Properties

Label 3264.2.f.h.1633.7
Level $3264$
Weight $2$
Character 3264.1633
Analytic conductor $26.063$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3264,2,Mod(1633,3264)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3264, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3264.1633");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3264 = 2^{6} \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3264.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.0631712197\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.303595776.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 5x^{6} + 16x^{4} + 45x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1633.7
Root \(-0.396143 + 1.68614i\) of defining polynomial
Character \(\chi\) \(=\) 3264.1633
Dual form 3264.2.f.h.1633.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +0.792287i q^{5} -3.46410 q^{7} -1.00000 q^{9} +3.37228i q^{11} -5.84096i q^{13} -0.792287 q^{15} -1.00000 q^{17} +0.627719i q^{19} -3.46410i q^{21} -5.84096 q^{23} +4.37228 q^{25} -1.00000i q^{27} -5.04868i q^{29} +6.63325 q^{31} -3.37228 q^{33} -2.74456i q^{35} +3.16915i q^{37} +5.84096 q^{39} -8.11684 q^{41} -6.11684i q^{43} -0.792287i q^{45} +6.92820 q^{47} +5.00000 q^{49} -1.00000i q^{51} -1.87953i q^{53} -2.67181 q^{55} -0.627719 q^{57} +2.74456i q^{59} -5.34363i q^{61} +3.46410 q^{63} +4.62772 q^{65} +4.00000i q^{67} -5.84096i q^{69} +8.51278 q^{71} +16.7446 q^{73} +4.37228i q^{75} -11.6819i q^{77} +3.46410 q^{79} +1.00000 q^{81} -0.792287i q^{85} +5.04868 q^{87} -15.4891 q^{89} +20.2337i q^{91} +6.63325i q^{93} -0.497333 q^{95} +14.0000 q^{97} -3.37228i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{9} - 8 q^{17} + 12 q^{25} - 4 q^{33} + 4 q^{41} + 40 q^{49} - 28 q^{57} + 60 q^{65} + 88 q^{73} + 8 q^{81} - 32 q^{89} + 112 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3264\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(2177\) \(2245\) \(2689\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 0.792287i 0.354322i 0.984182 + 0.177161i \(0.0566913\pi\)
−0.984182 + 0.177161i \(0.943309\pi\)
\(6\) 0 0
\(7\) −3.46410 −1.30931 −0.654654 0.755929i \(-0.727186\pi\)
−0.654654 + 0.755929i \(0.727186\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 3.37228i 1.01678i 0.861127 + 0.508391i \(0.169759\pi\)
−0.861127 + 0.508391i \(0.830241\pi\)
\(12\) 0 0
\(13\) − 5.84096i − 1.61999i −0.586436 0.809996i \(-0.699469\pi\)
0.586436 0.809996i \(-0.300531\pi\)
\(14\) 0 0
\(15\) −0.792287 −0.204568
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) 0.627719i 0.144009i 0.997404 + 0.0720043i \(0.0229395\pi\)
−0.997404 + 0.0720043i \(0.977060\pi\)
\(20\) 0 0
\(21\) − 3.46410i − 0.755929i
\(22\) 0 0
\(23\) −5.84096 −1.21792 −0.608962 0.793199i \(-0.708414\pi\)
−0.608962 + 0.793199i \(0.708414\pi\)
\(24\) 0 0
\(25\) 4.37228 0.874456
\(26\) 0 0
\(27\) − 1.00000i − 0.192450i
\(28\) 0 0
\(29\) − 5.04868i − 0.937516i −0.883327 0.468758i \(-0.844702\pi\)
0.883327 0.468758i \(-0.155298\pi\)
\(30\) 0 0
\(31\) 6.63325 1.19137 0.595683 0.803219i \(-0.296881\pi\)
0.595683 + 0.803219i \(0.296881\pi\)
\(32\) 0 0
\(33\) −3.37228 −0.587039
\(34\) 0 0
\(35\) − 2.74456i − 0.463916i
\(36\) 0 0
\(37\) 3.16915i 0.521005i 0.965473 + 0.260502i \(0.0838882\pi\)
−0.965473 + 0.260502i \(0.916112\pi\)
\(38\) 0 0
\(39\) 5.84096 0.935303
\(40\) 0 0
\(41\) −8.11684 −1.26764 −0.633819 0.773481i \(-0.718514\pi\)
−0.633819 + 0.773481i \(0.718514\pi\)
\(42\) 0 0
\(43\) − 6.11684i − 0.932810i −0.884571 0.466405i \(-0.845549\pi\)
0.884571 0.466405i \(-0.154451\pi\)
\(44\) 0 0
\(45\) − 0.792287i − 0.118107i
\(46\) 0 0
\(47\) 6.92820 1.01058 0.505291 0.862949i \(-0.331385\pi\)
0.505291 + 0.862949i \(0.331385\pi\)
\(48\) 0 0
\(49\) 5.00000 0.714286
\(50\) 0 0
\(51\) − 1.00000i − 0.140028i
\(52\) 0 0
\(53\) − 1.87953i − 0.258173i −0.991633 0.129086i \(-0.958796\pi\)
0.991633 0.129086i \(-0.0412045\pi\)
\(54\) 0 0
\(55\) −2.67181 −0.360267
\(56\) 0 0
\(57\) −0.627719 −0.0831434
\(58\) 0 0
\(59\) 2.74456i 0.357312i 0.983912 + 0.178656i \(0.0571749\pi\)
−0.983912 + 0.178656i \(0.942825\pi\)
\(60\) 0 0
\(61\) − 5.34363i − 0.684182i −0.939667 0.342091i \(-0.888865\pi\)
0.939667 0.342091i \(-0.111135\pi\)
\(62\) 0 0
\(63\) 3.46410 0.436436
