Properties

Label 3267.2.a.r.1.1
Level $3267$
Weight $2$
Character 3267.1
Self dual yes
Analytic conductor $26.087$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3267,2,Mod(1,3267)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3267, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3267.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3267 = 3^{3} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3267.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.0871263404\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.321.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.46050\) of defining polynomial
Character \(\chi\) \(=\) 3267.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.46050 q^{2} +4.05408 q^{4} -0.406421 q^{5} +3.05408 q^{7} -5.05408 q^{8} +1.00000 q^{10} +6.32743 q^{13} -7.51459 q^{14} +4.32743 q^{16} +4.64766 q^{17} -3.00000 q^{19} -1.64766 q^{20} -7.64766 q^{23} -4.83482 q^{25} -15.5687 q^{26} +12.3815 q^{28} -4.10817 q^{29} -8.43560 q^{31} -0.539495 q^{32} -11.4356 q^{34} -1.24124 q^{35} +2.32743 q^{37} +7.38151 q^{38} +2.05408 q^{40} -12.5687 q^{41} -5.32743 q^{43} +18.8171 q^{46} +2.73385 q^{47} +2.32743 q^{49} +11.8961 q^{50} +25.6519 q^{52} -8.32743 q^{53} -15.4356 q^{56} +10.1082 q^{58} +5.89610 q^{59} -8.05408 q^{61} +20.7558 q^{62} -7.32743 q^{64} -2.57160 q^{65} -4.43560 q^{67} +18.8420 q^{68} +3.05408 q^{70} -3.94592 q^{71} -6.78074 q^{73} -5.72665 q^{74} -12.1623 q^{76} -5.50739 q^{79} -1.75876 q^{80} +30.9253 q^{82} -10.5438 q^{83} -1.88891 q^{85} +13.1082 q^{86} -2.05408 q^{89} +19.3245 q^{91} -31.0043 q^{92} -6.72665 q^{94} +1.21926 q^{95} -15.7630 q^{97} -5.72665 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} + 3 q^{4} - 4 q^{5} - 6 q^{8} + 3 q^{10} + 9 q^{13} - 7 q^{14} + 3 q^{16} + 2 q^{17} - 9 q^{19} + 7 q^{20} - 11 q^{23} + 3 q^{25} - 22 q^{26} + 18 q^{28} + 6 q^{29} + 3 q^{31} - 8 q^{32} - 6 q^{34}+ \cdots - 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.46050 −1.73984 −0.869920 0.493193i \(-0.835830\pi\)
−0.869920 + 0.493193i \(0.835830\pi\)
\(3\) 0 0
\(4\) 4.05408 2.02704
\(5\) −0.406421 −0.181757 −0.0908784 0.995862i \(-0.528967\pi\)
−0.0908784 + 0.995862i \(0.528967\pi\)
\(6\) 0 0
\(7\) 3.05408 1.15434 0.577168 0.816626i \(-0.304158\pi\)
0.577168 + 0.816626i \(0.304158\pi\)
\(8\) −5.05408 −1.78689
\(9\) 0 0
\(10\) 1.00000 0.316228
\(11\) 0 0
\(12\) 0 0
\(13\) 6.32743 1.75491 0.877457 0.479656i \(-0.159238\pi\)
0.877457 + 0.479656i \(0.159238\pi\)
\(14\) −7.51459 −2.00836
\(15\) 0 0
\(16\) 4.32743 1.08186
\(17\) 4.64766 1.12722 0.563612 0.826040i \(-0.309411\pi\)
0.563612 + 0.826040i \(0.309411\pi\)
\(18\) 0 0
\(19\) −3.00000 −0.688247 −0.344124 0.938924i \(-0.611824\pi\)
−0.344124 + 0.938924i \(0.611824\pi\)
\(20\) −1.64766 −0.368429
\(21\) 0 0
\(22\) 0 0
\(23\) −7.64766 −1.59465 −0.797324 0.603551i \(-0.793752\pi\)
−0.797324 + 0.603551i \(0.793752\pi\)
\(24\) 0 0
\(25\) −4.83482 −0.966964
\(26\) −15.5687 −3.05327
\(27\) 0 0
\(28\) 12.3815 2.33989
\(29\) −4.10817 −0.762868 −0.381434 0.924396i \(-0.624570\pi\)
−0.381434 + 0.924396i \(0.624570\pi\)
\(30\) 0 0
\(31\) −8.43560 −1.51508 −0.757539 0.652790i \(-0.773599\pi\)
−0.757539 + 0.652790i \(0.773599\pi\)
\(32\) −0.539495 −0.0953702
\(33\) 0 0
\(34\) −11.4356 −1.96119
\(35\) −1.24124 −0.209808
\(36\) 0 0
\(37\) 2.32743 0.382627 0.191314 0.981529i \(-0.438725\pi\)
0.191314 + 0.981529i \(0.438725\pi\)
\(38\) 7.38151 1.19744
\(39\) 0 0
\(40\) 2.05408 0.324779
\(41\) −12.5687 −1.96290 −0.981448 0.191726i \(-0.938592\pi\)
−0.981448 + 0.191726i \(0.938592\pi\)
\(42\) 0 0
\(43\) −5.32743 −0.812426 −0.406213 0.913779i \(-0.633151\pi\)
−0.406213 + 0.913779i \(0.633151\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 18.8171 2.77443
\(47\) 2.73385 0.398773 0.199387 0.979921i \(-0.436105\pi\)
0.199387 + 0.979921i \(0.436105\pi\)
\(48\) 0 0
\(49\) 2.32743 0.332490
\(50\) 11.8961 1.68236
\(51\) 0 0
\(52\) 25.6519 3.55728
\(53\) −8.32743 −1.14386 −0.571930 0.820302i \(-0.693805\pi\)
−0.571930 + 0.820302i \(0.693805\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −15.4356 −2.06267
\(57\) 0 0
\(58\) 10.1082 1.32727
\(59\) 5.89610 0.767607 0.383804 0.923415i \(-0.374614\pi\)
0.383804 + 0.923415i \(0.374614\pi\)
\(60\) 0 0
\(61\) −8.05408 −1.03122 −0.515610 0.856823i \(-0.672435\pi\)
−0.515610 + 0.856823i \(0.672435\pi\)
\(62\) 20.7558 2.63599
\(63\) 0 0
\(64\) −7.32743 −0.915929
