Properties

Label 3267.2.a.r
Level 32673267
Weight 22
Character orbit 3267.a
Self dual yes
Analytic conductor 26.08726.087
Analytic rank 11
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3267,2,Mod(1,3267)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3267, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3267.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 3267=33112 3267 = 3^{3} \cdot 11^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3267.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 26.087126340426.0871263404
Analytic rank: 11
Dimension: 33
Coefficient field: 3.3.321.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x3x24x+1 x^{3} - x^{2} - 4x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β21,\beta_1,\beta_2 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q2+(β2+β1+1)q4+(β21)q5+(β2+β1)q7+(β2β12)q8+q10+(β2+2β1+2)q13+(β22β12)q14++(2β2+β17)q98+O(q100) q - \beta_1 q^{2} + (\beta_{2} + \beta_1 + 1) q^{4} + (\beta_{2} - 1) q^{5} + (\beta_{2} + \beta_1) q^{7} + ( - \beta_{2} - \beta_1 - 2) q^{8} + q^{10} + ( - \beta_{2} + 2 \beta_1 + 2) q^{13} + ( - \beta_{2} - 2 \beta_1 - 2) q^{14}+ \cdots + ( - 2 \beta_{2} + \beta_1 - 7) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 3qq2+3q44q56q8+3q10+9q137q14+3q16+2q179q19+7q2011q23+3q2522q26+18q28+6q29+3q318q326q34+18q98+O(q100) 3 q - q^{2} + 3 q^{4} - 4 q^{5} - 6 q^{8} + 3 q^{10} + 9 q^{13} - 7 q^{14} + 3 q^{16} + 2 q^{17} - 9 q^{19} + 7 q^{20} - 11 q^{23} + 3 q^{25} - 22 q^{26} + 18 q^{28} + 6 q^{29} + 3 q^{31} - 8 q^{32} - 6 q^{34}+ \cdots - 18 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x3x24x+1 x^{3} - x^{2} - 4x + 1 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν2ν3 \nu^{2} - \nu - 3 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+β1+3 \beta_{2} + \beta _1 + 3 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
2.46050
0.239123
−1.69963
−2.46050 0 4.05408 −0.406421 0 3.05408 −5.05408 0 1.00000
1.2 −0.239123 0 −1.94282 −4.18194 0 −2.94282 0.942820 0 1.00000
1.3 1.69963 0 0.888736 0.588364 0 −0.111264 −1.88874 0 1.00000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 1 -1
1111 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3267.2.a.r 3
3.b odd 2 1 3267.2.a.v yes 3
11.b odd 2 1 3267.2.a.u yes 3
33.d even 2 1 3267.2.a.s yes 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3267.2.a.r 3 1.a even 1 1 trivial
3267.2.a.s yes 3 33.d even 2 1
3267.2.a.u yes 3 11.b odd 2 1
3267.2.a.v yes 3 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(3267))S_{2}^{\mathrm{new}}(\Gamma_0(3267)):

T23+T224T21 T_{2}^{3} + T_{2}^{2} - 4T_{2} - 1 Copy content Toggle raw display
T53+4T52T51 T_{5}^{3} + 4T_{5}^{2} - T_{5} - 1 Copy content Toggle raw display
T739T71 T_{7}^{3} - 9T_{7} - 1 Copy content Toggle raw display
T233+11T232+14T2389 T_{23}^{3} + 11T_{23}^{2} + 14T_{23} - 89 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T3+T24T1 T^{3} + T^{2} - 4T - 1 Copy content Toggle raw display
33 T3 T^{3} Copy content Toggle raw display
55 T3+4T2T1 T^{3} + 4T^{2} - T - 1 Copy content Toggle raw display
77 T39T1 T^{3} - 9T - 1 Copy content Toggle raw display
1111 T3 T^{3} Copy content Toggle raw display
1313 T39T2+107 T^{3} - 9T^{2} + 107 Copy content Toggle raw display
1717 T32T2++59 T^{3} - 2 T^{2} + \cdots + 59 Copy content Toggle raw display
1919 (T+3)3 (T + 3)^{3} Copy content Toggle raw display
2323 T3+11T2+89 T^{3} + 11 T^{2} + \cdots - 89 Copy content Toggle raw display
2929 T36T2++72 T^{3} - 6 T^{2} + \cdots + 72 Copy content Toggle raw display
3131 T33T2++257 T^{3} - 3 T^{2} + \cdots + 257 Copy content Toggle raw display
3737 T3+3T2++27 T^{3} + 3 T^{2} + \cdots + 27 Copy content Toggle raw display
4141 T3+13T2+43 T^{3} + 13 T^{2} + \cdots - 43 Copy content Toggle raw display
4343 T3+6T2+99 T^{3} + 6 T^{2} + \cdots - 99 Copy content Toggle raw display
4747 T3T2++121 T^{3} - T^{2} + \cdots + 121 Copy content Toggle raw display
5353 T3+15T2+63 T^{3} + 15 T^{2} + \cdots - 63 Copy content Toggle raw display
5959 T3+17T2+737 T^{3} + 17 T^{2} + \cdots - 737 Copy content Toggle raw display
6161 T3+15T2++81 T^{3} + 15 T^{2} + \cdots + 81 Copy content Toggle raw display
6767 T315T2++409 T^{3} - 15 T^{2} + \cdots + 409 Copy content Toggle raw display
7171 T3+21T2++279 T^{3} + 21 T^{2} + \cdots + 279 Copy content Toggle raw display
7373 T3+12T2+301 T^{3} + 12 T^{2} + \cdots - 301 Copy content Toggle raw display
7979 T3+9T2+899 T^{3} + 9 T^{2} + \cdots - 899 Copy content Toggle raw display
8383 T315T2++1701 T^{3} - 15 T^{2} + \cdots + 1701 Copy content Toggle raw display
8989 T33T2++9 T^{3} - 3 T^{2} + \cdots + 9 Copy content Toggle raw display
9797 T3+9T2+353 T^{3} + 9 T^{2} + \cdots - 353 Copy content Toggle raw display
show more
show less