\(64\) 0 0
\(65\) 4.62772 0.573998
\(66\) 0 0
\(67\) 4.00000i 0.488678i 0.969690 + 0.244339i \(0.0785709\pi\)
−0.969690 + 0.244339i \(0.921429\pi\)
\(68\) 0 0
\(69\) − 5.84096i − 0.703169i
\(70\) 0 0
\(71\) 8.51278 1.01028 0.505140 0.863037i \(-0.331441\pi\)
0.505140 + 0.863037i \(0.331441\pi\)
\(72\) 0 0
\(73\) 16.7446 1.95980 0.979901 0.199482i \(-0.0639261\pi\)
0.979901 + 0.199482i \(0.0639261\pi\)
\(74\) 0 0
\(75\) 4.37228i 0.504868i
\(76\) 0 0
\(77\) − 11.6819i − 1.33128i
\(78\) 0 0
\(79\) 3.46410 0.389742 0.194871 0.980829i \(-0.437571\pi\)
0.194871 + 0.980829i \(0.437571\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) − 0.792287i − 0.0859356i
\(86\) 0 0
\(87\) 5.04868 0.541275
\(88\) 0 0
\(89\) −15.4891 −1.64184 −0.820922 0.571040i \(-0.806540\pi\)
−0.820922 + 0.571040i \(0.806540\pi\)
\(90\) 0 0
\(91\) 20.2337i 2.12107i
\(92\) 0 0
\(93\) 6.63325i 0.687836i
\(94\) 0 0
\(95\) −0.497333 −0.0510253
\(96\) 0 0
\(97\) 14.0000 1.42148 0.710742 0.703452i \(-0.248359\pi\)
0.710742 + 0.703452i \(0.248359\pi\)
\(98\) 0 0
\(99\) − 3.37228i − 0.338927i
\(100\) 0 0
\(101\) − 1.87953i − 0.187020i −0.995618 0.0935100i \(-0.970191\pi\)
0.995618 0.0935100i \(-0.0298087\pi\)
\(102\) 0 0
\(103\) −0.792287 −0.0780664 −0.0390332 0.999238i \(-0.512428\pi\)
−0.0390332 + 0.999238i \(0.512428\pi\)
\(104\) 0 0
\(105\) 2.74456 0.267842
\(106\) 0 0
\(107\) − 15.3723i − 1.48609i −0.669239 0.743047i \(-0.733380\pi\)
0.669239 0.743047i \(-0.266620\pi\)
\(108\) 0 0
\(109\) − 6.92820i − 0.663602i −0.943349 0.331801i \(-0.892344\pi\)
0.943349 0.331801i \(-0.107656\pi\)
\(110\) 0 0
\(111\) −3.16915 −0.300802
\(112\) 0 0
\(113\) 13.3723 1.25796 0.628979 0.777422i \(-0.283473\pi\)
0.628979 + 0.777422i \(0.283473\pi\)
\(114\) 0 0
\(115\) − 4.62772i − 0.431537i
\(116\) 0 0
\(117\) 5.84096i 0.539997i
\(118\) 0 0
\(119\) 3.46410 0.317554
\(120\) 0 0
\(121\) −0.372281 −0.0338438
\(122\) 0 0
\(123\) − 8.11684i − 0.731871i
\(124\) 0 0
\(125\) 7.42554i 0.664160i
\(126\) 0 0
\(127\) 6.13592 0.544475 0.272237 0.962230i \(-0.412236\pi\)
0.272237 + 0.962230i \(0.412236\pi\)
\(128\) 0 0
\(129\) 6.11684 0.538558
\(130\) 0 0
\(131\) 19.6060i 1.71298i 0.516162 + 0.856491i \(0.327360\pi\)
−0.516162 + 0.856491i \(0.672640\pi\)
\(132\) 0 0
\(133\) − 2.17448i − 0.188551i
\(134\) 0 0
\(135\) 0.792287 0.0681892
\(136\) 0 0
\(137\) 14.2337 1.21607 0.608033 0.793912i \(-0.291959\pi\)
0.608033 + 0.793912i \(0.291959\pi\)
\(138\) 0 0
\(139\) − 9.48913i − 0.804857i −0.915451 0.402429i \(-0.868166\pi\)
0.915451 0.402429i \(-0.131834\pi\)
\(140\) 0 0
\(141\) 6.92820i 0.583460i
\(142\) 0 0
\(143\) 19.6974 1.64718
\(144\) 0 0
\(145\) 4.00000 0.332182
\(146\) 0 0
\(147\) 5.00000i 0.412393i
\(148\) 0 0
\(149\) 1.87953i 0.153977i 0.997032 + 0.0769885i \(0.0245305\pi\)
−0.997032 + 0.0769885i \(0.975470\pi\)
\(150\) 0 0
\(151\) −19.8997 −1.61942 −0.809709 0.586831i \(-0.800375\pi\)
−0.809709 + 0.586831i \(0.800375\pi\)
\(152\) 0 0
\(153\) 1.00000 0.0808452
\(154\) 0 0
\(155\) 5.25544i 0.422127i
\(156\) 0 0
\(157\) − 21.2819i − 1.69848i −0.528004 0.849242i \(-0.677059\pi\)
0.528004 0.849242i \(-0.322941\pi\)
\(158\) 0 0
\(159\) 1.87953 0.149056
\(160\) 0 0
\(161\) 20.2337 1.59464
\(162\) 0 0
\(163\) 10.7446i 0.841579i 0.907158 + 0.420790i \(0.138247\pi\)
−0.907158 + 0.420790i \(0.861753\pi\)
\(164\) 0 0
\(165\) − 2.67181i − 0.208000i
\(166\) 0 0
\(167\) 15.9383 1.23334 0.616672 0.787220i \(-0.288481\pi\)
0.616672 + 0.787220i \(0.288481\pi\)
\(168\) 0 0
\(169\) −21.1168 −1.62437
\(170\) 0 0
\(171\) − 0.627719i − 0.0480028i
\(172\) 0 0
\(173\) 1.38219i 0.105086i 0.998619 + 0.0525431i \(0.0167327\pi\)
−0.998619 + 0.0525431i \(0.983267\pi\)
\(174\) 0 0
\(175\) −15.1460 −1.14493
\(176\) 0 0
\(177\) −2.74456 −0.206294
\(178\) 0 0
\(179\) 5.25544i 0.392810i 0.980523 + 0.196405i \(0.0629267\pi\)
−0.980523 + 0.196405i \(0.937073\pi\)
\(180\) 0 0
\(181\) − 13.2665i − 0.986091i −0.870003 0.493046i \(-0.835884\pi\)
0.870003 0.493046i \(-0.164116\pi\)
\(182\) 0 0
\(183\) 5.34363 0.395012
\(184\) 0 0
\(185\) −2.51087 −0.184603
\(186\) 0 0
\(187\) − 3.37228i − 0.246606i
\(188\) 0 0
\(189\) 3.46410i 0.251976i
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 7.48913 0.539079 0.269540 0.962989i \(-0.413129\pi\)