\(65\) −2.57160 −0.318968
\(66\) 0 0
\(67\) −4.43560 −0.541895 −0.270947 0.962594i \(-0.587337\pi\)
−0.270947 + 0.962594i \(0.587337\pi\)
\(68\) 18.8420 2.28493
\(69\) 0 0
\(70\) 3.05408 0.365033
\(71\) −3.94592 −0.468294 −0.234147 0.972201i \(-0.575230\pi\)
−0.234147 + 0.972201i \(0.575230\pi\)
\(72\) 0 0
\(73\) −6.78074 −0.793625 −0.396813 0.917900i \(-0.629884\pi\)
−0.396813 + 0.917900i \(0.629884\pi\)
\(74\) −5.72665 −0.665710
\(75\) 0 0
\(76\) −12.1623 −1.39511
\(77\) 0 0
\(78\) 0 0
\(79\) −5.50739 −0.619630 −0.309815 0.950797i \(-0.600267\pi\)
−0.309815 + 0.950797i \(0.600267\pi\)
\(80\) −1.75876 −0.196635
\(81\) 0 0
\(82\) 30.9253 3.41513
\(83\) −10.5438 −1.15733 −0.578664 0.815566i \(-0.696426\pi\)
−0.578664 + 0.815566i \(0.696426\pi\)
\(84\) 0 0
\(85\) −1.88891 −0.204881
\(86\) 13.1082 1.41349
\(87\) 0 0
\(88\) 0 0
\(89\) −2.05408 −0.217732 −0.108866 0.994056i \(-0.534722\pi\)
−0.108866 + 0.994056i \(0.534722\pi\)
\(90\) 0 0
\(91\) 19.3245 2.02576
\(92\) −31.0043 −3.23242
\(93\) 0 0
\(94\) −6.72665 −0.693801
\(95\) 1.21926 0.125094
\(96\) 0 0
\(97\) −15.7630 −1.60049 −0.800247 0.599671i \(-0.795298\pi\)
−0.800247 + 0.599671i \(0.795298\pi\)
\(98\) −5.72665 −0.578479
\(99\) 0 0
\(100\) −19.6008 −1.96008
\(101\) −2.46770 −0.245546 −0.122773 0.992435i \(-0.539179\pi\)
−0.122773 + 0.992435i \(0.539179\pi\)
\(102\) 0 0
\(103\) 9.65486 0.951322 0.475661 0.879629i \(-0.342209\pi\)
0.475661 + 0.879629i \(0.342209\pi\)
\(104\) −31.9794 −3.13583
\(105\) 0 0
\(106\) 20.4897 1.99013
\(107\) 16.2704 1.57292 0.786460 0.617641i \(-0.211911\pi\)
0.786460 + 0.617641i \(0.211911\pi\)
\(108\) 0 0
\(109\) 1.67257 0.160203 0.0801016 0.996787i \(-0.474476\pi\)
0.0801016 + 0.996787i \(0.474476\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 13.2163 1.24883
\(113\) −13.9282 −1.31026 −0.655128 0.755518i \(-0.727385\pi\)
−0.655128 + 0.755518i \(0.727385\pi\)
\(114\) 0 0
\(115\) 3.10817 0.289838
\(116\) −16.6549 −1.54637
\(117\) 0 0
\(118\) −14.5074 −1.33551
\(119\) 14.1944 1.30119
\(120\) 0 0
\(121\) 0 0
\(122\) 19.8171 1.79416
\(123\) 0 0
\(124\) −34.1986 −3.07113
\(125\) 3.99707 0.357509
\(126\) 0 0
\(127\) 1.45331 0.128960 0.0644801 0.997919i \(-0.479461\pi\)
0.0644801 + 0.997919i \(0.479461\pi\)
\(128\) 19.1082 1.68894
\(129\) 0 0
\(130\) 6.32743 0.554952
\(131\) 0.708945 0.0619408 0.0309704 0.999520i \(-0.490140\pi\)
0.0309704 + 0.999520i \(0.490140\pi\)
\(132\) 0 0
\(133\) −9.16225 −0.794468
\(134\) 10.9138 0.942810
\(135\) 0 0
\(136\) −23.4897 −2.01422
\(137\) −9.26615 −0.791661 −0.395830 0.918324i \(-0.629543\pi\)
−0.395830 + 0.918324i \(0.629543\pi\)
\(138\) 0 0
\(139\) 12.6008 1.06878 0.534392 0.845237i \(-0.320541\pi\)
0.534392 + 0.845237i \(0.320541\pi\)
\(140\) −5.03210 −0.425290
\(141\) 0 0
\(142\) 9.70895 0.814757
\(143\) 0 0
\(144\) 0 0
\(145\) 1.66964 0.138656
\(146\) 16.6840 1.38078
\(147\) 0 0
\(148\) 9.43560 0.775601
\(149\) 9.44280 0.773584 0.386792 0.922167i \(-0.373583\pi\)
0.386792 + 0.922167i \(0.373583\pi\)
\(150\) 0 0
\(151\) 0.618485 0.0503316 0.0251658 0.999683i \(-0.491989\pi\)
0.0251658 + 0.999683i \(0.491989\pi\)
\(152\) 15.1623 1.22982
\(153\) 0 0
\(154\) 0 0
\(155\) 3.42840 0.275376
\(156\) 0 0
\(157\) 13.4897 1.07659 0.538297 0.842755i \(-0.319068\pi\)
0.538297 + 0.842755i \(0.319068\pi\)
\(158\) 13.5510 1.07806
\(159\) 0 0
\(160\) 0.219262 0.0173342
\(161\) −23.3566 −1.84076
\(162\) 0 0
\(163\) 2.78074 0.217804 0.108902 0.994052i \(-0.465266\pi\)
0.108902 + 0.994052i \(0.465266\pi\)
\(164\) −50.9545 −3.97887
\(165\) 0 0
\(166\) 25.9430 2.01357
\(167\) 10.6549 0.824498 0.412249 0.911071i \(-0.364743\pi\)
0.412249 + 0.911071i \(0.364743\pi\)
\(168\) 0 0
\(169\) 27.0364 2.07972
\(170\) 4.64766 0.356460
\(171\) 0 0
\(172\) −21.5979 −1.64682
\(173\) 12.1623 0.924679 0.462339 0.886703i \(-0.347010\pi\)
0.462339 + 0.886703i \(0.347010\pi\)
\(174\) 0 0
\(175\) −14.7660 −1.11620
\(176\) 0 0
\(177\) 0 0
\(178\) 5.05408 0.378820
\(179\) 17.7630 1.32767 0.663836 0.747879i \(-0.268927\pi\)
0.663836 + 0.747879i \(0.268927\pi\)
\(180\) 0 0
\(181\) −20.8712 −1.55134 −0.775672 0.631136i \(-0.782589\pi\)
−0.775672 + 0.631136i \(0.782589\pi\)
\(182\) −47.5480 −3.52450
\(183\) 0 0
\(184\) 38.6519 2.84946
\(185\) −0.945916 −0.0695451
\(186\) 0 0
\(187\) 0 0
\(188\) 11.0833 0.808330
\(189\) 0 0
\(190\) −3.00000 −0.217643
\(191\) −21.8492 −1.58095 −0.790477 0.612492i \(-0.790167\pi\)
