L(s) = 1 | + 106·4-s + 586·9-s − 1.23e3·11-s + 4.84e3·16-s + 6.72e3·19-s − 4.61e3·29-s − 1.27e4·31-s + 6.21e4·36-s + 1.65e4·41-s − 1.30e5·44-s + 3.42e4·49-s − 9.50e3·59-s − 1.73e5·61-s + 8.52e4·64-s − 2.46e5·71-s + 7.12e5·76-s + 2.21e5·79-s + 7.82e4·81-s + 2.24e5·89-s − 7.21e5·99-s + 6.09e4·101-s − 6.08e5·109-s − 4.88e5·116-s − 1.51e4·121-s − 1.35e6·124-s + 127-s + 131-s + ⋯ |
L(s) = 1 | + 3.31·4-s + 2.41·9-s − 3.06·11-s + 4.72·16-s + 4.27·19-s − 1.01·29-s − 2.38·31-s + 7.98·36-s + 1.53·41-s − 10.1·44-s + 2.03·49-s − 0.355·59-s − 5.97·61-s + 2.60·64-s − 5.80·71-s + 14.1·76-s + 3.99·79-s + 1.32·81-s + 3.00·89-s − 7.40·99-s + 0.594·101-s − 4.90·109-s − 3.37·116-s − 0.0943·121-s − 7.89·124-s + 5.50e−6·127-s + 5.09e−6·131-s + ⋯ |
Λ(s)=(=((512⋅136)s/2ΓC(s)6L(s)Λ(6−s)
Λ(s)=(=((512⋅136)s/2ΓC(s+5/2)6L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
7.170844367 |
L(21) |
≈ |
7.170844367 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 13 | (1+p4T2)3 |
good | 2 | 1−53pT2+6393T4−62375p2T6+6393p10T8−53p21T10+p30T12 |
| 3 | 1−586T2+265111T4−7921772p2T6+265111p10T8−586p20T10+p30T12 |
| 7 | 1−34250T2+1157349791T4−19859968898444T6+1157349791p10T8−34250p20T10+p30T12 |
| 11 | (1+56pT+576781T2+198710800T3+576781p5T4+56p11T5+p15T6)2 |
| 17 | 1−5346778T2+14107385735535T4−24198875660122621868T6+14107385735535p10T8−5346778p20T10+p30T12 |
| 19 | (1−3360T+9980613T2−16920687808T3+9980613p5T4−3360p10T5+p15T6)2 |
| 23 | 1−17947666T2+177782686483887T4−12⋯92T6+177782686483887p10T8−17947666p20T10+p30T12 |
| 29 | (1+2306T+63301891T2+95048382380T3+63301891p5T4+2306p10T5+p15T6)2 |
| 31 | (1+6380T+63602873T2+216555662264T3+63602873p5T4+6380p10T5+p15T6)2 |
| 37 | 1−196213586T2+17914233453773591T4−12⋯88T6+17914233453773591p10T8−196213586p20T10+p30T12 |
| 41 | (1−8286T+210623751T2−2260028786820T3+210623751p5T4−8286p10T5+p15T6)2 |
| 43 | 1−639846330T2+198848638114826151T4−36⋯56T6+198848638114826151p10T8−639846330p20T10+p30T12 |
| 47 | 1−1108811578T2+563976871326771567T4−16⋯80T6+563976871326771567p10T8−1108811578p20T10+p30T12 |
| 53 | 1−424381554T2+113706106857181431T4−92⋯52T6+113706106857181431p10T8−424381554p20T10+p30T12 |
| 59 | (1+4752T+763206237T2+23933901228768T3+763206237p5T4+4752p10T5+p15T6)2 |
| 61 | (1+86894T+3218447267T2+88402029353204T3+3218447267p5T4+86894p10T5+p15T6)2 |
| 67 | 1+931485438T2+2776490132958986535T4+14⋯36T6+2776490132958986535p10T8+931485438p20T10+p30T12 |
| 71 | (1+123252T+7672133745T2+347878540025160T3+7672133745p5T4+123252p10T5+p15T6)2 |
| 73 | 1−6548382410T2+25607390713292226047T4−63⋯80T6+25607390713292226047p10T8−6548382410p20T10+p30T12 |
| 79 | (1−110696T+10847564381T2−593275027409072T3+10847564381p5T4−110696p10T5+p15T6)2 |
| 83 | 1−16170291778T2+12⋯15T4−61⋯64T6+12⋯15p10T8−16170291778p20T10+p30T12 |
| 89 | (1−112210T+13708842775T2−819892069403740T3+13708842775p5T4−112210p10T5+p15T6)2 |
| 97 | 1−29962994618T2+40⋯79T4−37⋯28T6+40⋯79p10T8−29962994618p20T10+p30T12 |
show more | |
show less | |
L(s)=p∏ j=1∏12(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−5.37853881216288424252125835570, −5.36248492467707382710155723171, −5.23113297508819732677710988640, −4.98317167694896253399841079879, −4.65009716430432302613886380304, −4.42326549095289092694903424622, −4.41416057933997276156081313444, −3.89358309487180517708316339660, −3.78214763469832472882748376347, −3.76098703836354212517163431541, −3.16697511899316000262628465123, −2.99868734844195749244487282668, −2.97031795652319445311268804565, −2.78728132722754434436462039183, −2.63213673373330264577622190552, −2.59439118495206476384264718433, −1.97305676170305622553623191302, −1.83107112656120550957677172220, −1.74781311710972457969136815359, −1.49729564351410859940226877168, −1.41622499796912474082293003719, −1.17904378966520690069092343914, −0.69225113690646767743213188588, −0.50602691590769484350880232678, −0.13160402507789351749944687784,
0.13160402507789351749944687784, 0.50602691590769484350880232678, 0.69225113690646767743213188588, 1.17904378966520690069092343914, 1.41622499796912474082293003719, 1.49729564351410859940226877168, 1.74781311710972457969136815359, 1.83107112656120550957677172220, 1.97305676170305622553623191302, 2.59439118495206476384264718433, 2.63213673373330264577622190552, 2.78728132722754434436462039183, 2.97031795652319445311268804565, 2.99868734844195749244487282668, 3.16697511899316000262628465123, 3.76098703836354212517163431541, 3.78214763469832472882748376347, 3.89358309487180517708316339660, 4.41416057933997276156081313444, 4.42326549095289092694903424622, 4.65009716430432302613886380304, 4.98317167694896253399841079879, 5.23113297508819732677710988640, 5.36248492467707382710155723171, 5.37853881216288424252125835570
Plot not available for L-functions of degree greater than 10.