0.269540 + 0.962989i \(0.413129\pi\)
\(194\) 0 0
\(195\) 4.62772i 0.331398i
\(196\) 0 0
\(197\) − 14.6487i − 1.04368i −0.853045 0.521838i \(-0.825247\pi\)
0.853045 0.521838i \(-0.174753\pi\)
\(198\) 0 0
\(199\) 3.46410 0.245564 0.122782 0.992434i \(-0.460818\pi\)
0.122782 + 0.992434i \(0.460818\pi\)
\(200\) 0 0
\(201\) −4.00000 −0.282138
\(202\) 0 0
\(203\) 17.4891i 1.22750i
\(204\) 0 0
\(205\) − 6.43087i − 0.449151i
\(206\) 0 0
\(207\) 5.84096 0.405975
\(208\) 0 0
\(209\) −2.11684 −0.146425
\(210\) 0 0
\(211\) − 5.25544i − 0.361799i −0.983502 0.180900i \(-0.942099\pi\)
0.983502 0.180900i \(-0.0579009\pi\)
\(212\) 0 0
\(213\) 8.51278i 0.583286i
\(214\) 0 0
\(215\) 4.84630 0.330515
\(216\) 0 0
\(217\) −22.9783 −1.55987
\(218\) 0 0
\(219\) 16.7446i 1.13149i
\(220\) 0 0
\(221\) 5.84096i 0.392906i
\(222\) 0 0
\(223\) 20.9870 1.40539 0.702696 0.711490i \(-0.251979\pi\)
0.702696 + 0.711490i \(0.251979\pi\)
\(224\) 0 0
\(225\) −4.37228 −0.291485
\(226\) 0 0
\(227\) 20.6277i 1.36911i 0.728961 + 0.684555i \(0.240003\pi\)
−0.728961 + 0.684555i \(0.759997\pi\)
\(228\) 0 0
\(229\) − 17.0256i − 1.12508i −0.826770 0.562540i \(-0.809824\pi\)
0.826770 0.562540i \(-0.190176\pi\)
\(230\) 0 0
\(231\) 11.6819 0.768614
\(232\) 0 0
\(233\) 2.62772 0.172148 0.0860738 0.996289i \(-0.472568\pi\)
0.0860738 + 0.996289i \(0.472568\pi\)
\(234\) 0 0
\(235\) 5.48913i 0.358071i
\(236\) 0 0
\(237\) 3.46410i 0.225018i
\(238\) 0 0
\(239\) −2.17448 −0.140656 −0.0703278 0.997524i \(-0.522405\pi\)
−0.0703278 + 0.997524i \(0.522405\pi\)
\(240\) 0 0
\(241\) −11.4891 −0.740080 −0.370040 0.929016i \(-0.620656\pi\)
−0.370040 + 0.929016i \(0.620656\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 3.96143i 0.253087i
\(246\) 0 0
\(247\) 3.66648 0.233293
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 26.9783i − 1.70285i −0.524475 0.851426i \(-0.675738\pi\)
0.524475 0.851426i \(-0.324262\pi\)
\(252\) 0 0
\(253\) − 19.6974i − 1.23836i
\(254\) 0 0
\(255\) 0.792287 0.0496149
\(256\) 0 0
\(257\) −24.9783 −1.55810 −0.779050 0.626962i \(-0.784298\pi\)
−0.779050 + 0.626962i \(0.784298\pi\)
\(258\) 0 0
\(259\) − 10.9783i − 0.682155i
\(260\) 0 0
\(261\) 5.04868i 0.312505i
\(262\) 0 0
\(263\) −9.50744 −0.586254 −0.293127 0.956073i \(-0.594696\pi\)
−0.293127 + 0.956073i \(0.594696\pi\)
\(264\) 0 0
\(265\) 1.48913 0.0914762
\(266\) 0 0
\(267\) − 15.4891i − 0.947919i
\(268\) 0 0
\(269\) 9.30506i 0.567340i 0.958922 + 0.283670i \(0.0915520\pi\)
−0.958922 + 0.283670i \(0.908448\pi\)
\(270\) 0 0
\(271\) −21.5769 −1.31070 −0.655352 0.755324i \(-0.727480\pi\)
−0.655352 + 0.755324i \(0.727480\pi\)
\(272\) 0 0
\(273\) −20.2337 −1.22460
\(274\) 0 0
\(275\) 14.7446i 0.889131i
\(276\) 0 0
\(277\) 23.9538i 1.43924i 0.694367 + 0.719621i \(0.255684\pi\)
−0.694367 + 0.719621i \(0.744316\pi\)
\(278\) 0 0
\(279\) −6.63325 −0.397122
\(280\) 0 0
\(281\) −7.48913 −0.446764 −0.223382 0.974731i \(-0.571710\pi\)
−0.223382 + 0.974731i \(0.571710\pi\)
\(282\) 0 0
\(283\) − 24.2337i − 1.44054i −0.693692 0.720272i \(-0.744017\pi\)
0.693692 0.720272i \(-0.255983\pi\)
\(284\) 0 0
\(285\) − 0.497333i − 0.0294595i
\(286\) 0 0
\(287\) 28.1176 1.65973
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 14.0000i 0.820695i
\(292\) 0 0
\(293\) − 28.4125i − 1.65988i −0.557855 0.829939i \(-0.688375\pi\)
0.557855 0.829939i \(-0.311625\pi\)
\(294\) 0 0
\(295\) −2.17448 −0.126603
\(296\) 0 0
\(297\) 3.37228 0.195680
\(298\) 0 0
\(299\) 34.1168i 1.97303i
\(300\) 0 0
\(301\) 21.1894i 1.22133i
\(302\) 0 0
\(303\) 1.87953 0.107976
\(304\) 0 0
\(305\) 4.23369 0.242420
\(306\) 0 0
\(307\) − 6.51087i − 0.371595i −0.982588 0.185798i \(-0.940513\pi\)
0.982588 0.185798i \(-0.0594869\pi\)
\(308\) 0 0
\(309\) − 0.792287i − 0.0450716i
\(310\) 0 0
\(311\) 12.2718 0.695872 0.347936 0.937518i \(-0.386883\pi\)
0.347936 + 0.937518i \(0.386883\pi\)
\(312\) 0 0
\(313\) 24.9783 1.41185 0.705927 0.708284i \(-0.250531\pi\)
0.705927 + 0.708284i \(0.250531\pi\)
\(314\) 0 0
\(315\) 2.74456i 0.154639i
\(316\) 0 0
\(317\) 32.1716i 1.80694i 0.428656 + 0.903468i \(0.358987\pi\)
−0.428656 + 0.903468i \(0.641013\pi\)
\(318\) 0 0
\(319\) 17.0256 0.953248
\(320\) 0 0
\(321\) 15.3723 0.857997
\(322\) 0 0
\(323\) − 0.627719i − 0.0349272i
\(324\) 0 0
\(325\) − 25.5383i − 1.41661i
