.111964 0.993712i \(-0.535714\pi\)
0.111964 + 0.993712i \(0.464286\pi\)
\(14\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(15\) 0 0
\(16\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(17\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(18\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(19\) 0 0 −0.433884 0.900969i \(-0.642857\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −0.974928 1.22252i −0.974928 1.22252i
\(23\) −0.193096 + 0.846011i −0.193096 + 0.846011i 0.781831 + 0.623490i \(0.214286\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(24\) 0 0
\(25\) −0.433884 0.900969i −0.433884 0.900969i
\(26\) 0 0
\(27\) 0 0
\(28\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(29\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(30\) 0 0
\(31\) 0 0 0.532032 0.846724i \(-0.321429\pi\)
−0.532032 + 0.846724i \(0.678571\pi\)
\(32\) 0.900969 0.433884i 0.900969 0.433884i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(37\) −1.21572 1.52446i −1.21572 1.52446i −0.781831 0.623490i \(-0.785714\pi\)
−0.433884 0.900969i \(-0.642857\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(42\) 0 0
\(43\) −0.445042 + 1.94986i −0.445042 + 1.94986i −0.222521 + 0.974928i \(0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(44\) −1.40881 + 0.678448i −1.40881 + 0.678448i
\(45\) 0 0
\(46\) 0.781831 + 0.376510i 0.781831 + 0.376510i
\(47\) 0 0 −0.111964 0.993712i \(-0.535714\pi\)
0.111964 + 0.993712i \(0.464286\pi\)
\(48\) 0 0
\(49\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(50\) −0.974928 + 0.222521i −0.974928 + 0.222521i
\(51\) 0 0
\(52\) 0 0
\(53\) −1.68280 1.05737i −1.68280 1.05737i −0.900969 0.433884i \(-0.857143\pi\)
−0.781831 0.623490i \(-0.785714\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0.900969 0.433884i 0.900969 0.433884i
\(57\) 0 0
\(58\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(59\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(60\) 0 0
\(61\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(62\) 0 0
\(63\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(64\) −0.222521 0.974928i −0.222521 0.974928i
\(65\) 0 0
\(66\) 0 0
\(67\) 0.0739590 0.656405i 0.0739590 0.656405i −0.900969 0.433884i \(-0.857143\pi\)
0.974928 0.222521i \(-0.0714286\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −0.347948 0.277479i −0.347948 0.277479i 0.433884 0.900969i \(-0.357143\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(72\) 1.00000 1.00000
\(73\) 0 0 −0.532032 0.846724i \(-0.678571\pi\)
0.532032 + 0.846724i \(0.321429\pi\)
\(74\) −1.75676 + 0.846011i −1.75676 + 0.846011i
\(75\) 0 0
\(76\) 0 0
\(77\) −1.40881 + 0.678448i −1.40881 + 0.678448i
\(78\) 0 0
\(79\) −0.0250721 + 0.222521i −0.0250721 + 0.222521i 0.974928 + 0.222521i \(0.0714286\pi\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(82\) 0 0
\(83\) 0 0 0.330279 0.943883i \(-0.392857\pi\)
−0.330279 + 0.943883i \(0.607143\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 1.80194 + 0.867767i 1.80194 + 0.867767i
\(87\) 0 0
\(88\) 0.347948 + 1.52446i 0.347948 + 1.52446i
\(89\) 0 0 0.532032 0.846724i \(-0.321429\pi\)
−0.532032 + 0.846724i \(0.678571\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0.541044 0.678448i 0.541044 0.678448i
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 −0.943883 0.330279i \(-0.892857\pi\)
0.943883 + 0.330279i \(0.107143\pi\)
\(98\) 0.900969 0.433884i 0.900969 0.433884i
\(99\) −1.56366 −1.56366
\(100\) 1.00000i 1.00000i
\(101\) 0 0 −0.974928 0.222521i \(-0.928571\pi\)
0.974928 + 0.222521i \(0.0714286\pi\)
\(102\) 0 0
\(103\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −1.40532 + 1.40532i −1.40532 + 1.40532i
\(107\) −0.189606 + 1.68280i −0.189606 + 1.68280i 0.433884 + 0.900969i \(0.357143\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(108\) 0 0
\(109\) 1.59842 0.559311i 1.59842 0.559311i 0.623490 0.781831i \(-0.285714\pi\)
