Properties

Label 3264.2.f.h.1633.8
Level $3264$
Weight $2$
Character 3264.1633
Analytic conductor $26.063$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3264,2,Mod(1633,3264)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3264, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3264.1633");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3264 = 2^{6} \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3264.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.0631712197\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.303595776.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 5x^{6} + 16x^{4} + 45x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1633.8
Root \(-1.26217 - 1.18614i\) of defining polynomial
Character \(\chi\) \(=\) 3264.1633
Dual form 3264.2.f.h.1633.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +2.52434i q^{5} +3.46410 q^{7} -1.00000 q^{9} -2.37228i q^{11} -4.10891i q^{13} -2.52434 q^{15} -1.00000 q^{17} +6.37228i q^{19} +3.46410i q^{21} -4.10891 q^{23} -1.37228 q^{25} -1.00000i q^{27} -1.58457i q^{29} +6.63325 q^{31} +2.37228 q^{33} +8.74456i q^{35} +10.0974i q^{37} +4.10891 q^{39} +9.11684 q^{41} +11.1168i q^{43} -2.52434i q^{45} -6.92820 q^{47} +5.00000 q^{49} -1.00000i q^{51} +8.51278i q^{53} +5.98844 q^{55} -6.37228 q^{57} -8.74456i q^{59} +11.9769i q^{61} -3.46410 q^{63} +10.3723 q^{65} +4.00000i q^{67} -4.10891i q^{69} -1.87953 q^{71} +5.25544 q^{73} -1.37228i q^{75} -8.21782i q^{77} -3.46410 q^{79} +1.00000 q^{81} -2.52434i q^{85} +1.58457 q^{87} +7.48913 q^{89} -14.2337i q^{91} +6.63325i q^{93} -16.0858 q^{95} +14.0000 q^{97} +2.37228i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{9} - 8 q^{17} + 12 q^{25} - 4 q^{33} + 4 q^{41} + 40 q^{49} - 28 q^{57} + 60 q^{65} + 88 q^{73} + 8 q^{81} - 32 q^{89} + 112 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3264\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(2177\) \(2245\) \(2689\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 2.52434i 1.12892i 0.825461 + 0.564459i \(0.190915\pi\)
−0.825461 + 0.564459i \(0.809085\pi\)
\(6\) 0 0
\(7\) 3.46410 1.30931 0.654654 0.755929i \(-0.272814\pi\)
0.654654 + 0.755929i \(0.272814\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) − 2.37228i − 0.715270i −0.933862 0.357635i \(-0.883583\pi\)
0.933862 0.357635i \(-0.116417\pi\)
\(12\) 0 0
\(13\) − 4.10891i − 1.13961i −0.821781 0.569804i \(-0.807019\pi\)
0.821781 0.569804i \(-0.192981\pi\)
\(14\) 0 0
\(15\) −2.52434 −0.651781
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) 6.37228i 1.46190i 0.682430 + 0.730951i \(0.260923\pi\)
−0.682430 + 0.730951i \(0.739077\pi\)
\(20\) 0 0
\(21\) 3.46410i 0.755929i
\(22\) 0 0
\(23\) −4.10891 −0.856767 −0.428384 0.903597i \(-0.640917\pi\)
−0.428384 + 0.903597i \(0.640917\pi\)
\(24\) 0 0
\(25\) −1.37228 −0.274456
\(26\) 0 0
\(27\) − 1.00000i − 0.192450i
\(28\) 0 0
\(29\) − 1.58457i − 0.294248i −0.989118 0.147124i \(-0.952998\pi\)
0.989118 0.147124i \(-0.0470016\pi\)
\(30\) 0 0
\(31\) 6.63325 1.19137 0.595683 0.803219i \(-0.296881\pi\)
0.595683 + 0.803219i \(0.296881\pi\)
\(32\) 0 0
\(33\) 2.37228 0.412961
\(34\) 0 0
\(35\) 8.74456i 1.47810i
\(36\) 0 0
\(37\) 10.0974i 1.65999i 0.557768 + 0.829997i \(0.311658\pi\)
−0.557768 + 0.829997i \(0.688342\pi\)
\(38\) 0 0
\(39\) 4.10891 0.657952
\(40\) 0 0
\(41\) 9.11684 1.42381 0.711906 0.702275i \(-0.247832\pi\)
0.711906 + 0.702275i \(0.247832\pi\)
\(42\) 0 0
\(43\) 11.1168i 1.69530i 0.530554 + 0.847651i \(0.321984\pi\)
−0.530554 + 0.847651i \(0.678016\pi\)
\(44\) 0 0
\(45\) − 2.52434i − 0.376306i
\(46\) 0 0
\(47\) −6.92820 −1.01058 −0.505291 0.862949i \(-0.668615\pi\)
−0.505291 + 0.862949i \(0.668615\pi\)
\(48\) 0 0
\(49\) 5.00000 0.714286
\(50\) 0 0
\(51\) − 1.00000i − 0.140028i
\(52\) 0 0
\(53\) 8.51278i 1.16932i 0.811278 + 0.584660i \(0.198772\pi\)
−0.811278 + 0.584660i \(0.801228\pi\)
\(54\) 0 0
\(55\) 5.98844 0.807481
\(56\) 0 0
\(57\) −6.37228 −0.844029
\(58\) 0 0
\(59\) − 8.74456i − 1.13845i −0.822183 0.569223i \(-0.807244\pi\)
0.822183 0.569223i \(-0.192756\pi\)
\(60\) 0 0
\(61\) 11.9769i 1.53348i 0.641956 + 0.766741i \(0.278123\pi\)
−0.641956 + 0.766741i \(0.721877\pi\)
\(62\) 0 0
\(63\) −3.46410 −0.436436
\(64\) 0 0
\(65\) 10.3723 1.28652