\(326\) 0 0
\(327\) 6.92820 0.383131
\(328\) 0 0
\(329\) −24.0000 −1.32316
\(330\) 0 0
\(331\) 4.86141i 0.267207i 0.991035 + 0.133604i \(0.0426549\pi\)
−0.991035 + 0.133604i \(0.957345\pi\)
\(332\) 0 0
\(333\) − 3.16915i − 0.173668i
\(334\) 0 0
\(335\) −3.16915 −0.173149
\(336\) 0 0
\(337\) 7.25544 0.395229 0.197614 0.980280i \(-0.436681\pi\)
0.197614 + 0.980280i \(0.436681\pi\)
\(338\) 0 0
\(339\) 13.3723i 0.726283i
\(340\) 0 0
\(341\) 22.3692i 1.21136i
\(342\) 0 0
\(343\) 6.92820 0.374088
\(344\) 0 0
\(345\) 4.62772 0.249148
\(346\) 0 0
\(347\) − 29.4891i − 1.58306i −0.611131 0.791530i \(-0.709285\pi\)
0.611131 0.791530i \(-0.290715\pi\)
\(348\) 0 0
\(349\) − 32.9639i − 1.76452i −0.470767 0.882258i \(-0.656023\pi\)
0.470767 0.882258i \(-0.343977\pi\)
\(350\) 0 0
\(351\) −5.84096 −0.311768
\(352\) 0 0
\(353\) 34.0000 1.80964 0.904819 0.425797i \(-0.140006\pi\)
0.904819 + 0.425797i \(0.140006\pi\)
\(354\) 0 0
\(355\) 6.74456i 0.357964i
\(356\) 0 0
\(357\) 3.46410i 0.183340i
\(358\) 0 0
\(359\) 23.9538 1.26423 0.632115 0.774874i \(-0.282187\pi\)
0.632115 + 0.774874i \(0.282187\pi\)
\(360\) 0 0
\(361\) 18.6060 0.979262
\(362\) 0 0
\(363\) − 0.372281i − 0.0195397i
\(364\) 0 0
\(365\) 13.2665i 0.694400i
\(366\) 0 0
\(367\) −28.4125 −1.48312 −0.741561 0.670886i \(-0.765914\pi\)
−0.741561 + 0.670886i \(0.765914\pi\)
\(368\) 0 0
\(369\) 8.11684 0.422546
\(370\) 0 0
\(371\) 6.51087i 0.338028i
\(372\) 0 0
\(373\) − 10.0974i − 0.522821i −0.965228 0.261411i \(-0.915812\pi\)
0.965228 0.261411i \(-0.0841876\pi\)
\(374\) 0 0
\(375\) −7.42554 −0.383453
\(376\) 0 0
\(377\) −29.4891 −1.51877
\(378\) 0 0
\(379\) − 13.2554i − 0.680886i −0.940265 0.340443i \(-0.889423\pi\)
0.940265 0.340443i \(-0.110577\pi\)
\(380\) 0 0
\(381\) 6.13592i 0.314353i
\(382\) 0 0
\(383\) −28.7075 −1.46688 −0.733442 0.679752i \(-0.762087\pi\)
−0.733442 + 0.679752i \(0.762087\pi\)
\(384\) 0 0
\(385\) 9.25544 0.471701
\(386\) 0 0
\(387\) 6.11684i 0.310937i
\(388\) 0 0
\(389\) 5.04868i 0.255978i 0.991776 + 0.127989i \(0.0408522\pi\)
−0.991776 + 0.127989i \(0.959148\pi\)
\(390\) 0 0
\(391\) 5.84096 0.295390
\(392\) 0 0
\(393\) −19.6060 −0.988990
\(394\) 0 0
\(395\) 2.74456i 0.138094i
\(396\) 0 0
\(397\) 5.34363i 0.268189i 0.990969 + 0.134095i \(0.0428126\pi\)
−0.990969 + 0.134095i \(0.957187\pi\)
\(398\) 0 0
\(399\) 2.17448 0.108860
\(400\) 0 0
\(401\) 9.37228 0.468029 0.234015 0.972233i \(-0.424814\pi\)
0.234015 + 0.972233i \(0.424814\pi\)
\(402\) 0 0
\(403\) − 38.7446i − 1.93000i
\(404\) 0 0
\(405\) 0.792287i 0.0393691i
\(406\) 0 0
\(407\) −10.6873 −0.529748
\(408\) 0 0
\(409\) −24.1168 −1.19250 −0.596251 0.802798i \(-0.703344\pi\)
−0.596251 + 0.802798i \(0.703344\pi\)
\(410\) 0 0
\(411\) 14.2337i 0.702096i
\(412\) 0 0
\(413\) − 9.50744i − 0.467831i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 9.48913 0.464684
\(418\) 0 0
\(419\) 2.51087i 0.122664i 0.998117 + 0.0613321i \(0.0195349\pi\)
−0.998117 + 0.0613321i \(0.980465\pi\)
\(420\) 0 0
\(421\) 19.6974i 0.959991i 0.877271 + 0.479996i \(0.159362\pi\)
−0.877271 + 0.479996i \(0.840638\pi\)
\(422\) 0 0
\(423\) −6.92820 −0.336861
\(424\) 0 0
\(425\) −4.37228 −0.212087
\(426\) 0 0
\(427\) 18.5109i 0.895804i
\(428\) 0 0
\(429\) 19.6974i 0.950998i
\(430\) 0 0
\(431\) −2.17448 −0.104741 −0.0523705 0.998628i \(-0.516678\pi\)
−0.0523705 + 0.998628i \(0.516678\pi\)
\(432\) 0 0
\(433\) 25.3723 1.21931 0.609657 0.792665i \(-0.291307\pi\)
0.609657 + 0.792665i \(0.291307\pi\)
\(434\) 0 0
\(435\) 4.00000i 0.191785i
\(436\) 0 0
\(437\) − 3.66648i − 0.175392i
\(438\) 0 0
\(439\) −5.04868 −0.240960 −0.120480 0.992716i \(-0.538443\pi\)
−0.120480 + 0.992716i \(0.538443\pi\)
\(440\) 0 0
\(441\) −5.00000 −0.238095
\(442\) 0 0
\(443\) − 5.48913i − 0.260796i −0.991462 0.130398i \(-0.958374\pi\)
0.991462 0.130398i \(-0.0416255\pi\)
\(444\) 0 0
\(445\) − 12.2718i − 0.581741i
\(446\) 0 0
\(447\) −1.87953 −0.0888986
\(448\) 0 0
\(449\) 16.9783 0.801253 0.400627 0.916241i \(-0.368792\pi\)
0.400627 + 0.916241i \(0.368792\pi\)
\(450\) 0 0
\(451\) − 27.3723i − 1.28891i
\(452\) 0 0
\(453\) − 19.8997i − 0.934972i
\(454\) 0 0
\(455\) −16.0309 −0.751540
\(456\) 0 0
\(457\) −5.60597 −0.262236 −0.131118 0.991367i \(-0.541857\pi\)
−0.131118 + 0.991367i \(0.541857\pi\)