−0.790477 + 0.612492i \(0.790167\pi\)
\(192\) 0 0
\(193\) 5.94299 0.427786 0.213893 0.976857i \(-0.431386\pi\)
0.213893 + 0.976857i \(0.431386\pi\)
\(194\) 38.7850 2.78460
\(195\) 0 0
\(196\) 9.43560 0.673971
\(197\) −18.5687 −1.32296 −0.661482 0.749961i \(-0.730072\pi\)
−0.661482 + 0.749961i \(0.730072\pi\)
\(198\) 0 0
\(199\) 4.54377 0.322099 0.161050 0.986946i \(-0.448512\pi\)
0.161050 + 0.986946i \(0.448512\pi\)
\(200\) 24.4356 1.72786
\(201\) 0 0
\(202\) 6.07179 0.427210
\(203\) −12.5467 −0.880605
\(204\) 0 0
\(205\) 5.10817 0.356770
\(206\) −23.7558 −1.65515
\(207\) 0 0
\(208\) 27.3815 1.89857
\(209\) 0 0
\(210\) 0 0
\(211\) 0.510317 0.0351317 0.0175658 0.999846i \(-0.494408\pi\)
0.0175658 + 0.999846i \(0.494408\pi\)
\(212\) −33.7601 −2.31865
\(213\) 0 0
\(214\) −40.0335 −2.73663
\(215\) 2.16518 0.147664
\(216\) 0 0
\(217\) −25.7630 −1.74891
\(218\) −4.11537 −0.278728
\(219\) 0 0
\(220\) 0 0
\(221\) 29.4078 1.97818
\(222\) 0 0
\(223\) −1.72665 −0.115625 −0.0578126 0.998327i \(-0.518413\pi\)
−0.0578126 + 0.998327i \(0.518413\pi\)
\(224\) −1.64766 −0.110089
\(225\) 0 0
\(226\) 34.2704 2.27963
\(227\) −11.4897 −0.762597 −0.381299 0.924452i \(-0.624523\pi\)
−0.381299 + 0.924452i \(0.624523\pi\)
\(228\) 0 0
\(229\) 4.78074 0.315920 0.157960 0.987446i \(-0.449508\pi\)
0.157960 + 0.987446i \(0.449508\pi\)
\(230\) −7.64766 −0.504272
\(231\) 0 0
\(232\) 20.7630 1.36316
\(233\) 19.9282 1.30554 0.652770 0.757556i \(-0.273607\pi\)
0.652770 + 0.757556i \(0.273607\pi\)
\(234\) 0 0
\(235\) −1.11109 −0.0724798
\(236\) 23.9033 1.55597
\(237\) 0 0
\(238\) −34.9253 −2.26387
\(239\) 25.3815 1.64179 0.820897 0.571076i \(-0.193474\pi\)
0.820897 + 0.571076i \(0.193474\pi\)
\(240\) 0 0
\(241\) −17.3245 −1.11597 −0.557985 0.829851i \(-0.688425\pi\)
−0.557985 + 0.829851i \(0.688425\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) −32.6519 −2.09033
\(245\) −0.945916 −0.0604323
\(246\) 0 0
\(247\) −18.9823 −1.20781
\(248\) 42.6342 2.70728
\(249\) 0 0
\(250\) −9.83482 −0.622009
\(251\) 1.48541 0.0937583 0.0468792 0.998901i \(-0.485072\pi\)
0.0468792 + 0.998901i \(0.485072\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −3.57587 −0.224370
\(255\) 0 0
\(256\) −32.3609 −2.02256
\(257\) 12.7381 0.794582 0.397291 0.917693i \(-0.369950\pi\)
0.397291 + 0.917693i \(0.369950\pi\)
\(258\) 0 0
\(259\) 7.10817 0.441680
\(260\) −10.4255 −0.646561
\(261\) 0 0
\(262\) −1.74436 −0.107767
\(263\) −1.10097 −0.0678888 −0.0339444 0.999424i \(-0.510807\pi\)
−0.0339444 + 0.999424i \(0.510807\pi\)
\(264\) 0 0
\(265\) 3.38444 0.207904
\(266\) 22.5438 1.38225
\(267\) 0 0
\(268\) −17.9823 −1.09844
\(269\) 1.79513 0.109451 0.0547256 0.998501i \(-0.482572\pi\)
0.0547256 + 0.998501i \(0.482572\pi\)
\(270\) 0 0
\(271\) 23.0512 1.40026 0.700129 0.714016i \(-0.253126\pi\)
0.700129 + 0.714016i \(0.253126\pi\)
\(272\) 20.1124 1.21950
\(273\) 0 0
\(274\) 22.7994 1.37736
\(275\) 0 0
\(276\) 0 0
\(277\) −27.5801 −1.65713 −0.828565 0.559893i \(-0.810842\pi\)
−0.828565 + 0.559893i \(0.810842\pi\)
\(278\) −31.0043 −1.85951
\(279\) 0 0
\(280\) 6.27335 0.374904
\(281\) 5.74144 0.342505 0.171253 0.985227i \(-0.445219\pi\)
0.171253 + 0.985227i \(0.445219\pi\)
\(282\) 0 0
\(283\) −31.7994 −1.89028 −0.945139 0.326668i \(-0.894074\pi\)
−0.945139 + 0.326668i \(0.894074\pi\)
\(284\) −15.9971 −0.949252
\(285\) 0 0
\(286\) 0 0
\(287\) −38.3858 −2.26584
\(288\) 0 0
\(289\) 4.60078 0.270634
\(290\) −4.10817 −0.241240
\(291\) 0 0
\(292\) −27.4897 −1.60871
\(293\) 15.8712 0.927205 0.463603 0.886043i \(-0.346557\pi\)
0.463603 + 0.886043i \(0.346557\pi\)
\(294\) 0 0
\(295\) −2.39630 −0.139518
\(296\) −11.7630 −0.683712
\(297\) 0 0
\(298\) −23.2340 −1.34591
\(299\) −48.3901 −2.79847
\(300\) 0 0
\(301\) −16.2704 −0.937811
\(302\) −1.52179 −0.0875690
\(303\) 0 0
\(304\) −12.9823 −0.744585
\(305\) 3.27335 0.187431
\(306\) 0 0
\(307\) 3.89183 0.222119 0.111059 0.993814i \(-0.464576\pi\)
0.111059 + 0.993814i \(0.464576\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −8.43560 −0.479110
\(311\) 20.3422 1.15350 0.576751 0.816920i \(-0.304320\pi\)
0.576751 + 0.816920i \(0.304320\pi\)
\(312\) 0 0
\(313\) 2.51032 0.141892 0.0709458 0.997480i \(-0.477398\pi\)
0.0709458 + 0.997480i \(0.477398\pi\)
\(314\) −33.1914 −1.87310
\(315\) 0 0
\(316\) −22.3274 −1.25602
\(317\) −19.3523 −1.08694 −0.543468 0.839430i \(-0.682889\pi\)
