L(s) = 1 | − 2-s − 4-s − 4·5-s + 4·10-s + 9·13-s + 16-s + 2·17-s − 9·19-s + 4·20-s − 11·23-s + 2·25-s − 9·26-s + 6·29-s + 3·31-s + 2·32-s − 2·34-s − 3·37-s + 9·38-s − 13·41-s − 6·43-s + 11·46-s + 47-s − 12·49-s − 2·50-s − 9·52-s − 15·53-s − 6·58-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1/2·4-s − 1.78·5-s + 1.26·10-s + 2.49·13-s + 1/4·16-s + 0.485·17-s − 2.06·19-s + 0.894·20-s − 2.29·23-s + 2/5·25-s − 1.76·26-s + 1.11·29-s + 0.538·31-s + 0.353·32-s − 0.342·34-s − 0.493·37-s + 1.45·38-s − 2.03·41-s − 0.914·43-s + 1.62·46-s + 0.145·47-s − 1.71·49-s − 0.282·50-s − 1.24·52-s − 2.06·53-s − 0.787·58-s + ⋯ |
Λ(s)=(=((39⋅116)s/2ΓC(s)3L(s)−Λ(2−s)
Λ(s)=(=((39⋅116)s/2ΓC(s+1/2)3L(s)−Λ(1−s)
Degree: |
6 |
Conductor: |
39⋅116
|
Sign: |
−1
|
Analytic conductor: |
17753.2 |
Root analytic conductor: |
5.10755 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
3
|
Selberg data: |
(6, 39⋅116, ( :1/2,1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 11 | | 1 |
good | 2 | S4×C2 | 1+T+pT2+3T3+p2T4+p2T5+p3T6 |
| 5 | S4×C2 | 1+4T+14T2+39T3+14pT4+4p2T5+p3T6 |
| 7 | S4×C2 | 1+12T2−T3+12pT4+p3T6 |
| 13 | S4×C2 | 1−9T+3pT2−127T3+3p2T4−9p2T5+p3T6 |
| 17 | S4×C2 | 1−2T+26T2−9T3+26pT4−2p2T5+p3T6 |
| 19 | C2 | (1+3T+pT2)3 |
| 23 | S4×C2 | 1+11T+83T2+417T3+83pT4+11p2T5+p3T6 |
| 29 | S4×C2 | 1−6T+63T2−276T3+63pT4−6p2T5+p3T6 |
| 31 | S4×C2 | 1−3T+27T2+71T3+27pT4−3p2T5+p3T6 |
| 37 | S4×C2 | 1+3T+87T2+249T3+87pT4+3p2T5+p3T6 |
| 41 | S4×C2 | 1+13T+125T2+1023T3+125pT4+13p2T5+p3T6 |
| 43 | S4×C2 | 1+6T+114T2+417T3+114pT4+6p2T5+p3T6 |
| 47 | S4×C2 | 1−T+92T2+27T3+92pT4−p2T5+p3T6 |
| 53 | S4×C2 | 1+15T+207T2+1527T3+207pT4+15p2T5+p3T6 |
| 59 | S4×C2 | 1+17T+167T2+1269T3+167pT4+17p2T5+p3T6 |
| 61 | S4×C2 | 1+15T+249T2+1911T3+249pT4+15p2T5+p3T6 |
| 67 | S4×C2 | 1−15T+207T2−1601T3+207pT4−15p2T5+p3T6 |
| 71 | S4×C2 | 1+21T+351T2+3261T3+351pT4+21p2T5+p3T6 |
| 73 | S4×C2 | 1+12T+210T2+1451T3+210pT4+12p2T5+p3T6 |
| 79 | S4×C2 | 1+9T+93T2+523T3+93pT4+9p2T5+p3T6 |
| 83 | S4×C2 | 1−15T+141T2−789T3+141pT4−15p2T5+p3T6 |
| 89 | S4×C2 | 1−3T+261T2−525T3+261pT4−3p2T5+p3T6 |
| 97 | S4×C2 | 1+9T+162T2+1393T3+162pT4+9p2T5+p3T6 |
show more | | |
show less | | |
L(s)=p∏ j=1∏6(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.204375577741539805905391496348, −7.918796292283634318282975590120, −7.79218965140110176240108104138, −7.42449227994341860832457707603, −7.16436943282177614203006203197, −6.67310861662956754718582629558, −6.35876439770523109009450693317, −6.31436370108180109139326098809, −6.15367300845571991592322561305, −6.01929781817812614984408401040, −5.57769631650298160676301303105, −5.03726217621722105135733057415, −4.87555150265810344007912857675, −4.51248355399816640552656244334, −4.25311546728134242695827803486, −4.21982522672568026674234858940, −3.66433204197327163612176072218, −3.62049628291257130159528517282, −3.36071661853778916950165734583, −2.94684077108203844122089774163, −2.79830402632950067577343065381, −1.83882784875641966019294920200, −1.78361125904791392605556007052, −1.54945105301474026487199101039, −0.949205263139479937073782570064, 0, 0, 0,
0.949205263139479937073782570064, 1.54945105301474026487199101039, 1.78361125904791392605556007052, 1.83882784875641966019294920200, 2.79830402632950067577343065381, 2.94684077108203844122089774163, 3.36071661853778916950165734583, 3.62049628291257130159528517282, 3.66433204197327163612176072218, 4.21982522672568026674234858940, 4.25311546728134242695827803486, 4.51248355399816640552656244334, 4.87555150265810344007912857675, 5.03726217621722105135733057415, 5.57769631650298160676301303105, 6.01929781817812614984408401040, 6.15367300845571991592322561305, 6.31436370108180109139326098809, 6.35876439770523109009450693317, 6.67310861662956754718582629558, 7.16436943282177614203006203197, 7.42449227994341860832457707603, 7.79218965140110176240108104138, 7.918796292283634318282975590120, 8.204375577741539805905391496348