\(66\) 0 0
\(67\) 4.00000i 0.488678i 0.969690 + 0.244339i \(0.0785709\pi\)
−0.969690 + 0.244339i \(0.921429\pi\)
\(68\) 0 0
\(69\) − 4.10891i − 0.494655i
\(70\) 0 0
\(71\) −1.87953 −0.223059 −0.111529 0.993761i \(-0.535575\pi\)
−0.111529 + 0.993761i \(0.535575\pi\)
\(72\) 0 0
\(73\) 5.25544 0.615102 0.307551 0.951532i \(-0.400490\pi\)
0.307551 + 0.951532i \(0.400490\pi\)
\(74\) 0 0
\(75\) − 1.37228i − 0.158457i
\(76\) 0 0
\(77\) − 8.21782i − 0.936508i
\(78\) 0 0
\(79\) −3.46410 −0.389742 −0.194871 0.980829i \(-0.562429\pi\)
−0.194871 + 0.980829i \(0.562429\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) − 2.52434i − 0.273803i
\(86\) 0 0
\(87\) 1.58457 0.169884
\(88\) 0 0
\(89\) 7.48913 0.793846 0.396923 0.917852i \(-0.370078\pi\)
0.396923 + 0.917852i \(0.370078\pi\)
\(90\) 0 0
\(91\) − 14.2337i − 1.49210i
\(92\) 0 0
\(93\) 6.63325i 0.687836i
\(94\) 0 0
\(95\) −16.0858 −1.65037
\(96\) 0 0
\(97\) 14.0000 1.42148 0.710742 0.703452i \(-0.248359\pi\)
0.710742 + 0.703452i \(0.248359\pi\)
\(98\) 0 0
\(99\) 2.37228i 0.238423i
\(100\) 0 0
\(101\) 8.51278i 0.847053i 0.905884 + 0.423526i \(0.139208\pi\)
−0.905884 + 0.423526i \(0.860792\pi\)
\(102\) 0 0
\(103\) −2.52434 −0.248730 −0.124365 0.992237i \(-0.539689\pi\)
−0.124365 + 0.992237i \(0.539689\pi\)
\(104\) 0 0
\(105\) −8.74456 −0.853382
\(106\) 0 0
\(107\) − 9.62772i − 0.930747i −0.885114 0.465373i \(-0.845920\pi\)
0.885114 0.465373i \(-0.154080\pi\)
\(108\) 0 0
\(109\) 6.92820i 0.663602i 0.943349 + 0.331801i \(0.107656\pi\)
−0.943349 + 0.331801i \(0.892344\pi\)
\(110\) 0 0
\(111\) −10.0974 −0.958398
\(112\) 0 0
\(113\) 7.62772 0.717555 0.358778 0.933423i \(-0.383194\pi\)
0.358778 + 0.933423i \(0.383194\pi\)
\(114\) 0 0
\(115\) − 10.3723i − 0.967220i
\(116\) 0 0
\(117\) 4.10891i 0.379869i
\(118\) 0 0
\(119\) −3.46410 −0.317554
\(120\) 0 0
\(121\) 5.37228 0.488389
\(122\) 0 0
\(123\) 9.11684i 0.822038i
\(124\) 0 0
\(125\) 9.15759i 0.819080i
\(126\) 0 0
\(127\) −9.45254 −0.838777 −0.419389 0.907807i \(-0.637756\pi\)
−0.419389 + 0.907807i \(0.637756\pi\)
\(128\) 0 0
\(129\) −11.1168 −0.978784
\(130\) 0 0
\(131\) − 20.6060i − 1.80035i −0.435526 0.900176i \(-0.643438\pi\)
0.435526 0.900176i \(-0.356562\pi\)
\(132\) 0 0
\(133\) 22.0742i 1.91408i
\(134\) 0 0
\(135\) 2.52434 0.217260
\(136\) 0 0
\(137\) −20.2337 −1.72868 −0.864340 0.502907i \(-0.832264\pi\)
−0.864340 + 0.502907i \(0.832264\pi\)
\(138\) 0 0
\(139\) 13.4891i 1.14413i 0.820207 + 0.572066i \(0.193858\pi\)
−0.820207 + 0.572066i \(0.806142\pi\)
\(140\) 0 0
\(141\) − 6.92820i − 0.583460i
\(142\) 0 0
\(143\) −9.74749 −0.815126
\(144\) 0 0
\(145\) 4.00000 0.332182
\(146\) 0 0
\(147\) 5.00000i 0.412393i
\(148\) 0 0
\(149\) − 8.51278i − 0.697394i −0.937236 0.348697i \(-0.886624\pi\)
0.937236 0.348697i \(-0.113376\pi\)
\(150\) 0 0
\(151\) −19.8997 −1.61942 −0.809709 0.586831i \(-0.800375\pi\)
−0.809709 + 0.586831i \(0.800375\pi\)
\(152\) 0 0
\(153\) 1.00000 0.0808452
\(154\) 0 0
\(155\) 16.7446i 1.34496i
\(156\) 0 0
\(157\) 4.69882i 0.375007i 0.982264 + 0.187503i \(0.0600395\pi\)
−0.982264 + 0.187503i \(0.939960\pi\)
\(158\) 0 0
\(159\) −8.51278 −0.675107
\(160\) 0 0
\(161\) −14.2337 −1.12177
\(162\) 0 0
\(163\) − 0.744563i − 0.0583186i −0.999575 0.0291593i \(-0.990717\pi\)
0.999575 0.0291593i \(-0.00928302\pi\)
\(164\) 0 0
\(165\) 5.98844i 0.466199i
\(166\) 0 0
\(167\) 7.27806 0.563193 0.281597 0.959533i \(-0.409136\pi\)
0.281597 + 0.959533i \(0.409136\pi\)
\(168\) 0 0
\(169\) −3.88316 −0.298704
\(170\) 0 0
\(171\) − 6.37228i − 0.487301i
\(172\) 0 0
\(173\) − 24.5986i − 1.87019i −0.354391 0.935097i \(-0.615312\pi\)
0.354391 0.935097i \(-0.384688\pi\)
\(174\) 0 0
\(175\) −4.75372 −0.359348
\(176\) 0 0
\(177\) 8.74456 0.657282
\(178\) 0 0
\(179\) 16.7446i 1.25155i 0.780005 + 0.625774i \(0.215217\pi\)
−0.780005 + 0.625774i \(0.784783\pi\)
\(180\) 0 0
\(181\) − 13.2665i − 0.986091i −0.870003 0.493046i \(-0.835884\pi\)
0.870003 0.493046i \(-0.164116\pi\)
\(182\) 0 0
\(183\) −11.9769 −0.885356
\(184\) 0 0
\(185\) −25.4891 −1.87400
\(186\) 0 0
\(187\) 2.37228i 0.173478i
\(188\) 0 0
\(189\) − 3.46410i − 0.251976i
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) −15.4891 −1.11493 −0.557466 0.830200i \(-0.688226\pi\)
−0.557466 + 0.830200i \(0.688226\pi\)