0.974928 + 0.222521i \(0.0714286\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −0.222521 0.974928i −0.222521 0.974928i
\(113\) −0.623490 1.78183i −0.623490 1.78183i −0.623490 0.781831i \(-0.714286\pi\)
1.00000i \(-0.5\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 1.00000 1.00000
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −0.321552 1.40881i −0.321552 1.40881i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 1.00000 1.00000
\(127\) −1.87590 + 0.211363i −1.87590 + 0.211363i −0.974928 0.222521i \(-0.928571\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(128\) −1.00000 −1.00000
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −0.623490 0.218169i −0.623490 0.218169i
\(135\) 0 0
\(136\) 0 0
\(137\) 0.158342 1.40532i 0.158342 1.40532i −0.623490 0.781831i \(-0.714286\pi\)
0.781831 0.623490i \(-0.214286\pi\)
\(138\) 0 0
\(139\) 0 0 0.846724 0.532032i \(-0.178571\pi\)
−0.846724 + 0.532032i \(0.821429\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −0.347948 + 0.277479i −0.347948 + 0.277479i
\(143\) 0 0
\(144\) 0.222521 0.974928i 0.222521 0.974928i
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0.433884 + 1.90097i 0.433884 + 1.90097i
\(149\) 1.78183 + 0.623490i 1.78183 + 0.623490i 1.00000 \(0\)
0.781831 + 0.623490i \(0.214286\pi\)
\(150\) 0 0
\(151\) −1.21572 0.277479i −1.21572 0.277479i −0.433884 0.900969i \(-0.642857\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0.347948 + 1.52446i 0.347948 + 1.52446i
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) 0.211363 + 0.0739590i 0.211363 + 0.0739590i
\(159\) 0 0
\(160\) 0 0
\(161\) 0.541044 0.678448i 0.541044 0.678448i
\(162\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(163\) 1.21572 1.52446i 1.21572 1.52446i 0.433884 0.900969i \(-0.357143\pi\)
0.781831 0.623490i \(-0.214286\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.433884 0.900969i \(-0.357143\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(168\) 0 0
\(169\) −0.974928 + 0.222521i −0.974928 + 0.222521i
\(170\) 0 0
\(171\) 0 0
\(172\) 1.24698 1.56366i 1.24698 1.56366i
\(173\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(174\) 0 0
\(175\) 1.00000i 1.00000i
\(176\) 1.56366 1.56366
\(177\) 0 0
\(178\) 0 0
\(179\) 1.05737 1.68280i 1.05737 1.68280i 0.433884 0.900969i \(-0.357143\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(180\) 0 0
\(181\) 0 0 0.943883 0.330279i \(-0.107143\pi\)
−0.943883 + 0.330279i \(0.892857\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −0.541044 0.678448i −0.541044 0.678448i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0.752407 + 0.752407i 0.752407 + 0.752407i 0.974928 0.222521i \(-0.0714286\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(192\) 0 0
\(193\) 0.559311 1.59842i 0.559311 1.59842i −0.222521 0.974928i \(-0.571429\pi\)
0.781831 0.623490i \(-0.214286\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −0.222521 0.974928i −0.222521 0.974928i
\(197\) 0.566116 + 0.900969i 0.566116 + 0.900969i 1.00000 \(0\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(198\) −0.347948 + 1.52446i −0.347948 + 1.52446i
\(199\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(200\) 0.974928 + 0.222521i 0.974928 + 0.222521i
\(201\) 0 0
\(202\) 0 0
\(203\) 1.00000 1.00000
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0.781831 0.376510i 0.781831 0.376510i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 1.12349 + 1.40881i 1.12349 + 1.40881i 0.900969 + 0.433884i \(0.142857\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(212\) 1.05737 + 1.68280i 1.05737 + 1.68280i
\(213\) 0 0
\(214\) 1.59842 + 0.559311i 1.59842 + 0.559311i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −0.189606 1.68280i −0.189606 1.68280i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.781831 0.623490i \(-0.214286\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(224\) −1.00000 −1.00000
\(225\) −0.433884 + 0.900969i −0.433884 + 0.900969i
\(226\) −1.87590 + 0.211363i −1.87590 + 0.211363i