−0.543468 + 0.839430i \(0.682889\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 2.97802 0.166476
\(321\) 0 0
\(322\) 57.4690 3.20262
\(323\) −13.9430 −0.775809
\(324\) 0 0
\(325\) −30.5920 −1.69694
\(326\) −6.84202 −0.378944
\(327\) 0 0
\(328\) 63.5231 3.50748
\(329\) 8.34941 0.460318
\(330\) 0 0
\(331\) 23.5438 1.29408 0.647041 0.762455i \(-0.276006\pi\)
0.647041 + 0.762455i \(0.276006\pi\)
\(332\) −42.7453 −2.34595
\(333\) 0 0
\(334\) −26.2163 −1.43449
\(335\) 1.80272 0.0984931
\(336\) 0 0
\(337\) 10.3422 0.563376 0.281688 0.959506i \(-0.409106\pi\)
0.281688 + 0.959506i \(0.409106\pi\)
\(338\) −66.5231 −3.61838
\(339\) 0 0
\(340\) −7.65779 −0.415302
\(341\) 0 0
\(342\) 0 0
\(343\) −14.2704 −0.770530
\(344\) 26.9253 1.45171
\(345\) 0 0
\(346\) −29.9253 −1.60879
\(347\) 23.0833 1.23917 0.619587 0.784928i \(-0.287300\pi\)
0.619587 + 0.784928i \(0.287300\pi\)
\(348\) 0 0
\(349\) −28.5801 −1.52986 −0.764930 0.644113i \(-0.777226\pi\)
−0.764930 + 0.644113i \(0.777226\pi\)
\(350\) 36.3317 1.94201
\(351\) 0 0
\(352\) 0 0
\(353\) −1.90662 −0.101479 −0.0507394 0.998712i \(-0.516158\pi\)
−0.0507394 + 0.998712i \(0.516158\pi\)
\(354\) 0 0
\(355\) 1.60370 0.0851156
\(356\) −8.32743 −0.441353
\(357\) 0 0
\(358\) −43.7060 −2.30993
\(359\) 17.2455 0.910183 0.455092 0.890445i \(-0.349606\pi\)
0.455092 + 0.890445i \(0.349606\pi\)
\(360\) 0 0
\(361\) −10.0000 −0.526316
\(362\) 51.3537 2.69909
\(363\) 0 0
\(364\) 78.3432 4.10630
\(365\) 2.75583 0.144247
\(366\) 0 0
\(367\) −6.09338 −0.318072 −0.159036 0.987273i \(-0.550839\pi\)
−0.159036 + 0.987273i \(0.550839\pi\)
\(368\) −33.0947 −1.72518
\(369\) 0 0
\(370\) 2.32743 0.120997
\(371\) −25.4327 −1.32040
\(372\) 0 0
\(373\) −8.12588 −0.420742 −0.210371 0.977622i \(-0.567467\pi\)
−0.210371 + 0.977622i \(0.567467\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −13.8171 −0.712563
\(377\) −25.9941 −1.33877
\(378\) 0 0
\(379\) 0.690278 0.0354572 0.0177286 0.999843i \(-0.494357\pi\)
0.0177286 + 0.999843i \(0.494357\pi\)
\(380\) 4.94299 0.253570
\(381\) 0 0
\(382\) 53.7601 2.75061
\(383\) −11.7558 −0.600695 −0.300347 0.953830i \(-0.597103\pi\)
−0.300347 + 0.953830i \(0.597103\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −14.6228 −0.744279
\(387\) 0 0
\(388\) −63.9046 −3.24427
\(389\) −21.0364 −1.06659 −0.533293 0.845930i \(-0.679046\pi\)
−0.533293 + 0.845930i \(0.679046\pi\)
\(390\) 0 0
\(391\) −35.5438 −1.79753
\(392\) −11.7630 −0.594123
\(393\) 0 0
\(394\) 45.6883 2.30174
\(395\) 2.23832 0.112622
\(396\) 0 0
\(397\) −12.6185 −0.633304 −0.316652 0.948542i \(-0.602559\pi\)
−0.316652 + 0.948542i \(0.602559\pi\)
\(398\) −11.1800 −0.560401
\(399\) 0 0
\(400\) −20.9224 −1.04612
\(401\) −12.3025 −0.614359 −0.307179 0.951652i \(-0.599385\pi\)
−0.307179 + 0.951652i \(0.599385\pi\)
\(402\) 0 0
\(403\) −53.3757 −2.65883
\(404\) −10.0043 −0.497731
\(405\) 0 0
\(406\) 30.8712 1.53211
\(407\) 0 0
\(408\) 0 0
\(409\) −10.8171 −0.534872 −0.267436 0.963576i \(-0.586176\pi\)
−0.267436 + 0.963576i \(0.586176\pi\)
\(410\) −12.5687 −0.620723
\(411\) 0 0
\(412\) 39.1416 1.92837
\(413\) 18.0072 0.886076
\(414\) 0 0
\(415\) 4.28520 0.210352
\(416\) −3.41362 −0.167366
\(417\) 0 0
\(418\) 0 0
\(419\) −16.5366 −0.807864 −0.403932 0.914789i \(-0.632357\pi\)
−0.403932 + 0.914789i \(0.632357\pi\)
\(420\) 0 0
\(421\) 34.5979 1.68620 0.843098 0.537760i \(-0.180729\pi\)
0.843098 + 0.537760i \(0.180729\pi\)
\(422\) −1.25564 −0.0611235
\(423\) 0 0
\(424\) 42.0875 2.04395
\(425\) −22.4706 −1.08999
\(426\) 0 0
\(427\) −24.5979 −1.19037
\(428\) 65.9617 3.18838
\(429\) 0 0
\(430\) −5.32743 −0.256912
\(431\) 18.7601 0.903642 0.451821 0.892109i \(-0.350774\pi\)
0.451821 + 0.892109i \(0.350774\pi\)
\(432\) 0 0
\(433\) 27.9253 1.34200 0.671002 0.741456i \(-0.265864\pi\)
0.671002 + 0.741456i \(0.265864\pi\)
\(434\) 63.3901 3.04282
\(435\) 0 0
\(436\) 6.78074 0.324738
\(437\) 22.9430 1.09751
\(438\) 0 0
\(439\) 18.3274 0.874721 0.437360 0.899286i \(-0.355913\pi\)
0.437360 + 0.899286i \(0.355913\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −72.3580 −3.44172
\(443\) 15.8640 0.753721 0.376861 0.926270i \(-0.377004\pi\)
0.376861 + 0.926270i \(0.377004\pi\)
\(444\) 0 0
\(445\) 0.834822 0.0395744
\(446\) 4.24844 0.201169
\(447\) 0 0
\(448\) −22.3786 −1.05729
\(449\) −33.4796 −1.58000 −0.789999 0.613108i \(-0.789919\pi\)
−0.789999 + 0.613108i \(0.789919\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −56.4661 −2.65594
\(453\) 0 0