\(194\) 0 0
\(195\) 10.3723i 0.742774i
\(196\) 0 0
\(197\) 11.3321i 0.807376i 0.914897 + 0.403688i \(0.132272\pi\)
−0.914897 + 0.403688i \(0.867728\pi\)
\(198\) 0 0
\(199\) −3.46410 −0.245564 −0.122782 0.992434i \(-0.539182\pi\)
−0.122782 + 0.992434i \(0.539182\pi\)
\(200\) 0 0
\(201\) −4.00000 −0.282138
\(202\) 0 0
\(203\) − 5.48913i − 0.385261i
\(204\) 0 0
\(205\) 23.0140i 1.60737i
\(206\) 0 0
\(207\) 4.10891 0.285589
\(208\) 0 0
\(209\) 15.1168 1.04565
\(210\) 0 0
\(211\) − 16.7446i − 1.15274i −0.817188 0.576372i \(-0.804468\pi\)
0.817188 0.576372i \(-0.195532\pi\)
\(212\) 0 0
\(213\) − 1.87953i − 0.128783i
\(214\) 0 0
\(215\) −28.0627 −1.91386
\(216\) 0 0
\(217\) 22.9783 1.55987
\(218\) 0 0
\(219\) 5.25544i 0.355130i
\(220\) 0 0
\(221\) 4.10891i 0.276395i
\(222\) 0 0
\(223\) 8.86263 0.593486 0.296743 0.954957i \(-0.404100\pi\)
0.296743 + 0.954957i \(0.404100\pi\)
\(224\) 0 0
\(225\) 1.37228 0.0914854
\(226\) 0 0
\(227\) 26.3723i 1.75039i 0.483770 + 0.875195i \(0.339267\pi\)
−0.483770 + 0.875195i \(0.660733\pi\)
\(228\) 0 0
\(229\) 3.75906i 0.248405i 0.992257 + 0.124203i \(0.0396373\pi\)
−0.992257 + 0.124203i \(0.960363\pi\)
\(230\) 0 0
\(231\) 8.21782 0.540693
\(232\) 0 0
\(233\) 8.37228 0.548486 0.274243 0.961660i \(-0.411573\pi\)
0.274243 + 0.961660i \(0.411573\pi\)
\(234\) 0 0
\(235\) − 17.4891i − 1.14086i
\(236\) 0 0
\(237\) − 3.46410i − 0.225018i
\(238\) 0 0
\(239\) 22.0742 1.42786 0.713932 0.700215i \(-0.246913\pi\)
0.713932 + 0.700215i \(0.246913\pi\)
\(240\) 0 0
\(241\) 11.4891 0.740080 0.370040 0.929016i \(-0.379344\pi\)
0.370040 + 0.929016i \(0.379344\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 12.6217i 0.806370i
\(246\) 0 0
\(247\) 26.1831 1.66599
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 18.9783i 1.19790i 0.800788 + 0.598948i \(0.204415\pi\)
−0.800788 + 0.598948i \(0.795585\pi\)
\(252\) 0 0
\(253\) 9.74749i 0.612820i
\(254\) 0 0
\(255\) 2.52434 0.158080
\(256\) 0 0
\(257\) 20.9783 1.30859 0.654294 0.756241i \(-0.272966\pi\)
0.654294 + 0.756241i \(0.272966\pi\)
\(258\) 0 0
\(259\) 34.9783i 2.17344i
\(260\) 0 0
\(261\) 1.58457i 0.0980827i
\(262\) 0 0
\(263\) −30.2921 −1.86789 −0.933944 0.357419i \(-0.883657\pi\)
−0.933944 + 0.357419i \(0.883657\pi\)
\(264\) 0 0
\(265\) −21.4891 −1.32007
\(266\) 0 0
\(267\) 7.48913i 0.458327i
\(268\) 0 0
\(269\) 0.644810i 0.0393148i 0.999807 + 0.0196574i \(0.00625754\pi\)
−0.999807 + 0.0196574i \(0.993742\pi\)
\(270\) 0 0
\(271\) 18.2603 1.10923 0.554616 0.832106i \(-0.312865\pi\)
0.554616 + 0.832106i \(0.312865\pi\)
\(272\) 0 0
\(273\) 14.2337 0.861462
\(274\) 0 0
\(275\) 3.25544i 0.196310i
\(276\) 0 0
\(277\) − 10.6873i − 0.642135i −0.947056 0.321068i \(-0.895958\pi\)
0.947056 0.321068i \(-0.104042\pi\)
\(278\) 0 0
\(279\) −6.63325 −0.397122
\(280\) 0 0
\(281\) 15.4891 0.924004 0.462002 0.886879i \(-0.347131\pi\)
0.462002 + 0.886879i \(0.347131\pi\)
\(282\) 0 0
\(283\) 10.2337i 0.608330i 0.952619 + 0.304165i \(0.0983774\pi\)
−0.952619 + 0.304165i \(0.901623\pi\)
\(284\) 0 0
\(285\) − 16.0858i − 0.952840i
\(286\) 0 0
\(287\) 31.5817 1.86421
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 14.0000i 0.820695i
\(292\) 0 0
\(293\) − 18.0202i − 1.05275i −0.850252 0.526376i \(-0.823550\pi\)
0.850252 0.526376i \(-0.176450\pi\)
\(294\) 0 0
\(295\) 22.0742 1.28521
\(296\) 0 0
\(297\) −2.37228 −0.137654
\(298\) 0 0
\(299\) 16.8832i 0.976378i
\(300\) 0 0
\(301\) 38.5099i 2.21967i
\(302\) 0 0
\(303\) −8.51278 −0.489046
\(304\) 0 0
\(305\) −30.2337 −1.73118
\(306\) 0 0
\(307\) − 29.4891i − 1.68303i −0.540231 0.841517i \(-0.681663\pi\)
0.540231 0.841517i \(-0.318337\pi\)
\(308\) 0 0
\(309\) − 2.52434i − 0.143605i
\(310\) 0 0
\(311\) −18.9051 −1.07201 −0.536004 0.844215i \(-0.680067\pi\)
−0.536004 + 0.844215i \(0.680067\pi\)
\(312\) 0 0
\(313\) −20.9783 −1.18576 −0.592880 0.805291i \(-0.702009\pi\)
−0.592880 + 0.805291i \(0.702009\pi\)
\(314\) 0 0
\(315\) − 8.74456i − 0.492700i
\(316\) 0 0
\(317\) 0.994667i 0.0558660i 0.999610 + 0.0279330i \(0.00889251\pi\)
−0.999610 + 0.0279330i \(0.991107\pi\)
\(318\) 0 0
\(319\) −3.75906 −0.210467
\(320\) 0 0
\(321\) 9.62772 0.537367
\(322\) 0 0
\(323\) − 6.37228i − 0.354563i
\(324\) 0 0
\(325\) 5.63858i 0.312772i
\(326\) 0 0
\(327\) −6.92820 −0.383131