\(458\) 0 0
\(459\) 1.00000i 0.0466760i
\(460\) 0 0
\(461\) − 19.8997i − 0.926824i −0.886143 0.463412i \(-0.846625\pi\)
0.886143 0.463412i \(-0.153375\pi\)
\(462\) 0 0
\(463\) −7.22316 −0.335689 −0.167844 0.985814i \(-0.553681\pi\)
−0.167844 + 0.985814i \(0.553681\pi\)
\(464\) 0 0
\(465\) −5.25544 −0.243715
\(466\) 0 0
\(467\) − 24.0000i − 1.11059i −0.831654 0.555294i \(-0.812606\pi\)
0.831654 0.555294i \(-0.187394\pi\)
\(468\) 0 0
\(469\) − 13.8564i − 0.639829i
\(470\) 0 0
\(471\) 21.2819 0.980620
\(472\) 0 0
\(473\) 20.6277 0.948464
\(474\) 0 0
\(475\) 2.74456i 0.125929i
\(476\) 0 0
\(477\) 1.87953i 0.0860577i
\(478\) 0 0
\(479\) −22.8665 −1.04480 −0.522399 0.852701i \(-0.674963\pi\)
−0.522399 + 0.852701i \(0.674963\pi\)
\(480\) 0 0
\(481\) 18.5109 0.844023
\(482\) 0 0
\(483\) 20.2337i 0.920665i
\(484\) 0 0
\(485\) 11.0920i 0.503663i
\(486\) 0 0
\(487\) −3.46410 −0.156973 −0.0784867 0.996915i \(-0.525009\pi\)
−0.0784867 + 0.996915i \(0.525009\pi\)
\(488\) 0 0
\(489\) −10.7446 −0.485886
\(490\) 0 0
\(491\) − 41.4891i − 1.87238i −0.351497 0.936189i \(-0.614327\pi\)
0.351497 0.936189i \(-0.385673\pi\)
\(492\) 0 0
\(493\) 5.04868i 0.227381i
\(494\) 0 0
\(495\) 2.67181 0.120089
\(496\) 0 0
\(497\) −29.4891 −1.32277
\(498\) 0 0
\(499\) − 33.4891i − 1.49918i −0.661903 0.749590i \(-0.730251\pi\)
0.661903 0.749590i \(-0.269749\pi\)
\(500\) 0 0
\(501\) 15.9383i 0.712071i
\(502\) 0 0
\(503\) 18.7027 0.833912 0.416956 0.908927i \(-0.363097\pi\)
0.416956 + 0.908927i \(0.363097\pi\)
\(504\) 0 0
\(505\) 1.48913 0.0662652
\(506\) 0 0
\(507\) − 21.1168i − 0.937832i
\(508\) 0 0
\(509\) 17.7253i 0.785659i 0.919611 + 0.392829i \(0.128504\pi\)
−0.919611 + 0.392829i \(0.871496\pi\)
\(510\) 0 0
\(511\) −58.0049 −2.56598
\(512\) 0 0
\(513\) 0.627719 0.0277145
\(514\) 0 0
\(515\) − 0.627719i − 0.0276606i
\(516\) 0 0
\(517\) 23.3639i 1.02754i
\(518\) 0 0
\(519\) −1.38219 −0.0606716
\(520\) 0 0
\(521\) 9.60597 0.420845 0.210423 0.977611i \(-0.432516\pi\)
0.210423 + 0.977611i \(0.432516\pi\)
\(522\) 0 0
\(523\) − 30.9783i − 1.35458i −0.735714 0.677292i \(-0.763153\pi\)
0.735714 0.677292i \(-0.236847\pi\)
\(524\) 0 0
\(525\) − 15.1460i − 0.661027i
\(526\) 0 0
\(527\) −6.63325 −0.288949
\(528\) 0 0
\(529\) 11.1168 0.483341
\(530\) 0 0
\(531\) − 2.74456i − 0.119104i
\(532\) 0 0
\(533\) 47.4102i 2.05356i
\(534\) 0 0
\(535\) 12.1793 0.526555
\(536\) 0 0
\(537\) −5.25544 −0.226789
\(538\) 0 0
\(539\) 16.8614i 0.726272i
\(540\) 0 0
\(541\) − 33.4612i − 1.43861i −0.694695 0.719305i \(-0.744461\pi\)
0.694695 0.719305i \(-0.255539\pi\)
\(542\) 0 0
\(543\) 13.2665 0.569320
\(544\) 0 0
\(545\) 5.48913 0.235128
\(546\) 0 0
\(547\) − 10.7446i − 0.459404i −0.973261 0.229702i \(-0.926225\pi\)
0.973261 0.229702i \(-0.0737752\pi\)
\(548\) 0 0
\(549\) 5.34363i 0.228061i
\(550\) 0 0
\(551\) 3.16915 0.135010
\(552\) 0 0
\(553\) −12.0000 −0.510292
\(554\) 0 0
\(555\) − 2.51087i − 0.106581i
\(556\) 0 0
\(557\) 34.3461i 1.45529i 0.685954 + 0.727645i \(0.259385\pi\)
−0.685954 + 0.727645i \(0.740615\pi\)
\(558\) 0 0
\(559\) −35.7283 −1.51114
\(560\) 0 0
\(561\) 3.37228 0.142378
\(562\) 0 0
\(563\) − 14.7446i − 0.621409i −0.950507 0.310705i \(-0.899435\pi\)
0.950507 0.310705i \(-0.100565\pi\)
\(564\) 0 0
\(565\) 10.5947i 0.445722i
\(566\) 0 0
\(567\) −3.46410 −0.145479
\(568\) 0 0
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 0 0
\(571\) 24.2337i 1.01415i 0.861902 + 0.507074i \(0.169273\pi\)
−0.861902 + 0.507074i \(0.830727\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −25.5383 −1.06502
\(576\) 0 0
\(577\) −1.60597 −0.0668574 −0.0334287 0.999441i \(-0.510643\pi\)
−0.0334287 + 0.999441i \(0.510643\pi\)
\(578\) 0 0
\(579\) 7.48913i 0.311237i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 6.33830 0.262505
\(584\) 0 0
\(585\) −4.62772 −0.191333
\(586\) 0 0
\(587\) 1.48913i 0.0614628i 0.999528 + 0.0307314i \(0.00978365\pi\)
−0.999528 + 0.0307314i \(0.990216\pi\)
\(588\) 0 0
\(589\) 4.16381i 0.171567i
\(590\) 0 0
\(591\) 14.6487 0.602567
\(592\) 0 0
\(593\) −15.2554 −0.626466 −0.313233 0.949676i \(-0.601412\pi\)
−0.313233 + 0.949676i \(0.601412\pi\)
\(594\) 0 0
\(595\) 2.74456i 0.112516i
\(596\) 0 0
\(597\) 3.46410i 0.141776i
\(598\) 0 0
\(599\) −27.1229 −1.10821 −0.554106 0.832446i \(-0.686940\pi\)