\(454\) 28.2704 1.32680
\(455\) −7.85388 −0.368195
\(456\) 0 0
\(457\) 6.68735 0.312821 0.156411 0.987692i \(-0.450008\pi\)
0.156411 + 0.987692i \(0.450008\pi\)
\(458\) −11.7630 −0.549650
\(459\) 0 0
\(460\) 12.6008 0.587514
\(461\) 21.8348 1.01695 0.508475 0.861077i \(-0.330210\pi\)
0.508475 + 0.861077i \(0.330210\pi\)
\(462\) 0 0
\(463\) −18.5438 −0.861802 −0.430901 0.902399i \(-0.641804\pi\)
−0.430901 + 0.902399i \(0.641804\pi\)
\(464\) −17.7778 −0.825314
\(465\) 0 0
\(466\) −49.0335 −2.27143
\(467\) 18.3097 0.847273 0.423636 0.905832i \(-0.360753\pi\)
0.423636 + 0.905832i \(0.360753\pi\)
\(468\) 0 0
\(469\) −13.5467 −0.625528
\(470\) 2.73385 0.126103
\(471\) 0 0
\(472\) −29.7994 −1.37163
\(473\) 0 0
\(474\) 0 0
\(475\) 14.5045 0.665511
\(476\) 57.5451 2.63758
\(477\) 0 0
\(478\) −62.4513 −2.85646
\(479\) 8.85973 0.404811 0.202406 0.979302i \(-0.435124\pi\)
0.202406 + 0.979302i \(0.435124\pi\)
\(480\) 0 0
\(481\) 14.7267 0.671478
\(482\) 42.6270 1.94161
\(483\) 0 0
\(484\) 0 0
\(485\) 6.40642 0.290901
\(486\) 0 0
\(487\) −19.9459 −0.903836 −0.451918 0.892060i \(-0.649260\pi\)
−0.451918 + 0.892060i \(0.649260\pi\)
\(488\) 40.7060 1.84267
\(489\) 0 0
\(490\) 2.32743 0.105143
\(491\) −34.9650 −1.57795 −0.788974 0.614427i \(-0.789387\pi\)
−0.788974 + 0.614427i \(0.789387\pi\)
\(492\) 0 0
\(493\) −19.0934 −0.859923
\(494\) 46.7060 2.10140
\(495\) 0 0
\(496\) −36.5045 −1.63910
\(497\) −12.0512 −0.540568
\(498\) 0 0
\(499\) 12.4327 0.556563 0.278281 0.960500i \(-0.410235\pi\)
0.278281 + 0.960500i \(0.410235\pi\)
\(500\) 16.2045 0.724686
\(501\) 0 0
\(502\) −3.65486 −0.163124
\(503\) −5.46050 −0.243472 −0.121736 0.992563i \(-0.538846\pi\)
−0.121736 + 0.992563i \(0.538846\pi\)
\(504\) 0 0
\(505\) 1.00293 0.0446296
\(506\) 0 0
\(507\) 0 0
\(508\) 5.89183 0.261408
\(509\) −7.23405 −0.320643 −0.160322 0.987065i \(-0.551253\pi\)
−0.160322 + 0.987065i \(0.551253\pi\)
\(510\) 0 0
\(511\) −20.7089 −0.916110
\(512\) 41.4078 1.82998
\(513\) 0 0
\(514\) −31.3422 −1.38245
\(515\) −3.92393 −0.172909
\(516\) 0 0
\(517\) 0 0
\(518\) −17.4897 −0.768453
\(519\) 0 0
\(520\) 12.9971 0.569959
\(521\) 8.03930 0.352208 0.176104 0.984372i \(-0.443650\pi\)
0.176104 + 0.984372i \(0.443650\pi\)
\(522\) 0 0
\(523\) 6.21926 0.271949 0.135975 0.990712i \(-0.456583\pi\)
0.135975 + 0.990712i \(0.456583\pi\)
\(524\) 2.87412 0.125557
\(525\) 0 0
\(526\) 2.70895 0.118116
\(527\) −39.2058 −1.70783
\(528\) 0 0
\(529\) 35.4868 1.54290
\(530\) −8.32743 −0.361720
\(531\) 0 0
\(532\) −37.1445 −1.61042
\(533\) −79.5274 −3.44471
\(534\) 0 0
\(535\) −6.61264 −0.285889
\(536\) 22.4179 0.968305
\(537\) 0 0
\(538\) −4.41693 −0.190427
\(539\) 0 0
\(540\) 0 0
\(541\) −13.8377 −0.594931 −0.297466 0.954733i \(-0.596141\pi\)
−0.297466 + 0.954733i \(0.596141\pi\)
\(542\) −56.7175 −2.43622
\(543\) 0 0
\(544\) −2.50739 −0.107504
\(545\) −0.679767 −0.0291180
\(546\) 0 0
\(547\) −13.7237 −0.586784 −0.293392 0.955992i \(-0.594784\pi\)
−0.293392 + 0.955992i \(0.594784\pi\)
\(548\) −37.5657 −1.60473
\(549\) 0 0
\(550\) 0 0
\(551\) 12.3245 0.525042
\(552\) 0 0
\(553\) −16.8200 −0.715261
\(554\) 67.8611 2.88314
\(555\) 0 0
\(556\) 51.0846 2.16647
\(557\) 36.6634 1.55348 0.776739 0.629822i \(-0.216872\pi\)
0.776739 + 0.629822i \(0.216872\pi\)
\(558\) 0 0
\(559\) −33.7089 −1.42574
\(560\) −5.37139 −0.226983
\(561\) 0 0
\(562\) −14.1268 −0.595905
\(563\) −25.6257 −1.07999 −0.539997 0.841667i \(-0.681575\pi\)
−0.539997 + 0.841667i \(0.681575\pi\)
\(564\) 0 0
\(565\) 5.66071 0.238148
\(566\) 78.2426 3.28878
\(567\) 0 0
\(568\) 19.9430 0.836789
\(569\) −17.4150 −0.730073 −0.365037 0.930993i \(-0.618944\pi\)
−0.365037 + 0.930993i \(0.618944\pi\)
\(570\) 0 0
\(571\) −11.3304 −0.474161 −0.237080 0.971490i \(-0.576190\pi\)
−0.237080 + 0.971490i \(0.576190\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 94.4484 3.94220
\(575\) 36.9751 1.54197
\(576\) 0 0
\(577\) −7.52218 −0.313152 −0.156576 0.987666i \(-0.550046\pi\)
−0.156576 + 0.987666i \(0.550046\pi\)
\(578\) −11.3202 −0.470860
\(579\) 0 0
\(580\) 6.76888 0.281062
\(581\) −32.2016 −1.33595
\(582\) 0 0
\(583\) 0 0
\(584\) 34.2704 1.41812
\(585\) 0 0
\(586\) −39.0512 −1.61319
\(587\) 5.54242 0.228760 0.114380 0.993437i \(-0.463512\pi\)
0.114380 + 0.993437i \(0.463512\pi\)
\(588\) 0 0
\(589\) 25.3068 1.04275
\(590\) 5.89610 0.242739
\(591\) 0 0
\(592\) 10.0718 0.413948
\(593\) 3.48114 0.142953 0.0714766 0.997442i \(-0.477229\pi\)