\(328\) 0 0
\(329\) −24.0000 −1.32316
\(330\) 0 0
\(331\) − 23.8614i − 1.31154i −0.754960 0.655771i \(-0.772344\pi\)
0.754960 0.655771i \(-0.227656\pi\)
\(332\) 0 0
\(333\) − 10.0974i − 0.553331i
\(334\) 0 0
\(335\) −10.0974 −0.551677
\(336\) 0 0
\(337\) 18.7446 1.02108 0.510541 0.859854i \(-0.329445\pi\)
0.510541 + 0.859854i \(0.329445\pi\)
\(338\) 0 0
\(339\) 7.62772i 0.414281i
\(340\) 0 0
\(341\) − 15.7359i − 0.852149i
\(342\) 0 0
\(343\) −6.92820 −0.374088
\(344\) 0 0
\(345\) 10.3723 0.558425
\(346\) 0 0
\(347\) − 6.51087i − 0.349522i −0.984611 0.174761i \(-0.944085\pi\)
0.984611 0.174761i \(-0.0559153\pi\)
\(348\) 0 0
\(349\) − 3.51900i − 0.188368i −0.995555 0.0941840i \(-0.969976\pi\)
0.995555 0.0941840i \(-0.0300242\pi\)
\(350\) 0 0
\(351\) −4.10891 −0.219317
\(352\) 0 0
\(353\) 34.0000 1.80964 0.904819 0.425797i \(-0.140006\pi\)
0.904819 + 0.425797i \(0.140006\pi\)
\(354\) 0 0
\(355\) − 4.74456i − 0.251815i
\(356\) 0 0
\(357\) − 3.46410i − 0.183340i
\(358\) 0 0
\(359\) −10.6873 −0.564052 −0.282026 0.959407i \(-0.591006\pi\)
−0.282026 + 0.959407i \(0.591006\pi\)
\(360\) 0 0
\(361\) −21.6060 −1.13716
\(362\) 0 0
\(363\) 5.37228i 0.281972i
\(364\) 0 0
\(365\) 13.2665i 0.694400i
\(366\) 0 0
\(367\) −18.0202 −0.940648 −0.470324 0.882494i \(-0.655863\pi\)
−0.470324 + 0.882494i \(0.655863\pi\)
\(368\) 0 0
\(369\) −9.11684 −0.474604
\(370\) 0 0
\(371\) 29.4891i 1.53100i
\(372\) 0 0
\(373\) − 3.16915i − 0.164092i −0.996629 0.0820461i \(-0.973855\pi\)
0.996629 0.0820461i \(-0.0261455\pi\)
\(374\) 0 0
\(375\) −9.15759 −0.472896
\(376\) 0 0
\(377\) −6.51087 −0.335327
\(378\) 0 0
\(379\) − 24.7446i − 1.27104i −0.772083 0.635521i \(-0.780785\pi\)
0.772083 0.635521i \(-0.219215\pi\)
\(380\) 0 0
\(381\) − 9.45254i − 0.484268i
\(382\) 0 0
\(383\) −4.45877 −0.227832 −0.113916 0.993490i \(-0.536340\pi\)
−0.113916 + 0.993490i \(0.536340\pi\)
\(384\) 0 0
\(385\) 20.7446 1.05724
\(386\) 0 0
\(387\) − 11.1168i − 0.565101i
\(388\) 0 0
\(389\) 1.58457i 0.0803411i 0.999193 + 0.0401705i \(0.0127901\pi\)
−0.999193 + 0.0401705i \(0.987210\pi\)
\(390\) 0 0
\(391\) 4.10891 0.207797
\(392\) 0 0
\(393\) 20.6060 1.03943
\(394\) 0 0
\(395\) − 8.74456i − 0.439987i
\(396\) 0 0
\(397\) − 11.9769i − 0.601102i −0.953766 0.300551i \(-0.902829\pi\)
0.953766 0.300551i \(-0.0971706\pi\)
\(398\) 0 0
\(399\) −22.0742 −1.10509
\(400\) 0 0
\(401\) 3.62772 0.181160 0.0905798 0.995889i \(-0.471128\pi\)
0.0905798 + 0.995889i \(0.471128\pi\)
\(402\) 0 0
\(403\) − 27.2554i − 1.35769i
\(404\) 0 0
\(405\) 2.52434i 0.125435i
\(406\) 0 0
\(407\) 23.9538 1.18734
\(408\) 0 0
\(409\) −6.88316 −0.340350 −0.170175 0.985414i \(-0.554433\pi\)
−0.170175 + 0.985414i \(0.554433\pi\)
\(410\) 0 0
\(411\) − 20.2337i − 0.998054i
\(412\) 0 0
\(413\) − 30.2921i − 1.49057i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −13.4891 −0.660565
\(418\) 0 0
\(419\) 25.4891i 1.24523i 0.782530 + 0.622613i \(0.213929\pi\)
−0.782530 + 0.622613i \(0.786071\pi\)
\(420\) 0 0
\(421\) − 9.74749i − 0.475064i −0.971380 0.237532i \(-0.923662\pi\)
0.971380 0.237532i \(-0.0763384\pi\)
\(422\) 0 0
\(423\) 6.92820 0.336861
\(424\) 0 0
\(425\) 1.37228 0.0665654
\(426\) 0 0
\(427\) 41.4891i 2.00780i
\(428\) 0 0
\(429\) − 9.74749i − 0.470613i
\(430\) 0 0
\(431\) 22.0742 1.06328 0.531639 0.846971i \(-0.321576\pi\)
0.531639 + 0.846971i \(0.321576\pi\)
\(432\) 0 0
\(433\) 19.6277 0.943248 0.471624 0.881800i \(-0.343668\pi\)
0.471624 + 0.881800i \(0.343668\pi\)
\(434\) 0 0
\(435\) 4.00000i 0.191785i
\(436\) 0 0
\(437\) − 26.1831i − 1.25251i
\(438\) 0 0
\(439\) −1.58457 −0.0756276 −0.0378138 0.999285i \(-0.512039\pi\)
−0.0378138 + 0.999285i \(0.512039\pi\)
\(440\) 0 0
\(441\) −5.00000 −0.238095
\(442\) 0 0
\(443\) 17.4891i 0.830933i 0.909608 + 0.415467i \(0.136382\pi\)
−0.909608 + 0.415467i \(0.863618\pi\)
\(444\) 0 0
\(445\) 18.9051i 0.896187i
\(446\) 0 0
\(447\) 8.51278 0.402641
\(448\) 0 0
\(449\) −28.9783 −1.36757 −0.683784 0.729684i \(-0.739667\pi\)
−0.683784 + 0.729684i \(0.739667\pi\)
\(450\) 0 0
\(451\) − 21.6277i − 1.01841i
\(452\) 0 0
\(453\) − 19.8997i − 0.934972i
\(454\) 0 0
\(455\) 35.9306 1.68445
\(456\) 0 0
\(457\) 34.6060 1.61880 0.809399 0.587258i \(-0.199793\pi\)
0.809399 + 0.587258i \(0.199793\pi\)
\(458\) 0 0