\(227\) 0 0 −0.846724 0.532032i \(-0.821429\pi\)
0.846724 + 0.532032i \(0.178571\pi\)
\(228\) 0 0
\(229\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0.222521 0.974928i 0.222521 0.974928i
\(233\) 1.94986i 1.94986i −0.222521 0.974928i \(-0.571429\pi\)
0.222521 0.974928i \(-0.428571\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0.846011 1.75676i 0.846011 1.75676i 0.222521 0.974928i \(-0.428571\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(240\) 0 0
\(241\) 0 0 0.781831 0.623490i \(-0.214286\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(242\) −1.44504 −1.44504
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(252\) 0.222521 0.974928i 0.222521 0.974928i
\(253\) 0.846011 + 1.06086i 0.846011 + 1.06086i
\(254\) −0.211363 + 1.87590i −0.211363 + 1.87590i
\(255\) 0 0
\(256\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(257\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(258\) 0 0
\(259\) 0.433884 + 1.90097i 0.433884 + 1.90097i
\(260\) 0 0
\(261\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(262\) 0 0
\(263\) 0.900969 + 0.566116i 0.900969 + 0.566116i 0.900969 0.433884i \(-0.142857\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −0.351438 + 0.559311i −0.351438 + 0.559311i
\(269\) 0 0 0.781831 0.623490i \(-0.214286\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(270\) 0 0
\(271\) 0 0 0.330279 0.943883i \(-0.392857\pi\)
−0.330279 + 0.943883i \(0.607143\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −1.33485 0.467085i −1.33485 0.467085i
\(275\) −1.52446 0.347948i −1.52446 0.347948i
\(276\) 0 0
\(277\) 0.211363 + 1.87590i 0.211363 + 1.87590i 0.433884 + 0.900969i \(0.357143\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1.40881 1.12349i 1.40881 1.12349i 0.433884 0.900969i \(-0.357143\pi\)
0.974928 0.222521i \(-0.0714286\pi\)
\(282\) 0 0
\(283\) 0 0 0.943883 0.330279i \(-0.107143\pi\)
−0.943883 + 0.330279i \(0.892857\pi\)
\(284\) 0.193096 + 0.400969i 0.193096 + 0.400969i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −0.900969 0.433884i −0.900969 0.433884i
\(289\) 1.00000i 1.00000i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 0.433884 0.900969i \(-0.357143\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 1.94986 1.94986
\(297\) 0 0
\(298\) 1.00435 1.59842i 1.00435 1.59842i
\(299\) 0 0
\(300\) 0 0
\(301\) 1.24698 1.56366i 1.24698 1.56366i
\(302\) −0.541044 + 1.12349i −0.541044 + 1.12349i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 1.56366 1.56366
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.993712 0.111964i \(-0.964286\pi\)
0.993712 + 0.111964i \(0.0357143\pi\)
\(312\) 0 0
\(313\) 0 0 −0.974928 0.222521i \(-0.928571\pi\)
0.974928 + 0.222521i \(0.0714286\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0.119137 0.189606i 0.119137 0.189606i
\(317\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(318\) 0 0
\(319\) −0.347948 + 1.52446i −0.347948 + 1.52446i
\(320\) 0 0
\(321\) 0 0
\(322\) −0.541044 0.678448i −0.541044 0.678448i
\(323\) 0 0
\(324\) 0.623490 0.781831i 0.623490 0.781831i
\(325\) 0 0
\(326\) −1.21572 1.52446i −1.21572 1.52446i
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 1.56366i 1.56366i 0.623490 + 0.781831i \(0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(332\) 0 0
\(333\) −0.433884 + 1.90097i −0.433884 + 1.90097i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −1.97493 + 0.222521i −1.97493 + 0.222521i −0.974928 + 0.222521i \(0.928571\pi\)
−1.00000 \(\pi\)
\(338\) 1.00000i 1.00000i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −0.222521 0.974928i −0.222521 0.974928i
\(344\) −1.24698 1.56366i −1.24698 1.56366i
\(345\) 0 0
\(346\) 0 0
\(347\) 0.752407 0.752407i 0.752407 0.752407i −0.222521 0.974928i \(-0.571429\pi\)
0.974928 + 0.222521i \(0.0714286\pi\)
\(348\) 0 0
\(349\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(350\) 0.974928 + 0.222521i 0.974928 + 0.222521i
\(351\) 0 0
\(352\) 0.347948 1.52446i 0.347948 1.52446i