0.0714766 + 0.997442i \(0.477229\pi\)
\(594\) 0 0
\(595\) −5.76888 −0.236501
\(596\) 38.2819 1.56809
\(597\) 0 0
\(598\) 119.064 4.86889
\(599\) −11.0249 −0.450465 −0.225233 0.974305i \(-0.572314\pi\)
−0.225233 + 0.974305i \(0.572314\pi\)
\(600\) 0 0
\(601\) 21.8171 0.889939 0.444969 0.895546i \(-0.353215\pi\)
0.444969 + 0.895546i \(0.353215\pi\)
\(602\) 40.0335 1.63164
\(603\) 0 0
\(604\) 2.50739 0.102024
\(605\) 0 0
\(606\) 0 0
\(607\) 7.17996 0.291426 0.145713 0.989327i \(-0.453452\pi\)
0.145713 + 0.989327i \(0.453452\pi\)
\(608\) 1.61849 0.0656383
\(609\) 0 0
\(610\) −8.05408 −0.326100
\(611\) 17.2983 0.699812
\(612\) 0 0
\(613\) 36.0335 1.45538 0.727689 0.685908i \(-0.240595\pi\)
0.727689 + 0.685908i \(0.240595\pi\)
\(614\) −9.57587 −0.386451
\(615\) 0 0
\(616\) 0 0
\(617\) −44.4002 −1.78748 −0.893742 0.448581i \(-0.851929\pi\)
−0.893742 + 0.448581i \(0.851929\pi\)
\(618\) 0 0
\(619\) 1.19475 0.0480209 0.0240104 0.999712i \(-0.492357\pi\)
0.0240104 + 0.999712i \(0.492357\pi\)
\(620\) 13.8990 0.558198
\(621\) 0 0
\(622\) −50.0521 −2.00691
\(623\) −6.27335 −0.251336
\(624\) 0 0
\(625\) 22.5496 0.901985
\(626\) −6.17665 −0.246868
\(627\) 0 0
\(628\) 54.6883 2.18230
\(629\) 10.8171 0.431307
\(630\) 0 0
\(631\) 16.3245 0.649868 0.324934 0.945737i \(-0.394658\pi\)
0.324934 + 0.945737i \(0.394658\pi\)
\(632\) 27.8348 1.10721
\(633\) 0 0
\(634\) 47.6165 1.89109
\(635\) −0.590654 −0.0234394
\(636\) 0 0
\(637\) 14.7267 0.583491
\(638\) 0 0
\(639\) 0 0
\(640\) −7.76595 −0.306976
\(641\) 22.1082 0.873220 0.436610 0.899651i \(-0.356179\pi\)
0.436610 + 0.899651i \(0.356179\pi\)
\(642\) 0 0
\(643\) −34.1623 −1.34723 −0.673614 0.739083i \(-0.735259\pi\)
−0.673614 + 0.739083i \(0.735259\pi\)
\(644\) −94.6897 −3.73130
\(645\) 0 0
\(646\) 34.3068 1.34978
\(647\) −22.2848 −0.876107 −0.438053 0.898949i \(-0.644332\pi\)
−0.438053 + 0.898949i \(0.644332\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 75.2718 2.95240
\(651\) 0 0
\(652\) 11.2733 0.441498
\(653\) −14.8813 −0.582351 −0.291176 0.956670i \(-0.594046\pi\)
−0.291176 + 0.956670i \(0.594046\pi\)
\(654\) 0 0
\(655\) −0.288130 −0.0112582
\(656\) −54.3901 −2.12358
\(657\) 0 0
\(658\) −20.5438 −0.800879
\(659\) −42.7457 −1.66514 −0.832568 0.553923i \(-0.813130\pi\)
−0.832568 + 0.553923i \(0.813130\pi\)
\(660\) 0 0
\(661\) 19.7237 0.767164 0.383582 0.923507i \(-0.374690\pi\)
0.383582 + 0.923507i \(0.374690\pi\)
\(662\) −57.9296 −2.25150
\(663\) 0 0
\(664\) 53.2891 2.06802
\(665\) 3.72373 0.144400
\(666\) 0 0
\(667\) 31.4179 1.21651
\(668\) 43.1957 1.67129
\(669\) 0 0
\(670\) −4.43560 −0.171362
\(671\) 0 0
\(672\) 0 0
\(673\) 30.3580 1.17021 0.585107 0.810956i \(-0.301053\pi\)
0.585107 + 0.810956i \(0.301053\pi\)
\(674\) −25.4471 −0.980184
\(675\) 0 0
\(676\) 109.608 4.21568
\(677\) −19.2340 −0.739224 −0.369612 0.929186i \(-0.620509\pi\)
−0.369612 + 0.929186i \(0.620509\pi\)
\(678\) 0 0
\(679\) −48.1416 −1.84751
\(680\) 9.54669 0.366099
\(681\) 0 0
\(682\) 0 0
\(683\) 28.8391 1.10350 0.551749 0.834010i \(-0.313961\pi\)
0.551749 + 0.834010i \(0.313961\pi\)
\(684\) 0 0
\(685\) 3.76595 0.143890
\(686\) 35.1124 1.34060
\(687\) 0 0
\(688\) −23.0541 −0.878929
\(689\) −52.6912 −2.00738
\(690\) 0 0
\(691\) 13.5045 0.513734 0.256867 0.966447i \(-0.417310\pi\)
0.256867 + 0.966447i \(0.417310\pi\)
\(692\) 49.3068 1.87436
\(693\) 0 0
\(694\) −56.7965 −2.15596
\(695\) −5.12122 −0.194259
\(696\) 0 0
\(697\) −58.4150 −2.21262
\(698\) 70.3216 2.66171
\(699\) 0 0
\(700\) −59.8624 −2.26259
\(701\) 33.5687 1.26787 0.633936 0.773386i \(-0.281438\pi\)
0.633936 + 0.773386i \(0.281438\pi\)
\(702\) 0 0
\(703\) −6.98229 −0.263342
\(704\) 0 0
\(705\) 0 0
\(706\) 4.69124 0.176557
\(707\) −7.53657 −0.283442
\(708\) 0 0
\(709\) 34.6667 1.30194 0.650968 0.759105i \(-0.274363\pi\)
0.650968 + 0.759105i \(0.274363\pi\)
\(710\) −3.94592 −0.148088
\(711\) 0 0
\(712\) 10.3815 0.389064
\(713\) 64.5126 2.41602
\(714\) 0 0
\(715\) 0 0
\(716\) 72.0128 2.69125
\(717\) 0 0
\(718\) −42.4327 −1.58357
\(719\) 44.2675 1.65090 0.825450 0.564476i \(-0.190922\pi\)
0.825450 + 0.564476i \(0.190922\pi\)
\(720\) 0 0
\(721\) 29.4868 1.09814
\(722\) 24.6050 0.915705
\(723\) 0 0
\(724\) −84.6136 −3.14464
\(725\) 19.8623 0.737666
\(726\) 0 0
\(727\) −41.0157 −1.52119 −0.760595 0.649227i \(-0.775093\pi\)
−0.760595 + 0.649227i \(0.775093\pi\)
\(728\) −97.6677 −3.61980
\(729\) 0 0