\(459\) 1.00000i 0.0466760i
\(460\) 0 0
\(461\) − 19.8997i − 0.926824i −0.886143 0.463412i \(-0.846625\pi\)
0.886143 0.463412i \(-0.153375\pi\)
\(462\) 0 0
\(463\) 20.4897 0.952235 0.476118 0.879382i \(-0.342044\pi\)
0.476118 + 0.879382i \(0.342044\pi\)
\(464\) 0 0
\(465\) −16.7446 −0.776510
\(466\) 0 0
\(467\) − 24.0000i − 1.11059i −0.831654 0.555294i \(-0.812606\pi\)
0.831654 0.555294i \(-0.187394\pi\)
\(468\) 0 0
\(469\) 13.8564i 0.639829i
\(470\) 0 0
\(471\) −4.69882 −0.216510
\(472\) 0 0
\(473\) 26.3723 1.21260
\(474\) 0 0
\(475\) − 8.74456i − 0.401228i
\(476\) 0 0
\(477\) − 8.51278i − 0.389773i
\(478\) 0 0
\(479\) −0.349857 −0.0159854 −0.00799268 0.999968i \(-0.502544\pi\)
−0.00799268 + 0.999968i \(0.502544\pi\)
\(480\) 0 0
\(481\) 41.4891 1.89174
\(482\) 0 0
\(483\) − 14.2337i − 0.647655i
\(484\) 0 0
\(485\) 35.3407i 1.60474i
\(486\) 0 0
\(487\) 3.46410 0.156973 0.0784867 0.996915i \(-0.474991\pi\)
0.0784867 + 0.996915i \(0.474991\pi\)
\(488\) 0 0
\(489\) 0.744563 0.0336703
\(490\) 0 0
\(491\) − 18.5109i − 0.835384i −0.908589 0.417692i \(-0.862839\pi\)
0.908589 0.417692i \(-0.137161\pi\)
\(492\) 0 0
\(493\) 1.58457i 0.0713656i
\(494\) 0 0
\(495\) −5.98844 −0.269160
\(496\) 0 0
\(497\) −6.51087 −0.292053
\(498\) 0 0
\(499\) − 10.5109i − 0.470531i −0.971931 0.235266i \(-0.924404\pi\)
0.971931 0.235266i \(-0.0755960\pi\)
\(500\) 0 0
\(501\) 7.27806i 0.325160i
\(502\) 0 0
\(503\) −41.9191 −1.86908 −0.934540 0.355859i \(-0.884188\pi\)
−0.934540 + 0.355859i \(0.884188\pi\)
\(504\) 0 0
\(505\) −21.4891 −0.956254
\(506\) 0 0
\(507\) − 3.88316i − 0.172457i
\(508\) 0 0
\(509\) 41.9740i 1.86046i 0.366972 + 0.930232i \(0.380394\pi\)
−0.366972 + 0.930232i \(0.619606\pi\)
\(510\) 0 0
\(511\) 18.2054 0.805358
\(512\) 0 0
\(513\) 6.37228 0.281343
\(514\) 0 0
\(515\) − 6.37228i − 0.280796i
\(516\) 0 0
\(517\) 16.4356i 0.722839i
\(518\) 0 0
\(519\) 24.5986 1.07976
\(520\) 0 0
\(521\) −30.6060 −1.34087 −0.670436 0.741967i \(-0.733893\pi\)
−0.670436 + 0.741967i \(0.733893\pi\)
\(522\) 0 0
\(523\) 14.9783i 0.654953i 0.944859 + 0.327477i \(0.106198\pi\)
−0.944859 + 0.327477i \(0.893802\pi\)
\(524\) 0 0
\(525\) − 4.75372i − 0.207469i
\(526\) 0 0
\(527\) −6.63325 −0.288949
\(528\) 0 0
\(529\) −6.11684 −0.265950
\(530\) 0 0
\(531\) 8.74456i 0.379482i
\(532\) 0 0
\(533\) − 37.4603i − 1.62259i
\(534\) 0 0
\(535\) 24.3036 1.05074
\(536\) 0 0
\(537\) −16.7446 −0.722581
\(538\) 0 0
\(539\) − 11.8614i − 0.510907i
\(540\) 0 0
\(541\) − 19.6048i − 0.842876i −0.906857 0.421438i \(-0.861526\pi\)
0.906857 0.421438i \(-0.138474\pi\)
\(542\) 0 0
\(543\) 13.2665 0.569320
\(544\) 0 0
\(545\) −17.4891 −0.749152
\(546\) 0 0
\(547\) 0.744563i 0.0318352i 0.999873 + 0.0159176i \(0.00506694\pi\)
−0.999873 + 0.0159176i \(0.994933\pi\)
\(548\) 0 0
\(549\) − 11.9769i − 0.511161i
\(550\) 0 0
\(551\) 10.0974 0.430162
\(552\) 0 0
\(553\) −12.0000 −0.510292
\(554\) 0 0
\(555\) − 25.4891i − 1.08195i
\(556\) 0 0
\(557\) − 21.0796i − 0.893170i −0.894741 0.446585i \(-0.852640\pi\)
0.894741 0.446585i \(-0.147360\pi\)
\(558\) 0 0
\(559\) 45.6781 1.93198
\(560\) 0 0
\(561\) −2.37228 −0.100158
\(562\) 0 0
\(563\) − 3.25544i − 0.137200i −0.997644 0.0686002i \(-0.978147\pi\)
0.997644 0.0686002i \(-0.0218533\pi\)
\(564\) 0 0
\(565\) 19.2549i 0.810061i
\(566\) 0 0
\(567\) 3.46410 0.145479
\(568\) 0 0
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 0 0
\(571\) − 10.2337i − 0.428267i −0.976804 0.214133i \(-0.931307\pi\)
0.976804 0.214133i \(-0.0686927\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 5.63858 0.235145
\(576\) 0 0
\(577\) 38.6060 1.60719 0.803594 0.595178i \(-0.202919\pi\)
0.803594 + 0.595178i \(0.202919\pi\)
\(578\) 0 0
\(579\) − 15.4891i − 0.643706i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 20.1947 0.836379
\(584\) 0 0
\(585\) −10.3723 −0.428841
\(586\) 0 0
\(587\) − 21.4891i − 0.886951i −0.896286 0.443476i \(-0.853745\pi\)
0.896286 0.443476i \(-0.146255\pi\)
\(588\) 0 0
\(589\) 42.2689i 1.74166i
\(590\) 0 0
\(591\) −11.3321 −0.466139
\(592\) 0 0
\(593\) −26.7446 −1.09827 −0.549134 0.835734i \(-0.685042\pi\)
−0.549134 + 0.835734i \(0.685042\pi\)
\(594\) 0 0
\(595\) − 8.74456i − 0.358492i
\(596\) 0 0
\(597\) − 3.46410i − 0.141776i
\(598\) 0 0