\(353\) 0 0 0.974928 0.222521i \(-0.0714286\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) −1.40532 1.40532i −1.40532 1.40532i
\(359\) −0.189606 1.68280i −0.189606 1.68280i −0.623490 0.781831i \(-0.714286\pi\)
0.433884 0.900969i \(-0.357143\pi\)
\(360\) 0 0
\(361\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.943883 0.330279i \(-0.892857\pi\)
0.943883 + 0.330279i \(0.107143\pi\)
\(368\) −0.781831 + 0.376510i −0.781831 + 0.376510i
\(369\) 0 0
\(370\) 0 0
\(371\) 1.05737 + 1.68280i 1.05737 + 1.68280i
\(372\) 0 0
\(373\) 0.656405 1.87590i 0.656405 1.87590i 0.222521 0.974928i \(-0.428571\pi\)
0.433884 0.900969i \(-0.357143\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −0.0990311 0.433884i −0.0990311 0.433884i 0.900969 0.433884i \(-0.142857\pi\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0.900969 0.566116i 0.900969 0.566116i
\(383\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −1.43388 0.900969i −1.43388 0.900969i
\(387\) 1.80194 0.867767i 1.80194 0.867767i
\(388\) 0 0
\(389\) −1.94986 −1.94986 −0.974928 0.222521i \(-0.928571\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −1.00000 −1.00000
\(393\) 0 0
\(394\) 1.00435 0.351438i 1.00435 0.351438i
\(395\) 0 0
\(396\) 1.40881 + 0.678448i 1.40881 + 0.678448i
\(397\) 0 0 0.111964 0.993712i \(-0.464286\pi\)
−0.111964 + 0.993712i \(0.535714\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0.433884 0.900969i 0.433884 0.900969i
\(401\) 0.277479 + 1.21572i 0.277479 + 1.21572i 0.900969 + 0.433884i \(0.142857\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0.222521 0.974928i 0.222521 0.974928i
\(407\) −3.04892 −3.04892
\(408\) 0 0
\(409\) 0 0 −0.330279 0.943883i \(-0.607143\pi\)
0.330279 + 0.943883i \(0.392857\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) −0.193096 0.846011i −0.193096 0.846011i
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 0.993712 0.111964i \(-0.0357143\pi\)
−0.993712 + 0.111964i \(0.964286\pi\)
\(420\) 0 0
\(421\) 0.193096 0.846011i 0.193096 0.846011i −0.781831 0.623490i \(-0.785714\pi\)
0.974928 0.222521i \(-0.0714286\pi\)
\(422\) 1.62349 0.781831i 1.62349 0.781831i
\(423\) 0 0
\(424\) 1.87590 0.656405i 1.87590 0.656405i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0.900969 1.43388i 0.900969 1.43388i
\(429\) 0 0
\(430\) 0 0
\(431\) −0.376510 0.781831i −0.376510 0.781831i 0.623490 0.781831i \(-0.285714\pi\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 0 0 0.532032 0.846724i \(-0.321429\pi\)
−0.532032 + 0.846724i \(0.678571\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −1.68280 0.189606i −1.68280 0.189606i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.433884 0.900969i \(-0.642857\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(440\) 0 0
\(441\) 0.222521 0.974928i 0.222521 0.974928i
\(442\) 0 0
\(443\) 0.974928 0.777479i 0.974928 0.777479i 1.00000i \(-0.5\pi\)
0.974928 + 0.222521i \(0.0714286\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(449\) −0.119137 0.189606i −0.119137 0.189606i 0.781831 0.623490i \(-0.214286\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(450\) 0.781831 + 0.623490i 0.781831 + 0.623490i
\(451\) 0 0
\(452\) −0.211363 + 1.87590i −0.211363 + 1.87590i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −0.781831 0.376510i −0.781831 0.376510i 1.00000i \(-0.5\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 0.433884 0.900969i \(-0.357143\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(462\) 0 0
\(463\) 1.56366 1.56366 0.781831 0.623490i \(-0.214286\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(464\) −0.900969 0.433884i −0.900969 0.433884i
\(465\) 0 0
\(466\) −1.90097 0.433884i −1.90097 0.433884i
\(467\) 0 0 0.433884 0.900969i \(-0.357143\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(468\) 0 0
\(469\) −0.351438 + 0.559311i −0.351438 + 0.559311i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.94986 + 2.44504i 1.94986 + 2.44504i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0.222521 + 1.97493i 0.222521 + 1.97493i