−0.554106 + 0.832446i \(0.686940\pi\)
\(600\) 0 0
\(601\) −30.0000 −1.22373 −0.611863 0.790964i \(-0.709580\pi\)
−0.611863 + 0.790964i \(0.709580\pi\)
\(602\) 0 0
\(603\) − 4.00000i − 0.162893i
\(604\) 0 0
\(605\) − 0.294954i − 0.0119916i
\(606\) 0 0
\(607\) −21.4843 −0.872022 −0.436011 0.899941i \(-0.643609\pi\)
−0.436011 + 0.899941i \(0.643609\pi\)
\(608\) 0 0
\(609\) −17.4891 −0.708695
\(610\) 0 0
\(611\) − 40.4674i − 1.63713i
\(612\) 0 0
\(613\) − 5.25106i − 0.212088i −0.994361 0.106044i \(-0.966182\pi\)
0.994361 0.106044i \(-0.0338185\pi\)
\(614\) 0 0
\(615\) 6.43087 0.259318
\(616\) 0 0
\(617\) −47.4891 −1.91184 −0.955920 0.293627i \(-0.905138\pi\)
−0.955920 + 0.293627i \(0.905138\pi\)
\(618\) 0 0
\(619\) 40.2337i 1.61713i 0.588408 + 0.808564i \(0.299755\pi\)
−0.588408 + 0.808564i \(0.700245\pi\)
\(620\) 0 0
\(621\) 5.84096i 0.234390i
\(622\) 0 0
\(623\) 53.6559 2.14968
\(624\) 0 0
\(625\) 15.9783 0.639130
\(626\) 0 0
\(627\) − 2.11684i − 0.0845386i
\(628\) 0 0
\(629\) − 3.16915i − 0.126362i
\(630\) 0 0
\(631\) −16.2333 −0.646236 −0.323118 0.946359i \(-0.604731\pi\)
−0.323118 + 0.946359i \(0.604731\pi\)
\(632\) 0 0
\(633\) 5.25544 0.208885
\(634\) 0 0
\(635\) 4.86141i 0.192919i
\(636\) 0 0
\(637\) − 29.2048i − 1.15714i
\(638\) 0 0
\(639\) −8.51278 −0.336760
\(640\) 0 0
\(641\) 11.8832 0.469356 0.234678 0.972073i \(-0.424596\pi\)
0.234678 + 0.972073i \(0.424596\pi\)
\(642\) 0 0
\(643\) − 5.25544i − 0.207254i −0.994616 0.103627i \(-0.966955\pi\)
0.994616 0.103627i \(-0.0330449\pi\)
\(644\) 0 0
\(645\) 4.84630i 0.190823i
\(646\) 0 0
\(647\) −33.4612 −1.31550 −0.657748 0.753238i \(-0.728491\pi\)
−0.657748 + 0.753238i \(0.728491\pi\)
\(648\) 0 0
\(649\) −9.25544 −0.363308
\(650\) 0 0
\(651\) − 22.9783i − 0.900589i
\(652\) 0 0
\(653\) − 42.3615i − 1.65773i −0.559446 0.828867i \(-0.688986\pi\)
0.559446 0.828867i \(-0.311014\pi\)
\(654\) 0 0
\(655\) −15.5336 −0.606946
\(656\) 0 0
\(657\) −16.7446 −0.653268
\(658\) 0 0
\(659\) 17.4891i 0.681280i 0.940194 + 0.340640i \(0.110644\pi\)
−0.940194 + 0.340640i \(0.889356\pi\)
\(660\) 0 0
\(661\) 1.08724i 0.0422888i 0.999776 + 0.0211444i \(0.00673097\pi\)
−0.999776 + 0.0211444i \(0.993269\pi\)
\(662\) 0 0
\(663\) −5.84096 −0.226844
\(664\) 0 0
\(665\) 1.72281 0.0668078
\(666\) 0 0
\(667\) 29.4891i 1.14182i
\(668\) 0 0
\(669\) 20.9870i 0.811404i
\(670\) 0 0
\(671\) 18.0202 0.695663
\(672\) 0 0
\(673\) 9.76631 0.376464 0.188232 0.982125i \(-0.439724\pi\)
0.188232 + 0.982125i \(0.439724\pi\)
\(674\) 0 0
\(675\) − 4.37228i − 0.168289i
\(676\) 0 0
\(677\) 37.0179i 1.42271i 0.702832 + 0.711356i \(0.251919\pi\)
−0.702832 + 0.711356i \(0.748081\pi\)
\(678\) 0 0
\(679\) −48.4974 −1.86116
\(680\) 0 0
\(681\) −20.6277 −0.790456
\(682\) 0 0
\(683\) 43.8397i 1.67748i 0.544534 + 0.838739i \(0.316707\pi\)
−0.544534 + 0.838739i \(0.683293\pi\)
\(684\) 0 0
\(685\) 11.2772i 0.430878i
\(686\) 0 0
\(687\) 17.0256 0.649565
\(688\) 0 0
\(689\) −10.9783 −0.418238
\(690\) 0 0
\(691\) 6.97825i 0.265465i 0.991152 + 0.132733i \(0.0423751\pi\)
−0.991152 + 0.132733i \(0.957625\pi\)
\(692\) 0 0
\(693\) 11.6819i 0.443760i
\(694\) 0 0
\(695\) 7.51811 0.285178
\(696\) 0 0
\(697\) 8.11684 0.307447
\(698\) 0 0
\(699\) 2.62772i 0.0993894i
\(700\) 0 0
\(701\) 11.3870i 0.430080i 0.976605 + 0.215040i \(0.0689882\pi\)
−0.976605 + 0.215040i \(0.931012\pi\)
\(702\) 0 0
\(703\) −1.98933 −0.0750291
\(704\) 0 0
\(705\) −5.48913 −0.206732
\(706\) 0 0
\(707\) 6.51087i 0.244867i
\(708\) 0 0
\(709\) − 40.9793i − 1.53901i −0.638641 0.769505i \(-0.720503\pi\)
0.638641 0.769505i \(-0.279497\pi\)
\(710\) 0 0
\(711\) −3.46410 −0.129914
\(712\) 0 0
\(713\) −38.7446 −1.45100
\(714\) 0 0
\(715\) 15.6060i 0.583630i
\(716\) 0 0
\(717\) − 2.17448i − 0.0812075i
\(718\) 0 0
\(719\) 14.3537 0.535304 0.267652 0.963516i \(-0.413752\pi\)
0.267652 + 0.963516i \(0.413752\pi\)
\(720\) 0 0
\(721\) 2.74456 0.102213
\(722\) 0 0
\(723\) − 11.4891i − 0.427285i
\(724\) 0 0
\(725\) − 22.0742i − 0.819816i
\(726\) 0 0
\(727\) −44.4434 −1.64831 −0.824157 0.566361i \(-0.808351\pi\)
−0.824157 + 0.566361i \(0.808351\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 6.11684i 0.226240i
\(732\) 0 0
\(733\) 37.2203i 1.37476i 0.726297 + 0.687381i \(0.241240\pi\)