\(730\) −6.78074 −0.250966
\(731\) −24.7601 −0.915786
\(732\) 0 0
\(733\) 21.6126 0.798281 0.399140 0.916890i \(-0.369309\pi\)
0.399140 + 0.916890i \(0.369309\pi\)
\(734\) 14.9928 0.553394
\(735\) 0 0
\(736\) 4.12588 0.152082
\(737\) 0 0
\(738\) 0 0
\(739\) 27.2920 1.00395 0.501976 0.864881i \(-0.332606\pi\)
0.501976 + 0.864881i \(0.332606\pi\)
\(740\) −3.83482 −0.140971
\(741\) 0 0
\(742\) 62.5772 2.29728
\(743\) 12.5031 0.458695 0.229347 0.973345i \(-0.426341\pi\)
0.229347 + 0.973345i \(0.426341\pi\)
\(744\) 0 0
\(745\) −3.83775 −0.140604
\(746\) 19.9938 0.732024
\(747\) 0 0
\(748\) 0 0
\(749\) 49.6912 1.81568
\(750\) 0 0
\(751\) 6.37859 0.232758 0.116379 0.993205i \(-0.462871\pi\)
0.116379 + 0.993205i \(0.462871\pi\)
\(752\) 11.8306 0.431416
\(753\) 0 0
\(754\) 63.9587 2.32924
\(755\) −0.251365 −0.00914812
\(756\) 0 0
\(757\) 10.2311 0.371856 0.185928 0.982563i \(-0.440471\pi\)
0.185928 + 0.982563i \(0.440471\pi\)
\(758\) −1.69843 −0.0616899
\(759\) 0 0
\(760\) −6.16225 −0.223528
\(761\) 47.9401 1.73783 0.868913 0.494965i \(-0.164819\pi\)
0.868913 + 0.494965i \(0.164819\pi\)
\(762\) 0 0
\(763\) 5.10817 0.184928
\(764\) −88.5786 −3.20466
\(765\) 0 0
\(766\) 28.9253 1.04511
\(767\) 37.3072 1.34708
\(768\) 0 0
\(769\) 14.5831 0.525879 0.262939 0.964812i \(-0.415308\pi\)
0.262939 + 0.964812i \(0.415308\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 24.0934 0.867140
\(773\) 7.81711 0.281162 0.140581 0.990069i \(-0.455103\pi\)
0.140581 + 0.990069i \(0.455103\pi\)
\(774\) 0 0
\(775\) 40.7846 1.46503
\(776\) 79.6677 2.85990
\(777\) 0 0
\(778\) 51.7601 1.85569
\(779\) 37.7060 1.35096
\(780\) 0 0
\(781\) 0 0
\(782\) 87.4556 3.12741
\(783\) 0 0
\(784\) 10.0718 0.359707
\(785\) −5.48249 −0.195678
\(786\) 0 0
\(787\) −31.2527 −1.11404 −0.557019 0.830499i \(-0.688055\pi\)
−0.557019 + 0.830499i \(0.688055\pi\)
\(788\) −75.2790 −2.68170
\(789\) 0 0
\(790\) −5.50739 −0.195944
\(791\) −42.5379 −1.51247
\(792\) 0 0
\(793\) −50.9617 −1.80970
\(794\) 31.0478 1.10185
\(795\) 0 0
\(796\) 18.4208 0.652908
\(797\) 3.87839 0.137380 0.0686899 0.997638i \(-0.478118\pi\)
0.0686899 + 0.997638i \(0.478118\pi\)
\(798\) 0 0
\(799\) 12.7060 0.449507
\(800\) 2.60836 0.0922196
\(801\) 0 0
\(802\) 30.2704 1.06889
\(803\) 0 0
\(804\) 0 0
\(805\) 9.49261 0.334570
\(806\) 131.331 4.62594
\(807\) 0 0
\(808\) 12.4720 0.438763
\(809\) −23.8377 −0.838091 −0.419045 0.907965i \(-0.637635\pi\)
−0.419045 + 0.907965i \(0.637635\pi\)
\(810\) 0 0
\(811\) 15.5261 0.545194 0.272597 0.962128i \(-0.412117\pi\)
0.272597 + 0.962128i \(0.412117\pi\)
\(812\) −50.8653 −1.78502
\(813\) 0 0
\(814\) 0 0
\(815\) −1.13015 −0.0395874
\(816\) 0 0
\(817\) 15.9823 0.559150
\(818\) 26.6156 0.930591
\(819\) 0 0
\(820\) 20.7089 0.723188
\(821\) −16.2560 −0.567339 −0.283670 0.958922i \(-0.591552\pi\)
−0.283670 + 0.958922i \(0.591552\pi\)
\(822\) 0 0
\(823\) 42.6126 1.48538 0.742692 0.669634i \(-0.233549\pi\)
0.742692 + 0.669634i \(0.233549\pi\)
\(824\) −48.7965 −1.69991
\(825\) 0 0
\(826\) −44.3068 −1.54163
\(827\) 2.75544 0.0958161 0.0479081 0.998852i \(-0.484745\pi\)
0.0479081 + 0.998852i \(0.484745\pi\)
\(828\) 0 0
\(829\) 2.14454 0.0744831 0.0372415 0.999306i \(-0.488143\pi\)
0.0372415 + 0.999306i \(0.488143\pi\)
\(830\) −10.5438 −0.365980
\(831\) 0 0
\(832\) −46.3638 −1.60738
\(833\) 10.8171 0.374791
\(834\) 0 0
\(835\) −4.33036 −0.149858
\(836\) 0 0
\(837\) 0 0
\(838\) 40.6883 1.40555
\(839\) −45.2934 −1.56370 −0.781850 0.623466i \(-0.785724\pi\)
−0.781850 + 0.623466i \(0.785724\pi\)
\(840\) 0 0
\(841\) −12.1230 −0.418033
\(842\) −85.1282 −2.93371
\(843\) 0 0
\(844\) 2.06887 0.0712134
\(845\) −10.9881 −0.378004
\(846\) 0 0
\(847\) 0 0
\(848\) −36.0364 −1.23749
\(849\) 0 0
\(850\) 55.2891 1.89640
\(851\) −17.7994 −0.610156
\(852\) 0 0
\(853\) −3.30584 −0.113190 −0.0565949 0.998397i \(-0.518024\pi\)
−0.0565949 + 0.998397i \(0.518024\pi\)
\(854\) 60.5231 2.07106
\(855\) 0 0
\(856\) −82.2321 −2.81063
\(857\) 27.8784 0.952308 0.476154 0.879362i \(-0.342031\pi\)
0.476154 + 0.879362i \(0.342031\pi\)
\(858\) 0 0
\(859\) −20.3934 −0.695813 −0.347906 0.937529i \(-0.613107\pi\)
−0.347906 + 0.937529i \(0.613107\pi\)
\(860\) 8.77781 0.299321
\(861\) 0 0
\(862\) −46.1593 −1.57219
\(863\) 40.2920 1.37156 0.685778 0.727811i \(-0.259462\pi\)
0.685778 + 0.727811i \(0.259462\pi\)
\(864\) 0 0
\(865\) −4.94299 −0.168067
\(866\) −68.7103 −2.33487
\(867\) 0 0
\(868\) −104.445 −3.54511