\(478\) −1.52446 1.21572i −1.52446 1.21572i
\(479\) 0 0 −0.532032 0.846724i \(-0.678571\pi\)
0.532032 + 0.846724i \(0.321429\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −0.321552 + 1.40881i −0.321552 + 1.40881i
\(485\) 0 0
\(486\) 0 0
\(487\) −0.0990311 + 0.433884i −0.0990311 + 0.433884i 0.900969 + 0.433884i \(0.142857\pi\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0.846011 0.193096i 0.846011 0.193096i 0.222521 0.974928i \(-0.428571\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0.193096 + 0.400969i 0.193096 + 0.400969i
\(498\) 0 0
\(499\) −1.43388 + 0.900969i −1.43388 + 0.900969i −0.433884 + 0.900969i \(0.642857\pi\)
−1.00000 \(1.00000\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.943883 0.330279i \(-0.892857\pi\)
0.943883 + 0.330279i \(0.107143\pi\)
\(504\) −0.900969 0.433884i −0.900969 0.433884i
\(505\) 0 0
\(506\) 1.22252 0.588735i 1.22252 0.588735i
\(507\) 0 0
\(508\) 1.78183 + 0.623490i 1.78183 + 0.623490i
\(509\) 0 0 0.993712 0.111964i \(-0.0357143\pi\)
−0.993712 + 0.111964i \(0.964286\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 1.94986 1.94986
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0.623490 0.781831i 0.623490 0.781831i
\(523\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0.752407 0.752407i 0.752407 0.752407i
\(527\) 0 0
\(528\) 0 0
\(529\) 0.222521 + 0.107160i 0.222521 + 0.107160i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0.467085 + 0.467085i 0.467085 + 0.467085i
\(537\) 0 0
\(538\) 0 0
\(539\) 1.56366 1.56366
\(540\) 0 0
\(541\) 1.12349 0.541044i 1.12349 0.541044i 0.222521 0.974928i \(-0.428571\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −0.0739590 + 0.211363i −0.0739590 + 0.211363i −0.974928 0.222521i \(-0.928571\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(548\) −0.752407 + 1.19745i −0.752407 + 1.19745i
\(549\) 0 0
\(550\) −0.678448 + 1.40881i −0.678448 + 1.40881i
\(551\) 0 0
\(552\) 0 0
\(553\) 0.119137 0.189606i 0.119137 0.189606i
\(554\) 1.87590 + 0.211363i 1.87590 + 0.211363i
\(555\) 0 0
\(556\) 0 0
\(557\) −0.119137 0.189606i −0.119137 0.189606i 0.781831 0.623490i \(-0.214286\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −0.781831 1.62349i −0.781831 1.62349i
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0.623490 0.781831i 0.623490 0.781831i
\(568\) 0.433884 0.0990311i 0.433884 0.0990311i
\(569\) −0.119137 1.05737i −0.119137 1.05737i −0.900969 0.433884i \(-0.857143\pi\)
0.781831 0.623490i \(-0.214286\pi\)
\(570\) 0 0
\(571\) 0.0250721 0.222521i 0.0250721 0.222521i −0.974928 0.222521i \(-0.928571\pi\)
1.00000 \(0\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.846011 0.193096i 0.846011 0.193096i
\(576\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(577\) 0 0 −0.330279 0.943883i \(-0.607143\pi\)
0.330279 + 0.943883i \(0.392857\pi\)
\(578\) −0.974928 0.222521i −0.974928 0.222521i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −2.93327 + 1.02640i −2.93327 + 1.02640i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 −0.330279 0.943883i \(-0.607143\pi\)
0.330279 + 0.943883i \(0.392857\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0.433884 1.90097i 0.433884 1.90097i
\(593\) 0 0 −0.781831 0.623490i \(-0.785714\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1.33485 1.33485i −1.33485 1.33485i
\(597\) 0 0
\(598\) 0 0
\(599\) 0.467085 1.33485i 0.467085 1.33485i −0.433884 0.900969i \(-0.642857\pi\)
0.900969 0.433884i \(-0.142857\pi\)
\(600\) 0 0
\(601\) 0 0 0.111964 0.993712i \(-0.464286\pi\)
−0.111964 + 0.993712i \(0.535714\pi\)
\(602\) −1.24698 1.56366i −1.24698 1.56366i
\(603\) −0.559311 + 0.351438i −0.559311 + 0.351438i
\(604\) 0.974928 + 0.777479i 0.974928 + 0.777479i
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 −0.846724 0.532032i \(-0.821429\pi\)