−0.726297 + 0.687381i \(0.758760\pi\)
\(734\) 0 0
\(735\) −3.96143 −0.146120
\(736\) 0 0
\(737\) −13.4891 −0.496878
\(738\) 0 0
\(739\) 31.8397i 1.17124i 0.810585 + 0.585620i \(0.199149\pi\)
−0.810585 + 0.585620i \(0.800851\pi\)
\(740\) 0 0
\(741\) 3.66648i 0.134692i
\(742\) 0 0
\(743\) −22.9591 −0.842287 −0.421144 0.906994i \(-0.638371\pi\)
−0.421144 + 0.906994i \(0.638371\pi\)
\(744\) 0 0
\(745\) −1.48913 −0.0545573
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 53.2511i 1.94575i
\(750\) 0 0
\(751\) −34.9360 −1.27483 −0.637416 0.770520i \(-0.719997\pi\)
−0.637416 + 0.770520i \(0.719997\pi\)
\(752\) 0 0
\(753\) 26.9783 0.983142
\(754\) 0 0
\(755\) − 15.7663i − 0.573795i
\(756\) 0 0
\(757\) 19.6974i 0.715913i 0.933738 + 0.357957i \(0.116526\pi\)
−0.933738 + 0.357957i \(0.883474\pi\)
\(758\) 0 0
\(759\) 19.6974 0.714969
\(760\) 0 0
\(761\) 42.4674 1.53944 0.769721 0.638381i \(-0.220396\pi\)
0.769721 + 0.638381i \(0.220396\pi\)
\(762\) 0 0
\(763\) 24.0000i 0.868858i
\(764\) 0 0
\(765\) 0.792287i 0.0286452i
\(766\) 0 0
\(767\) 16.0309 0.578842
\(768\) 0 0
\(769\) 17.6060 0.634887 0.317444 0.948277i \(-0.397176\pi\)
0.317444 + 0.948277i \(0.397176\pi\)
\(770\) 0 0
\(771\) − 24.9783i − 0.899570i
\(772\) 0 0
\(773\) − 34.9360i − 1.25656i −0.777988 0.628280i \(-0.783759\pi\)
0.777988 0.628280i \(-0.216241\pi\)
\(774\) 0 0
\(775\) 29.0024 1.04180
\(776\) 0 0
\(777\) 10.9783 0.393843
\(778\) 0 0
\(779\) − 5.09509i − 0.182551i
\(780\) 0 0
\(781\) 28.7075i 1.02723i
\(782\) 0 0
\(783\) −5.04868 −0.180425
\(784\) 0 0
\(785\) 16.8614 0.601809
\(786\) 0 0
\(787\) − 18.7446i − 0.668171i −0.942543 0.334086i \(-0.891572\pi\)
0.942543 0.334086i \(-0.108428\pi\)
\(788\) 0 0
\(789\) − 9.50744i − 0.338474i
\(790\) 0 0
\(791\) −46.3229 −1.64705
\(792\) 0 0
\(793\) −31.2119 −1.10837
\(794\) 0 0
\(795\) 1.48913i 0.0528138i
\(796\) 0 0
\(797\) − 8.21782i − 0.291090i −0.989352 0.145545i \(-0.953506\pi\)
0.989352 0.145545i \(-0.0464936\pi\)
\(798\) 0 0
\(799\) −6.92820 −0.245102
\(800\) 0 0
\(801\) 15.4891 0.547281
\(802\) 0 0
\(803\) 56.4674i 1.99269i
\(804\) 0 0
\(805\) 16.0309i 0.565015i
\(806\) 0 0
\(807\) −9.30506 −0.327554
\(808\) 0 0
\(809\) −25.3723 −0.892042 −0.446021 0.895023i \(-0.647159\pi\)
−0.446021 + 0.895023i \(0.647159\pi\)
\(810\) 0 0
\(811\) − 28.4674i − 0.999625i −0.866134 0.499812i \(-0.833402\pi\)
0.866134 0.499812i \(-0.166598\pi\)
\(812\) 0 0
\(813\) − 21.5769i − 0.756735i
\(814\) 0 0
\(815\) −8.51278 −0.298190
\(816\) 0 0
\(817\) 3.83966 0.134333
\(818\) 0 0
\(819\) − 20.2337i − 0.707022i
\(820\) 0 0
\(821\) 32.2642i 1.12603i 0.826448 + 0.563013i \(0.190358\pi\)
−0.826448 + 0.563013i \(0.809642\pi\)
\(822\) 0 0
\(823\) −41.6790 −1.45284 −0.726420 0.687251i \(-0.758817\pi\)
−0.726420 + 0.687251i \(0.758817\pi\)
\(824\) 0 0
\(825\) −14.7446 −0.513340
\(826\) 0 0
\(827\) − 6.11684i − 0.212704i −0.994329 0.106352i \(-0.966083\pi\)
0.994329 0.106352i \(-0.0339170\pi\)
\(828\) 0 0
\(829\) 20.1947i 0.701391i 0.936490 + 0.350696i \(0.114055\pi\)
−0.936490 + 0.350696i \(0.885945\pi\)
\(830\) 0 0
\(831\) −23.9538 −0.830947
\(832\) 0 0
\(833\) −5.00000 −0.173240
\(834\) 0 0
\(835\) 12.6277i 0.437000i
\(836\) 0 0
\(837\) − 6.63325i − 0.229279i
\(838\) 0 0
\(839\) −42.0666 −1.45230 −0.726149 0.687537i \(-0.758692\pi\)
−0.726149 + 0.687537i \(0.758692\pi\)
\(840\) 0 0
\(841\) 3.51087 0.121065
\(842\) 0 0
\(843\) − 7.48913i − 0.257939i
\(844\) 0 0
\(845\) − 16.7306i − 0.575550i
\(846\) 0 0
\(847\) 1.28962 0.0443119
\(848\) 0 0
\(849\) 24.2337 0.831698
\(850\) 0 0
\(851\) − 18.5109i − 0.634545i
\(852\) 0 0
\(853\) 41.3841i 1.41696i 0.705729 + 0.708482i \(0.250620\pi\)
−0.705729 + 0.708482i \(0.749380\pi\)
\(854\) 0 0
\(855\) 0.497333 0.0170084
\(856\) 0 0
\(857\) 20.9783 0.716603 0.358302 0.933606i \(-0.383356\pi\)
0.358302 + 0.933606i \(0.383356\pi\)
\(858\) 0 0
\(859\) − 30.9783i − 1.05696i −0.848944 0.528482i \(-0.822761\pi\)
0.848944 0.528482i \(-0.177239\pi\)
\(860\) 0 0
\(861\) 28.1176i 0.958244i
\(862\) 0 0
\(863\) 31.8766 1.08509 0.542547 0.840026i \(-0.317460\pi\)
0.542547 + 0.840026i \(0.317460\pi\)
\(864\) 0 0
\(865\) −1.09509 −0.0372343
\(866\) 0 0
\(867\) 1.00000i 0.0339618i
\(868\) 0 0
\(869\) 11.6819i 0.396282i
\(870\) 0 0
\(871\) 23.3639 0.791654