\(599\) 0.589907 0.0241030 0.0120515 0.999927i \(-0.496164\pi\)
0.0120515 + 0.999927i \(0.496164\pi\)
\(600\) 0 0
\(601\) −30.0000 −1.22373 −0.611863 0.790964i \(-0.709580\pi\)
−0.611863 + 0.790964i \(0.709580\pi\)
\(602\) 0 0
\(603\) − 4.00000i − 0.162893i
\(604\) 0 0
\(605\) 13.5615i 0.551351i
\(606\) 0 0
\(607\) −24.9484 −1.01263 −0.506313 0.862350i \(-0.668992\pi\)
−0.506313 + 0.862350i \(0.668992\pi\)
\(608\) 0 0
\(609\) 5.48913 0.222431
\(610\) 0 0
\(611\) 28.4674i 1.15167i
\(612\) 0 0
\(613\) − 31.2318i − 1.26144i −0.776010 0.630721i \(-0.782759\pi\)
0.776010 0.630721i \(-0.217241\pi\)
\(614\) 0 0
\(615\) −23.0140 −0.928014
\(616\) 0 0
\(617\) −24.5109 −0.986771 −0.493385 0.869811i \(-0.664241\pi\)
−0.493385 + 0.869811i \(0.664241\pi\)
\(618\) 0 0
\(619\) 5.76631i 0.231768i 0.993263 + 0.115884i \(0.0369700\pi\)
−0.993263 + 0.115884i \(0.963030\pi\)
\(620\) 0 0
\(621\) 4.10891i 0.164885i
\(622\) 0 0
\(623\) 25.9431 1.03939
\(624\) 0 0
\(625\) −29.9783 −1.19913
\(626\) 0 0
\(627\) 15.1168i 0.603709i
\(628\) 0 0
\(629\) − 10.0974i − 0.402608i
\(630\) 0 0
\(631\) 6.28339 0.250138 0.125069 0.992148i \(-0.460085\pi\)
0.125069 + 0.992148i \(0.460085\pi\)
\(632\) 0 0
\(633\) 16.7446 0.665537
\(634\) 0 0
\(635\) − 23.8614i − 0.946911i
\(636\) 0 0
\(637\) − 20.5446i − 0.814005i
\(638\) 0 0
\(639\) 1.87953 0.0743530
\(640\) 0 0
\(641\) 29.1168 1.15005 0.575023 0.818137i \(-0.304993\pi\)
0.575023 + 0.818137i \(0.304993\pi\)
\(642\) 0 0
\(643\) − 16.7446i − 0.660341i −0.943921 0.330171i \(-0.892894\pi\)
0.943921 0.330171i \(-0.107106\pi\)
\(644\) 0 0
\(645\) − 28.0627i − 1.10497i
\(646\) 0 0
\(647\) −19.6048 −0.770744 −0.385372 0.922761i \(-0.625927\pi\)
−0.385372 + 0.922761i \(0.625927\pi\)
\(648\) 0 0
\(649\) −20.7446 −0.814295
\(650\) 0 0
\(651\) 22.9783i 0.900589i
\(652\) 0 0
\(653\) 39.0449i 1.52794i 0.645249 + 0.763972i \(0.276754\pi\)
−0.645249 + 0.763972i \(0.723246\pi\)
\(654\) 0 0
\(655\) 52.0164 2.03245
\(656\) 0 0
\(657\) −5.25544 −0.205034
\(658\) 0 0
\(659\) − 5.48913i − 0.213826i −0.994268 0.106913i \(-0.965903\pi\)
0.994268 0.106913i \(-0.0340966\pi\)
\(660\) 0 0
\(661\) − 11.0371i − 0.429294i −0.976692 0.214647i \(-0.931140\pi\)
0.976692 0.214647i \(-0.0688601\pi\)
\(662\) 0 0
\(663\) −4.10891 −0.159577
\(664\) 0 0
\(665\) −55.7228 −2.16084
\(666\) 0 0
\(667\) 6.51087i 0.252102i
\(668\) 0 0
\(669\) 8.86263i 0.342649i
\(670\) 0 0
\(671\) 28.4125 1.09685
\(672\) 0 0
\(673\) 44.2337 1.70508 0.852542 0.522659i \(-0.175060\pi\)
0.852542 + 0.522659i \(0.175060\pi\)
\(674\) 0 0
\(675\) 1.37228i 0.0528191i
\(676\) 0 0
\(677\) − 27.0680i − 1.04031i −0.854073 0.520154i \(-0.825875\pi\)
0.854073 0.520154i \(-0.174125\pi\)
\(678\) 0 0
\(679\) 48.4974 1.86116
\(680\) 0 0
\(681\) −26.3723 −1.01059
\(682\) 0 0
\(683\) − 30.8397i − 1.18005i −0.807386 0.590023i \(-0.799119\pi\)
0.807386 0.590023i \(-0.200881\pi\)
\(684\) 0 0
\(685\) − 51.0767i − 1.95154i
\(686\) 0 0
\(687\) −3.75906 −0.143417
\(688\) 0 0
\(689\) 34.9783 1.33257
\(690\) 0 0
\(691\) − 38.9783i − 1.48280i −0.671062 0.741401i \(-0.734162\pi\)
0.671062 0.741401i \(-0.265838\pi\)
\(692\) 0 0
\(693\) 8.21782i 0.312169i
\(694\) 0 0
\(695\) −34.0511 −1.29163
\(696\) 0 0
\(697\) −9.11684 −0.345325
\(698\) 0 0
\(699\) 8.37228i 0.316669i
\(700\) 0 0
\(701\) 21.7793i 0.822592i 0.911502 + 0.411296i \(0.134924\pi\)
−0.911502 + 0.411296i \(0.865076\pi\)
\(702\) 0 0
\(703\) −64.3432 −2.42675
\(704\) 0 0
\(705\) 17.4891 0.658679
\(706\) 0 0
\(707\) 29.4891i 1.10905i
\(708\) 0 0
\(709\) 14.4463i 0.542543i 0.962503 + 0.271271i \(0.0874441\pi\)
−0.962503 + 0.271271i \(0.912556\pi\)
\(710\) 0 0
\(711\) 3.46410 0.129914
\(712\) 0 0
\(713\) −27.2554 −1.02072
\(714\) 0 0
\(715\) − 24.6060i − 0.920211i
\(716\) 0 0
\(717\) 22.0742i 0.824377i
\(718\) 0 0
\(719\) 2.22938 0.0831420 0.0415710 0.999136i \(-0.486764\pi\)
0.0415710 + 0.999136i \(0.486764\pi\)
\(720\) 0 0
\(721\) −8.74456 −0.325665
\(722\) 0 0
\(723\) 11.4891i 0.427285i
\(724\) 0 0
\(725\) 2.17448i 0.0807582i
\(726\) 0 0
\(727\) 17.9104 0.664261 0.332130 0.943234i \(-0.392233\pi\)
0.332130 + 0.943234i \(0.392233\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) − 11.1168i − 0.411171i
\(732\) 0 0
\(733\) 2.57924i 0.0952664i 0.998865 + 0.0476332i \(0.0151679\pi\)