\(869\) 0 0
\(870\) 0 0
\(871\) −28.0659 −0.950978
\(872\) −8.45331 −0.286265
\(873\) 0 0
\(874\) −56.4513 −1.90950
\(875\) 12.2074 0.412686
\(876\) 0 0
\(877\) 19.5654 0.660675 0.330338 0.943863i \(-0.392837\pi\)
0.330338 + 0.943863i \(0.392837\pi\)
\(878\) −45.0947 −1.52187
\(879\) 0 0
\(880\) 0 0
\(881\) −37.8679 −1.27580 −0.637901 0.770119i \(-0.720197\pi\)
−0.637901 + 0.770119i \(0.720197\pi\)
\(882\) 0 0
\(883\) 17.1082 0.575736 0.287868 0.957670i \(-0.407054\pi\)
0.287868 + 0.957670i \(0.407054\pi\)
\(884\) 119.222 4.00986
\(885\) 0 0
\(886\) −39.0335 −1.31135
\(887\) 33.2354 1.11594 0.557968 0.829863i \(-0.311581\pi\)
0.557968 + 0.829863i \(0.311581\pi\)
\(888\) 0 0
\(889\) 4.43852 0.148863
\(890\) −2.05408 −0.0688531
\(891\) 0 0
\(892\) −7.00000 −0.234377
\(893\) −8.20155 −0.274455
\(894\) 0 0
\(895\) −7.21926 −0.241313
\(896\) 58.3580 1.94960
\(897\) 0 0
\(898\) 82.3766 2.74894
\(899\) 34.6549 1.15580
\(900\) 0 0
\(901\) −38.7031 −1.28939
\(902\) 0 0
\(903\) 0 0
\(904\) 70.3943 2.34128
\(905\) 8.48249 0.281967
\(906\) 0 0
\(907\) 47.5624 1.57928 0.789642 0.613567i \(-0.210266\pi\)
0.789642 + 0.613567i \(0.210266\pi\)
\(908\) −46.5801 −1.54582
\(909\) 0 0
\(910\) 19.3245 0.640601
\(911\) 25.2556 0.836757 0.418378 0.908273i \(-0.362599\pi\)
0.418378 + 0.908273i \(0.362599\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −16.4543 −0.544259
\(915\) 0 0
\(916\) 19.3815 0.640383
\(917\) 2.16518 0.0715005
\(918\) 0 0
\(919\) 7.69416 0.253807 0.126903 0.991915i \(-0.459496\pi\)
0.126903 + 0.991915i \(0.459496\pi\)
\(920\) −15.7089 −0.517909
\(921\) 0 0
\(922\) −53.7247 −1.76933
\(923\) −24.9675 −0.821816
\(924\) 0 0
\(925\) −11.2527 −0.369987
\(926\) 45.6270 1.49940
\(927\) 0 0
\(928\) 2.21634 0.0727548
\(929\) −39.7817 −1.30520 −0.652598 0.757705i \(-0.726321\pi\)
−0.652598 + 0.757705i \(0.726321\pi\)
\(930\) 0 0
\(931\) −6.98229 −0.228835
\(932\) 80.7906 2.64639
\(933\) 0 0
\(934\) −45.0512 −1.47412
\(935\) 0 0
\(936\) 0 0
\(937\) 4.43852 0.145000 0.0725001 0.997368i \(-0.476902\pi\)
0.0725001 + 0.997368i \(0.476902\pi\)
\(938\) 33.3317 1.08832
\(939\) 0 0
\(940\) −4.50447 −0.146920
\(941\) −2.09046 −0.0681470 −0.0340735 0.999419i \(-0.510848\pi\)
−0.0340735 + 0.999419i \(0.510848\pi\)
\(942\) 0 0
\(943\) 96.1210 3.13013
\(944\) 25.5150 0.830442
\(945\) 0 0
\(946\) 0 0
\(947\) 22.3432 0.726056 0.363028 0.931778i \(-0.381743\pi\)
0.363028 + 0.931778i \(0.381743\pi\)
\(948\) 0 0
\(949\) −42.9046 −1.39274
\(950\) −35.6883 −1.15788
\(951\) 0 0
\(952\) −71.7395 −2.32509
\(953\) −42.9679 −1.39187 −0.695933 0.718106i \(-0.745009\pi\)
−0.695933 + 0.718106i \(0.745009\pi\)
\(954\) 0 0
\(955\) 8.87997 0.287349
\(956\) 102.899 3.32798
\(957\) 0 0
\(958\) −21.7994 −0.704307
\(959\) −28.2996 −0.913842
\(960\) 0 0
\(961\) 40.1593 1.29546
\(962\) −36.2350 −1.16826
\(963\) 0 0
\(964\) −70.2350 −2.26212
\(965\) −2.41535 −0.0777530
\(966\) 0 0
\(967\) −51.8683 −1.66797 −0.833986 0.551786i \(-0.813946\pi\)
−0.833986 + 0.551786i \(0.813946\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) −15.7630 −0.506120
\(971\) −41.8138 −1.34187 −0.670934 0.741517i \(-0.734107\pi\)
−0.670934 + 0.741517i \(0.734107\pi\)
\(972\) 0 0
\(973\) 38.4838 1.23374
\(974\) 49.0770 1.57253
\(975\) 0 0
\(976\) −34.8535 −1.11563
\(977\) −27.9459 −0.894069 −0.447035 0.894517i \(-0.647520\pi\)
−0.447035 + 0.894517i \(0.647520\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −3.83482 −0.122499
\(981\) 0 0
\(982\) 86.0315 2.74537
\(983\) 26.1416 0.833788 0.416894 0.908955i \(-0.363119\pi\)
0.416894 + 0.908955i \(0.363119\pi\)
\(984\) 0 0
\(985\) 7.54669 0.240458
\(986\) 46.9794 1.49613
\(987\) 0 0
\(988\) −76.9558 −2.44829
\(989\) 40.7424 1.29553
\(990\) 0 0
\(991\) 52.4720 1.66683 0.833414 0.552650i \(-0.186383\pi\)
0.833414 + 0.552650i \(0.186383\pi\)
\(992\) 4.55096 0.144493
\(993\) 0 0
\(994\) 29.6519 0.940502
\(995\) −1.84668 −0.0585437
\(996\) 0 0
\(997\) −21.4749 −0.680117 −0.340058 0.940404i \(-0.610447\pi\)
−0.340058 + 0.940404i \(0.610447\pi\)
\(998\) −30.5907 −0.968330
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3267.2.a.r.1.1 3
3.2 odd 2 3267.2.a.v.1.3 yes 3
11.10 odd 2 3267.2.a.u.1.3 yes 3
33.32 even 2 3267.2.a.s.1.1 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3267.2.a.r.1.1 3 1.1 even 1 trivial
3267.2.a.s.1.1 yes 3 33.32 even 2
3267.2.a.u.1.3 yes 3 11.10 odd 2
3267.2.a.v.1.3 yes 3 3.2 odd 2