0.846724 + 0.532032i \(0.178571\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −1.59842 0.559311i −1.59842 0.559311i −0.623490 0.781831i \(-0.714286\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0.347948 1.52446i 0.347948 1.52446i
\(617\) −1.97493 0.222521i −1.97493 0.222521i −0.974928 0.222521i \(-0.928571\pi\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 0 0 −0.433884 0.900969i \(-0.642857\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −0.678448 + 1.40881i −0.678448 + 1.40881i 0.222521 + 0.974928i \(0.428571\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(632\) −0.158342 0.158342i −0.158342 0.158342i
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 1.40881 + 0.678448i 1.40881 + 0.678448i
\(639\) 0.445042i 0.445042i
\(640\) 0 0
\(641\) 1.00435 0.351438i 1.00435 0.351438i 0.222521 0.974928i \(-0.428571\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(642\) 0 0
\(643\) 0 0 0.532032 0.846724i \(-0.321429\pi\)
−0.532032 + 0.846724i \(0.678571\pi\)
\(644\) −0.781831 + 0.376510i −0.781831 + 0.376510i
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.781831 0.623490i \(-0.214286\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(648\) −0.623490 0.781831i −0.623490 0.781831i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −1.75676 + 0.846011i −1.75676 + 0.846011i
\(653\) 1.52446 + 0.347948i 1.52446 + 0.347948i 0.900969 0.433884i \(-0.142857\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −0.347948 + 0.277479i −0.347948 + 0.277479i −0.781831 0.623490i \(-0.785714\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(660\) 0 0
\(661\) 0 0 −0.532032 0.846724i \(-0.678571\pi\)
0.532032 + 0.846724i \(0.321429\pi\)
\(662\) 1.52446 + 0.347948i 1.52446 + 0.347948i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 1.75676 + 0.846011i 1.75676 + 0.846011i
\(667\) −0.193096 0.846011i −0.193096 0.846011i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −1.75676 0.400969i −1.75676 0.400969i −0.781831 0.623490i \(-0.785714\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(674\) −0.222521 + 1.97493i −0.222521 + 1.97493i
\(675\) 0 0
\(676\) 0.974928 + 0.222521i 0.974928 + 0.222521i
\(677\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0.222521 0.0250721i 0.222521 0.0250721i 1.00000i \(-0.5\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −1.00000 −1.00000
\(687\) 0 0
\(688\) −1.80194 + 0.867767i −1.80194 + 0.867767i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 −0.846724 0.532032i \(-0.821429\pi\)
0.846724 + 0.532032i \(0.178571\pi\)
\(692\) 0 0
\(693\) 1.40881 + 0.678448i 1.40881 + 0.678448i
\(694\) −0.566116 0.900969i −0.566116 0.900969i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0.433884 0.900969i 0.433884 0.900969i
\(701\) −0.189606 0.119137i −0.189606 0.119137i 0.433884 0.900969i \(-0.357143\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −1.40881 0.678448i −1.40881 0.678448i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −0.656405 + 0.0739590i −0.656405 + 0.0739590i −0.433884 0.900969i \(-0.642857\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(710\) 0 0
\(711\) 0.189606 0.119137i 0.189606 0.119137i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −1.68280 + 1.05737i −1.68280 + 1.05737i
\(717\) 0 0
\(718\) −1.68280 0.189606i −1.68280 0.189606i
\(719\) 0 0 −0.974928 0.222521i \(-0.928571\pi\)
0.974928 + 0.222521i \(0.0714286\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(723\) 0 0
\(724\) 0 0
\(725\) 0.781831 + 0.623490i 0.781831 + 0.623490i
\(726\) 0 0
\(727\) 0 0 −0.846724 0.532032i \(-0.821429\pi\)
0.846724 + 0.532032i \(0.178571\pi\)
\(728\) 0 0
\(729\) 0.900969 0.433884i 0.900969 0.433884i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 0.781831 0.623490i \(-0.214286\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0.193096 + 0.846011i 0.193096 + 0.846011i
\(737\) −0.730364 0.730364i −0.730364 0.730364i
\(738\) 0 0
\(739\) −0.846011 0.193096i −0.846011 0.193096i −0.222521 0.974928i \(-0.571429\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 1.87590 0.656405i 1.87590 0.656405i