−0.998865 + 0.0476332i \(0.984832\pi\)
\(734\) 0 0
\(735\) −12.6217 −0.465558
\(736\) 0 0
\(737\) 9.48913 0.349536
\(738\) 0 0
\(739\) − 42.8397i − 1.57588i −0.615751 0.787941i \(-0.711147\pi\)
0.615751 0.787941i \(-0.288853\pi\)
\(740\) 0 0
\(741\) 26.1831i 0.961862i
\(742\) 0 0
\(743\) 42.8588 1.57234 0.786169 0.618011i \(-0.212061\pi\)
0.786169 + 0.618011i \(0.212061\pi\)
\(744\) 0 0
\(745\) 21.4891 0.787301
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 33.3514i − 1.21863i
\(750\) 0 0
\(751\) 48.2025 1.75893 0.879467 0.475961i \(-0.157900\pi\)
0.879467 + 0.475961i \(0.157900\pi\)
\(752\) 0 0
\(753\) −18.9783 −0.691606
\(754\) 0 0
\(755\) − 50.2337i − 1.82819i
\(756\) 0 0
\(757\) − 9.74749i − 0.354279i −0.984186 0.177139i \(-0.943316\pi\)
0.984186 0.177139i \(-0.0566843\pi\)
\(758\) 0 0
\(759\) −9.74749 −0.353812
\(760\) 0 0
\(761\) −26.4674 −0.959442 −0.479721 0.877421i \(-0.659262\pi\)
−0.479721 + 0.877421i \(0.659262\pi\)
\(762\) 0 0
\(763\) 24.0000i 0.868858i
\(764\) 0 0
\(765\) 2.52434i 0.0912676i
\(766\) 0 0
\(767\) −35.9306 −1.29738
\(768\) 0 0
\(769\) −22.6060 −0.815192 −0.407596 0.913162i \(-0.633633\pi\)
−0.407596 + 0.913162i \(0.633633\pi\)
\(770\) 0 0
\(771\) 20.9783i 0.755513i
\(772\) 0 0
\(773\) 48.2025i 1.73372i 0.498550 + 0.866861i \(0.333866\pi\)
−0.498550 + 0.866861i \(0.666134\pi\)
\(774\) 0 0
\(775\) −9.10268 −0.326978
\(776\) 0 0
\(777\) −34.9783 −1.25484
\(778\) 0 0
\(779\) 58.0951i 2.08147i
\(780\) 0 0
\(781\) 4.45877i 0.159547i
\(782\) 0 0
\(783\) −1.58457 −0.0566281
\(784\) 0 0
\(785\) −11.8614 −0.423352
\(786\) 0 0
\(787\) − 7.25544i − 0.258628i −0.991604 0.129314i \(-0.958722\pi\)
0.991604 0.129314i \(-0.0412776\pi\)
\(788\) 0 0
\(789\) − 30.2921i − 1.07843i
\(790\) 0 0
\(791\) 26.4232 0.939501
\(792\) 0 0
\(793\) 49.2119 1.74757
\(794\) 0 0
\(795\) − 21.4891i − 0.762141i
\(796\) 0 0
\(797\) − 11.6819i − 0.413795i −0.978363 0.206898i \(-0.933663\pi\)
0.978363 0.206898i \(-0.0663367\pi\)
\(798\) 0 0
\(799\) 6.92820 0.245102
\(800\) 0 0
\(801\) −7.48913 −0.264615
\(802\) 0 0
\(803\) − 12.4674i − 0.439964i
\(804\) 0 0
\(805\) − 35.9306i − 1.26639i
\(806\) 0 0
\(807\) −0.644810 −0.0226984
\(808\) 0 0
\(809\) −19.6277 −0.690074 −0.345037 0.938589i \(-0.612134\pi\)
−0.345037 + 0.938589i \(0.612134\pi\)
\(810\) 0 0
\(811\) 40.4674i 1.42100i 0.703696 + 0.710501i \(0.251532\pi\)
−0.703696 + 0.710501i \(0.748468\pi\)
\(812\) 0 0
\(813\) 18.2603i 0.640416i
\(814\) 0 0
\(815\) 1.87953 0.0658370
\(816\) 0 0
\(817\) −70.8397 −2.47837
\(818\) 0 0
\(819\) 14.2337i 0.497365i
\(820\) 0 0
\(821\) − 42.2140i − 1.47328i −0.676285 0.736640i \(-0.736411\pi\)
0.676285 0.736640i \(-0.263589\pi\)
\(822\) 0 0
\(823\) −31.2867 −1.09059 −0.545293 0.838245i \(-0.683582\pi\)
−0.545293 + 0.838245i \(0.683582\pi\)
\(824\) 0 0
\(825\) −3.25544 −0.113340
\(826\) 0 0
\(827\) 11.1168i 0.386571i 0.981143 + 0.193285i \(0.0619143\pi\)
−0.981143 + 0.193285i \(0.938086\pi\)
\(828\) 0 0
\(829\) 6.33830i 0.220138i 0.993924 + 0.110069i \(0.0351072\pi\)
−0.993924 + 0.110069i \(0.964893\pi\)
\(830\) 0 0
\(831\) 10.6873 0.370737
\(832\) 0 0
\(833\) −5.00000 −0.173240
\(834\) 0 0
\(835\) 18.3723i 0.635799i
\(836\) 0 0
\(837\) − 6.63325i − 0.229279i
\(838\) 0 0
\(839\) 25.4834 0.879786 0.439893 0.898050i \(-0.355016\pi\)
0.439893 + 0.898050i \(0.355016\pi\)
\(840\) 0 0
\(841\) 26.4891 0.913418
\(842\) 0 0
\(843\) 15.4891i 0.533474i
\(844\) 0 0
\(845\) − 9.80240i − 0.337213i
\(846\) 0 0
\(847\) 18.6101 0.639452
\(848\) 0 0
\(849\) −10.2337 −0.351219
\(850\) 0 0
\(851\) − 41.4891i − 1.42223i
\(852\) 0 0
\(853\) 44.8482i 1.53557i 0.640706 + 0.767786i \(0.278642\pi\)
−0.640706 + 0.767786i \(0.721358\pi\)
\(854\) 0 0
\(855\) 16.0858 0.550122
\(856\) 0 0
\(857\) −24.9783 −0.853241 −0.426620 0.904431i \(-0.640296\pi\)
−0.426620 + 0.904431i \(0.640296\pi\)
\(858\) 0 0
\(859\) 14.9783i 0.511051i 0.966802 + 0.255526i \(0.0822485\pi\)
−0.966802 + 0.255526i \(0.917751\pi\)
\(860\) 0 0
\(861\) 31.5817i 1.07630i
\(862\) 0 0
\(863\) 14.5561 0.495496 0.247748 0.968824i \(-0.420309\pi\)
0.247748 + 0.968824i \(0.420309\pi\)
\(864\) 0 0
\(865\) 62.0951 2.11130
\(866\) 0 0
\(867\) 1.00000i 0.0339618i
\(868\) 0 0
\(869\) 8.21782i 0.278771i
\(870\) 0 0
\(871\) 16.4356 0.556901
\(872\) 0 0