\(872\) 0 0
\(873\) −14.0000 −0.473828
\(874\) 0 0
\(875\) − 25.7228i − 0.869590i
\(876\) 0 0
\(877\) − 3.16915i − 0.107015i −0.998567 0.0535073i \(-0.982960\pi\)
0.998567 0.0535073i \(-0.0170400\pi\)
\(878\) 0 0
\(879\) 28.4125 0.958331
\(880\) 0 0
\(881\) −0.978251 −0.0329581 −0.0164790 0.999864i \(-0.505246\pi\)
−0.0164790 + 0.999864i \(0.505246\pi\)
\(882\) 0 0
\(883\) − 34.3505i − 1.15599i −0.816041 0.577994i \(-0.803836\pi\)
0.816041 0.577994i \(-0.196164\pi\)
\(884\) 0 0
\(885\) − 2.17448i − 0.0730944i
\(886\) 0 0
\(887\) 55.3331 1.85790 0.928951 0.370203i \(-0.120712\pi\)
0.928951 + 0.370203i \(0.120712\pi\)
\(888\) 0 0
\(889\) −21.2554 −0.712884
\(890\) 0 0
\(891\) 3.37228i 0.112976i
\(892\) 0 0
\(893\) 4.34896i 0.145532i
\(894\) 0 0
\(895\) −4.16381 −0.139181
\(896\) 0 0
\(897\) −34.1168 −1.13913
\(898\) 0 0
\(899\) − 33.4891i − 1.11692i
\(900\) 0 0
\(901\) 1.87953i 0.0626161i
\(902\) 0 0
\(903\) −21.1894 −0.705138
\(904\) 0 0
\(905\) 10.5109 0.349393
\(906\) 0 0
\(907\) 12.0000i 0.398453i 0.979953 + 0.199227i \(0.0638430\pi\)
−0.979953 + 0.199227i \(0.936157\pi\)
\(908\) 0 0
\(909\) 1.87953i 0.0623400i
\(910\) 0 0
\(911\) 42.4713 1.40714 0.703569 0.710627i \(-0.251589\pi\)
0.703569 + 0.710627i \(0.251589\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 4.23369i 0.139961i
\(916\) 0 0
\(917\) − 67.9171i − 2.24282i
\(918\) 0 0
\(919\) 8.12525 0.268027 0.134014 0.990979i \(-0.457213\pi\)
0.134014 + 0.990979i \(0.457213\pi\)
\(920\) 0 0
\(921\) 6.51087 0.214541
\(922\) 0 0
\(923\) − 49.7228i − 1.63665i
\(924\) 0 0
\(925\) 13.8564i 0.455596i
\(926\) 0 0
\(927\) 0.792287 0.0260221
\(928\) 0 0
\(929\) 5.13859 0.168592 0.0842959 0.996441i \(-0.473136\pi\)
0.0842959 + 0.996441i \(0.473136\pi\)
\(930\) 0 0
\(931\) 3.13859i 0.102863i
\(932\) 0 0
\(933\) 12.2718i 0.401762i
\(934\) 0 0
\(935\) 2.67181 0.0873777
\(936\) 0 0
\(937\) 8.51087 0.278038 0.139019 0.990290i \(-0.455605\pi\)
0.139019 + 0.990290i \(0.455605\pi\)
\(938\) 0 0
\(939\) 24.9783i 0.815134i
\(940\) 0 0
\(941\) − 30.9918i − 1.01030i −0.863031 0.505151i \(-0.831437\pi\)
0.863031 0.505151i \(-0.168563\pi\)
\(942\) 0 0
\(943\) 47.4102 1.54389
\(944\) 0 0
\(945\) −2.74456 −0.0892806
\(946\) 0 0
\(947\) 25.4891i 0.828285i 0.910212 + 0.414143i \(0.135919\pi\)
−0.910212 + 0.414143i \(0.864081\pi\)
\(948\) 0 0
\(949\) − 97.8044i − 3.17486i
\(950\) 0 0
\(951\) −32.1716 −1.04323
\(952\) 0 0
\(953\) −10.2337 −0.331502 −0.165751 0.986168i \(-0.553005\pi\)
−0.165751 + 0.986168i \(0.553005\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 17.0256i 0.550358i
\(958\) 0 0
\(959\) −49.3069 −1.59220
\(960\) 0 0
\(961\) 13.0000 0.419355
\(962\) 0 0
\(963\) 15.3723i 0.495365i
\(964\) 0 0
\(965\) 5.93354i 0.191007i
\(966\) 0 0
\(967\) 11.8843 0.382173 0.191087 0.981573i \(-0.438799\pi\)
0.191087 + 0.981573i \(0.438799\pi\)
\(968\) 0 0
\(969\) 0.627719 0.0201652
\(970\) 0 0
\(971\) − 22.7446i − 0.729908i −0.931026 0.364954i \(-0.881085\pi\)
0.931026 0.364954i \(-0.118915\pi\)
\(972\) 0 0
\(973\) 32.8713i 1.05381i
\(974\) 0 0
\(975\) 25.5383 0.817881
\(976\) 0 0
\(977\) 6.00000 0.191957 0.0959785 0.995383i \(-0.469402\pi\)
0.0959785 + 0.995383i \(0.469402\pi\)
\(978\) 0 0
\(979\) − 52.2337i − 1.66940i
\(980\) 0 0
\(981\) 6.92820i 0.221201i
\(982\) 0 0
\(983\) 31.9692 1.01966 0.509830 0.860275i \(-0.329708\pi\)
0.509830 + 0.860275i \(0.329708\pi\)
\(984\) 0 0
\(985\) 11.6060 0.369797
\(986\) 0 0
\(987\) − 24.0000i − 0.763928i
\(988\) 0 0
\(989\) 35.7283i 1.13609i
\(990\) 0 0
\(991\) −17.9104 −0.568943 −0.284472 0.958684i \(-0.591818\pi\)
−0.284472 + 0.958684i \(0.591818\pi\)
\(992\) 0 0
\(993\) −4.86141 −0.154272
\(994\) 0 0
\(995\) 2.74456i 0.0870085i
\(996\) 0 0
\(997\) − 24.3585i − 0.771442i −0.922615 0.385721i \(-0.873953\pi\)
0.922615 0.385721i \(-0.126047\pi\)
\(998\) 0 0
\(999\) 3.16915 0.100267
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3264.2.f.h.1633.7 yes 8
4.3 odd 2 inner 3264.2.f.h.1633.3 yes 8
8.3 odd 2 inner 3264.2.f.h.1633.6 yes 8
8.5 even 2 inner 3264.2.f.h.1633.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3264.2.f.h.1633.2 8 8.5 even 2 inner
3264.2.f.h.1633.3 yes 8 4.3 odd 2 inner
3264.2.f.h.1633.6 yes 8 8.3 odd 2 inner
3264.2.f.h.1633.7 yes 8 1.1 even 1 trivial