\(743\) 0.656405 0.0739590i 0.656405 0.0739590i 0.222521 0.974928i \(-0.428571\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −1.68280 1.05737i −1.68280 1.05737i
\(747\) 0 0
\(748\) 0 0
\(749\) 0.900969 1.43388i 0.900969 1.43388i
\(750\) 0 0
\(751\) −0.623490 + 0.218169i −0.623490 + 0.218169i −0.623490 0.781831i \(-0.714286\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −0.781831 + 1.62349i −0.781831 + 1.62349i 1.00000i \(0.5\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(758\) −0.445042 −0.445042
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.433884 0.900969i \(-0.357143\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(762\) 0 0
\(763\) −1.68280 0.189606i −1.68280 0.189606i
\(764\) −0.351438 1.00435i −0.351438 1.00435i
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 0.846724 0.532032i \(-0.178571\pi\)
−0.846724 + 0.532032i \(0.821429\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −1.19745 + 1.19745i −1.19745 + 1.19745i
\(773\) 0 0 −0.433884 0.900969i \(-0.642857\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(774\) −0.445042 1.94986i −0.445042 1.94986i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) −0.433884 + 1.90097i −0.433884 + 1.90097i
\(779\) 0 0
\(780\) 0 0
\(781\) −0.678448 + 0.154851i −0.678448 + 0.154851i
\(782\) 0 0
\(783\) 0 0
\(784\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 −0.943883 0.330279i \(-0.892857\pi\)
0.943883 + 0.330279i \(0.107143\pi\)
\(788\) −0.119137 1.05737i −0.119137 1.05737i
\(789\) 0 0
\(790\) 0 0
\(791\) −0.211363 + 1.87590i −0.211363 + 1.87590i
\(792\) 0.974928 1.22252i 0.974928 1.22252i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −0.781831 0.623490i −0.781831 0.623490i
\(801\) 0 0
\(802\) 1.24698 1.24698
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.33485 0.467085i 1.33485 0.467085i 0.433884 0.900969i \(-0.357143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(810\) 0 0
\(811\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(812\) −0.900969 0.433884i −0.900969 0.433884i
\(813\) 0 0
\(814\) −0.678448 + 2.97247i −0.678448 + 2.97247i
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0.0739590 0.656405i 0.0739590 0.656405i −0.900969 0.433884i \(-0.857143\pi\)
0.974928 0.222521i \(-0.0714286\pi\)
\(822\) 0 0
\(823\) 0.189606 + 1.68280i 0.189606 + 1.68280i 0.623490 + 0.781831i \(0.285714\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.75676 + 0.400969i 1.75676 + 0.400969i 0.974928 0.222521i \(-0.0714286\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(828\) −0.867767 −0.867767
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 0.532032 0.846724i \(-0.321429\pi\)
−0.532032 + 0.846724i \(0.678571\pi\)
\(840\) 0 0
\(841\) 0.623490 0.781831i 0.623490 0.781831i
\(842\) −0.781831 0.376510i −0.781831 0.376510i
\(843\) 0 0
\(844\) −0.400969 1.75676i −0.400969 1.75676i
\(845\) 0 0
\(846\) 0 0
\(847\) −0.321552 + 1.40881i −0.321552 + 1.40881i
\(848\) −0.222521 1.97493i −0.222521 1.97493i
\(849\) 0 0
\(850\) 0 0
\(851\) 1.52446 0.734141i 1.52446 0.734141i
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −1.19745 1.19745i −1.19745 1.19745i
\(857\) 0 0 −0.781831 0.623490i \(-0.785714\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(858\) 0 0
\(859\) 0 0 −0.781831 0.623490i \(-0.785714\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −0.846011 + 0.193096i −0.846011 + 0.193096i
\(863\) −1.40881 0.678448i −1.40881 0.678448i −0.433884 0.900969i \(-0.642857\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0.247593 + 0.247593i 0.247593 + 0.247593i
\(870\) 0 0
\(871\) 0 0
\(872\) −0.559311 + 1.59842i −0.559311 + 1.59842i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −0.218169 0.623490i −0.218169 0.623490i 0.781831 0.623490i \(-0.214286\pi\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 −0.111964 0.993712i \(-0.535714\pi\)
0.111964 + 0.993712i \(0.464286\pi\)