\(873\) −14.0000 −0.473828
\(874\) 0 0
\(875\) 31.7228i 1.07243i
\(876\) 0 0
\(877\) − 10.0974i − 0.340963i −0.985361 0.170482i \(-0.945468\pi\)
0.985361 0.170482i \(-0.0545324\pi\)
\(878\) 0 0
\(879\) 18.0202 0.607807
\(880\) 0 0
\(881\) 44.9783 1.51536 0.757678 0.652629i \(-0.226334\pi\)
0.757678 + 0.652629i \(0.226334\pi\)
\(882\) 0 0
\(883\) 17.3505i 0.583892i 0.956435 + 0.291946i \(0.0943027\pi\)
−0.956435 + 0.291946i \(0.905697\pi\)
\(884\) 0 0
\(885\) 22.0742i 0.742017i
\(886\) 0 0
\(887\) −12.2169 −0.410204 −0.205102 0.978741i \(-0.565753\pi\)
−0.205102 + 0.978741i \(0.565753\pi\)
\(888\) 0 0
\(889\) −32.7446 −1.09822
\(890\) 0 0
\(891\) − 2.37228i − 0.0794744i
\(892\) 0 0
\(893\) − 44.1485i − 1.47737i
\(894\) 0 0
\(895\) −42.2689 −1.41289
\(896\) 0 0
\(897\) −16.8832 −0.563712
\(898\) 0 0
\(899\) − 10.5109i − 0.350557i
\(900\) 0 0
\(901\) − 8.51278i − 0.283602i
\(902\) 0 0
\(903\) −38.5099 −1.28153
\(904\) 0 0
\(905\) 33.4891 1.11322
\(906\) 0 0
\(907\) 12.0000i 0.398453i 0.979953 + 0.199227i \(0.0638430\pi\)
−0.979953 + 0.199227i \(0.936157\pi\)
\(908\) 0 0
\(909\) − 8.51278i − 0.282351i
\(910\) 0 0
\(911\) 33.8111 1.12021 0.560105 0.828422i \(-0.310761\pi\)
0.560105 + 0.828422i \(0.310761\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) − 30.2337i − 0.999495i
\(916\) 0 0
\(917\) − 71.3812i − 2.35721i
\(918\) 0 0
\(919\) 54.8906 1.81067 0.905337 0.424693i \(-0.139618\pi\)
0.905337 + 0.424693i \(0.139618\pi\)
\(920\) 0 0
\(921\) 29.4891 0.971700
\(922\) 0 0
\(923\) 7.72281i 0.254199i
\(924\) 0 0
\(925\) − 13.8564i − 0.455596i
\(926\) 0 0
\(927\) 2.52434 0.0829101
\(928\) 0 0
\(929\) 33.8614 1.11096 0.555478 0.831531i \(-0.312535\pi\)
0.555478 + 0.831531i \(0.312535\pi\)
\(930\) 0 0
\(931\) 31.8614i 1.04422i
\(932\) 0 0
\(933\) − 18.9051i − 0.618925i
\(934\) 0 0
\(935\) −5.98844 −0.195843
\(936\) 0 0
\(937\) 31.4891 1.02870 0.514352 0.857579i \(-0.328032\pi\)
0.514352 + 0.857579i \(0.328032\pi\)
\(938\) 0 0
\(939\) − 20.9783i − 0.684599i
\(940\) 0 0
\(941\) − 55.2405i − 1.80079i −0.435075 0.900394i \(-0.643278\pi\)
0.435075 0.900394i \(-0.356722\pi\)
\(942\) 0 0
\(943\) −37.4603 −1.21988
\(944\) 0 0
\(945\) 8.74456 0.284461
\(946\) 0 0
\(947\) 2.51087i 0.0815925i 0.999167 + 0.0407962i \(0.0129894\pi\)
−0.999167 + 0.0407962i \(0.987011\pi\)
\(948\) 0 0
\(949\) − 21.5941i − 0.700975i
\(950\) 0 0
\(951\) −0.994667 −0.0322543
\(952\) 0 0
\(953\) 24.2337 0.785006 0.392503 0.919751i \(-0.371609\pi\)
0.392503 + 0.919751i \(0.371609\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 3.75906i − 0.121513i
\(958\) 0 0
\(959\) −70.0916 −2.26337
\(960\) 0 0
\(961\) 13.0000 0.419355
\(962\) 0 0
\(963\) 9.62772i 0.310249i
\(964\) 0 0
\(965\) − 39.0998i − 1.25867i
\(966\) 0 0
\(967\) 37.8651 1.21766 0.608829 0.793301i \(-0.291639\pi\)
0.608829 + 0.793301i \(0.291639\pi\)
\(968\) 0 0
\(969\) 6.37228 0.204707
\(970\) 0 0
\(971\) − 11.2554i − 0.361204i −0.983556 0.180602i \(-0.942195\pi\)
0.983556 0.180602i \(-0.0578046\pi\)
\(972\) 0 0
\(973\) 46.7277i 1.49802i
\(974\) 0 0
\(975\) −5.63858 −0.180579
\(976\) 0 0
\(977\) 6.00000 0.191957 0.0959785 0.995383i \(-0.469402\pi\)
0.0959785 + 0.995383i \(0.469402\pi\)
\(978\) 0 0
\(979\) − 17.7663i − 0.567814i
\(980\) 0 0
\(981\) − 6.92820i − 0.221201i
\(982\) 0 0
\(983\) −28.6526 −0.913875 −0.456938 0.889499i \(-0.651054\pi\)
−0.456938 + 0.889499i \(0.651054\pi\)
\(984\) 0 0
\(985\) −28.6060 −0.911462
\(986\) 0 0
\(987\) − 24.0000i − 0.763928i
\(988\) 0 0
\(989\) − 45.6781i − 1.45248i
\(990\) 0 0
\(991\) 44.4434 1.41179 0.705896 0.708316i \(-0.250545\pi\)
0.705896 + 0.708316i \(0.250545\pi\)
\(992\) 0 0
\(993\) 23.8614 0.757219
\(994\) 0 0
\(995\) − 8.74456i − 0.277221i
\(996\) 0 0
\(997\) − 48.6072i − 1.53941i −0.638402 0.769703i \(-0.720404\pi\)
0.638402 0.769703i \(-0.279596\pi\)
\(998\) 0 0
\(999\) 10.0974 0.319466
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3264.2.f.h.1633.8 yes 8
4.3 odd 2 inner 3264.2.f.h.1633.4 yes 8
8.3 odd 2 inner 3264.2.f.h.1633.5 yes 8
8.5 even 2 inner 3264.2.f.h.1633.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3264.2.f.h.1633.1 8 8.5 even 2 inner
3264.2.f.h.1633.4 yes 8 4.3 odd 2 inner
3264.2.f.h.1633.5 yes 8 8.3 odd 2 inner
3264.2.f.h.1633.8 yes 8 1.1 even 1 trivial