Properties

Label 16-3264e8-1.1-c1e8-0-6
Degree 1616
Conductor 1.288×10281.288\times 10^{28}
Sign 11
Analytic cond. 2.12920×10112.12920\times 10^{11}
Root an. cond. 5.105215.10521
Motivic weight 11
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·9-s − 8·17-s + 26·25-s + 4·41-s − 8·49-s + 88·73-s + 10·81-s − 32·89-s + 112·97-s + 84·113-s + 54·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 32·153-s + 157-s + 163-s + 167-s + 2·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯
L(s)  = 1  − 4/3·9-s − 1.94·17-s + 26/5·25-s + 0.624·41-s − 8/7·49-s + 10.2·73-s + 10/9·81-s − 3.39·89-s + 11.3·97-s + 7.90·113-s + 4.90·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 2.58·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 2/13·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + ⋯

Functional equation

Λ(s)=((24838178)s/2ΓC(s)8L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{48} \cdot 3^{8} \cdot 17^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}
Λ(s)=((24838178)s/2ΓC(s+1/2)8L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{48} \cdot 3^{8} \cdot 17^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

Invariants

Degree: 1616
Conductor: 248381782^{48} \cdot 3^{8} \cdot 17^{8}
Sign: 11
Analytic conductor: 2.12920×10112.12920\times 10^{11}
Root analytic conductor: 5.105215.10521
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (16, 24838178, ( :[1/2]8), 1)(16,\ 2^{48} \cdot 3^{8} \cdot 17^{8} ,\ ( \ : [1/2]^{8} ),\ 1 )

Particular Values

L(1)L(1) \approx 31.2822862931.28228629
L(12)L(\frac12) \approx 31.2822862931.28228629
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 (1+T2)4 ( 1 + T^{2} )^{4}
17 (1+T)8 ( 1 + T )^{8}
good5 (113T2+84T413p2T6+p4T8)2 ( 1 - 13 T^{2} + 84 T^{4} - 13 p^{2} T^{6} + p^{4} T^{8} )^{2}
7 (1+2T2+p2T4)4 ( 1 + 2 T^{2} + p^{2} T^{4} )^{4}
11 (127T2+416T427p2T6+p4T8)2 ( 1 - 27 T^{2} + 416 T^{4} - 27 p^{2} T^{6} + p^{4} T^{8} )^{2}
13 (1T2+264T4p2T6+p4T8)2 ( 1 - T^{2} + 264 T^{4} - p^{2} T^{6} + p^{4} T^{8} )^{2}
19 (135T2+624T435p2T6+p4T8)2 ( 1 - 35 T^{2} + 624 T^{4} - 35 p^{2} T^{6} + p^{4} T^{8} )^{2}
23 (1+41T2+1404T4+41p2T6+p4T8)2 ( 1 + 41 T^{2} + 1404 T^{4} + 41 p^{2} T^{6} + p^{4} T^{8} )^{2}
29 (188T2+3486T488p2T6+p4T8)2 ( 1 - 88 T^{2} + 3486 T^{4} - 88 p^{2} T^{6} + p^{4} T^{8} )^{2}
31 (1+18T2+p2T4)4 ( 1 + 18 T^{2} + p^{2} T^{4} )^{4}
37 (136T2+950T436p2T6+p4T8)2 ( 1 - 36 T^{2} + 950 T^{4} - 36 p^{2} T^{6} + p^{4} T^{8} )^{2}
41 (1T+8T2pT3+p2T4)4 ( 1 - T + 8 T^{2} - p T^{3} + p^{2} T^{4} )^{4}
43 (111T2+1872T411p2T6+p4T8)2 ( 1 - 11 T^{2} + 1872 T^{4} - 11 p^{2} T^{6} + p^{4} T^{8} )^{2}
47 (1+46T2+p2T4)4 ( 1 + 46 T^{2} + p^{2} T^{4} )^{4}
53 (1136T2+9054T4136p2T6+p4T8)2 ( 1 - 136 T^{2} + 9054 T^{4} - 136 p^{2} T^{6} + p^{4} T^{8} )^{2}
59 (1152T2+11550T4152p2T6+p4T8)2 ( 1 - 152 T^{2} + 11550 T^{4} - 152 p^{2} T^{6} + p^{4} T^{8} )^{2}
61 (172T2+5438T472p2T6+p4T8)2 ( 1 - 72 T^{2} + 5438 T^{4} - 72 p^{2} T^{6} + p^{4} T^{8} )^{2}
67 (1118T2+p2T4)4 ( 1 - 118 T^{2} + p^{2} T^{4} )^{4}
71 (1+208T2+19710T4+208p2T6+p4T8)2 ( 1 + 208 T^{2} + 19710 T^{4} + 208 p^{2} T^{6} + p^{4} T^{8} )^{2}
73 (122T+234T222pT3+p2T4)4 ( 1 - 22 T + 234 T^{2} - 22 p T^{3} + p^{2} T^{4} )^{4}
79 (1+146T2+p2T4)4 ( 1 + 146 T^{2} + p^{2} T^{4} )^{4}
83 (1pT2)8 ( 1 - p T^{2} )^{8}
89 (1+8T+62T2+8pT3+p2T4)4 ( 1 + 8 T + 62 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{4}
97 (114T+pT2)8 ( 1 - 14 T + p T^{2} )^{8}
show more
show less
   L(s)=p j=116(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−3.49883433206534173990013645525, −3.43240745386328841798426135708, −3.29177403388823157296411740125, −3.25283216655049654238260049259, −3.09056784760186995010282760586, −3.07753153563405034143714713971, −2.86142848588378504723207494709, −2.81693907621653321645051906960, −2.58014127433635261974505404119, −2.46371359773653112197591420436, −2.30209271969079575325015830170, −2.28972673909391245697602619061, −2.12873781690962140181878015216, −2.07384946309360936791082612643, −1.96399471624732725125204395400, −1.77013772366427185524971262569, −1.62873536493018476074239795153, −1.44227188342826731851423699486, −1.25283295401248274185005186750, −0.831015361557121323917898635041, −0.73290320524399181261240145902, −0.65165272953014486850634379918, −0.60533029816068475036378735123, −0.60242863589734796587190692136, −0.45475141624519563395985447465, 0.45475141624519563395985447465, 0.60242863589734796587190692136, 0.60533029816068475036378735123, 0.65165272953014486850634379918, 0.73290320524399181261240145902, 0.831015361557121323917898635041, 1.25283295401248274185005186750, 1.44227188342826731851423699486, 1.62873536493018476074239795153, 1.77013772366427185524971262569, 1.96399471624732725125204395400, 2.07384946309360936791082612643, 2.12873781690962140181878015216, 2.28972673909391245697602619061, 2.30209271969079575325015830170, 2.46371359773653112197591420436, 2.58014127433635261974505404119, 2.81693907621653321645051906960, 2.86142848588378504723207494709, 3.07753153563405034143714713971, 3.09056784760186995010282760586, 3.25283216655049654238260049259, 3.29177403388823157296411740125, 3.43240745386328841798426135708, 3.49883433206534173990013645525

Graph of the ZZ-function along the critical line

Plot not available for L-functions of degree greater than 10.