\(882\) −0.900969 0.433884i −0.900969 0.433884i
\(883\) −1.05737 + 0.119137i −1.05737 + 0.119137i −0.623490 0.781831i \(-0.714286\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −0.541044 1.12349i −0.541044 1.12349i
\(887\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(888\) 0 0
\(889\) 1.78183 + 0.623490i 1.78183 + 0.623490i
\(890\) 0 0
\(891\) 0.974928 + 1.22252i 0.974928 + 1.22252i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(897\) 0 0
\(898\) −0.211363 + 0.0739590i −0.211363 + 0.0739590i
\(899\) 0 0
\(900\) 0.781831 0.623490i 0.781831 0.623490i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 1.78183 + 0.623490i 1.78183 + 0.623490i
\(905\) 0 0
\(906\) 0 0
\(907\) −1.40881 + 1.12349i −1.40881 + 1.12349i −0.433884 + 0.900969i \(0.642857\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(912\) 0 0
\(913\) 0 0
\(914\) −0.541044 + 0.678448i −0.541044 + 0.678448i
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −0.541044 0.678448i −0.541044 0.678448i 0.433884 0.900969i \(-0.357143\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −0.846011 + 1.75676i −0.846011 + 1.75676i
\(926\) 0.347948 1.52446i 0.347948 1.52446i
\(927\) 0 0
\(928\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −0.846011 + 1.75676i −0.846011 + 1.75676i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(938\) 0.467085 + 0.467085i 0.467085 + 0.467085i
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 −0.111964 0.993712i \(-0.535714\pi\)
0.111964 + 0.993712i \(0.464286\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 2.81762 1.35690i 2.81762 1.35690i
\(947\) 0.376510 + 0.781831i 0.376510 + 0.781831i 1.00000 \(0\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0.867767 + 1.80194i 0.867767 + 1.80194i 0.433884 + 0.900969i \(0.357143\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(954\) 1.97493 + 0.222521i 1.97493 + 0.222521i
\(955\) 0 0
\(956\) −1.52446 + 1.21572i −1.52446 + 1.21572i
\(957\) 0 0
\(958\) 0 0
\(959\) −0.752407 + 1.19745i −0.752407 + 1.19745i
\(960\) 0 0
\(961\) −0.433884 0.900969i −0.433884 0.900969i
\(962\) 0 0
\(963\) 1.43388 0.900969i 1.43388 0.900969i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 1.78183 + 0.623490i 1.78183 + 0.623490i 1.00000 \(0\)
0.781831 + 0.623490i \(0.214286\pi\)
\(968\) 1.30194 + 0.626980i 1.30194 + 0.626980i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0.400969 + 0.193096i 0.400969 + 0.193096i
\(975\) 0 0
\(976\) 0 0
\(977\) 1.21572 + 1.52446i 1.21572 + 1.52446i 0.781831 + 0.623490i \(0.214286\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −1.43388 0.900969i −1.43388 0.900969i
\(982\) 0.867767i 0.867767i
\(983\) 0 0 −0.330279 0.943883i \(-0.607143\pi\)
0.330279 + 0.943883i \(0.392857\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1.56366 0.753020i −1.56366 0.753020i
\(990\) 0 0
\(991\) −0.400969 1.75676i −0.400969 1.75676i −0.623490 0.781831i \(-0.714286\pi\)
0.222521 0.974928i \(-0.428571\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0.433884 0.0990311i 0.433884 0.0990311i
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 −0.781831 0.623490i \(-0.785714\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(998\) 0.559311 + 1.59842i 0.559311 + 1.59842i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3248.1.dt.b.2323.1 12
7.6 odd 2 CM 3248.1.dt.b.2323.1 12
16.11 odd 4 3248.1.ep.b.699.1 yes 12
29.10 odd 28 3248.1.ep.b.1315.1 yes 12
112.27 even 4 3248.1.ep.b.699.1 yes 12
203.97 even 28 3248.1.ep.b.1315.1 yes 12
464.155 even 28 inner 3248.1.dt.b.2939.1 yes 12
3248.2939 odd 28 inner 3248.1.dt.b.2939.1 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3248.1.dt.b.2323.1 12 1.1 even 1 trivial
3248.1.dt.b.2323.1 12 7.6 odd 2 CM
3248.1.dt.b.2939.1 yes 12 464.155 even 28 inner
3248.1.dt.b.2939.1 yes 12 3248.2939 odd 28 inner
3248.1.ep.b.699.1 yes 12 16.11 odd 4
3248.1.ep.b.699.1 yes 12 112.27 even 4
3248.1.ep.b.1315.1 yes 12 29.10 odd 28
3248.1.ep.b.1315.1 yes 12 203.97 even 28