Properties

Label 3267.2.a.r
Level $3267$
Weight $2$
Character orbit 3267.a
Self dual yes
Analytic conductor $26.087$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3267,2,Mod(1,3267)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3267, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3267.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3267 = 3^{3} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3267.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.0871263404\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.321.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + (\beta_{2} + \beta_1 + 1) q^{4} + (\beta_{2} - 1) q^{5} + (\beta_{2} + \beta_1) q^{7} + ( - \beta_{2} - \beta_1 - 2) q^{8} + q^{10} + ( - \beta_{2} + 2 \beta_1 + 2) q^{13} + ( - \beta_{2} - 2 \beta_1 - 2) q^{14}+ \cdots + ( - 2 \beta_{2} + \beta_1 - 7) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} + 3 q^{4} - 4 q^{5} - 6 q^{8} + 3 q^{10} + 9 q^{13} - 7 q^{14} + 3 q^{16} + 2 q^{17} - 9 q^{19} + 7 q^{20} - 11 q^{23} + 3 q^{25} - 22 q^{26} + 18 q^{28} + 6 q^{29} + 3 q^{31} - 8 q^{32} - 6 q^{34}+ \cdots - 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 4x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.46050
0.239123
−1.69963
−2.46050 0 4.05408 −0.406421 0 3.05408 −5.05408 0 1.00000
1.2 −0.239123 0 −1.94282 −4.18194 0 −2.94282 0.942820 0 1.00000
1.3 1.69963 0 0.888736 0.588364 0 −0.111264 −1.88874 0 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3267.2.a.r 3
3.b odd 2 1 3267.2.a.v yes 3
11.b odd 2 1 3267.2.a.u yes 3
33.d even 2 1 3267.2.a.s yes 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3267.2.a.r 3 1.a even 1 1 trivial
3267.2.a.s yes 3 33.d even 2 1
3267.2.a.u yes 3 11.b odd 2 1
3267.2.a.v yes 3 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3267))\):

\( T_{2}^{3} + T_{2}^{2} - 4T_{2} - 1 \) Copy content Toggle raw display
\( T_{5}^{3} + 4T_{5}^{2} - T_{5} - 1 \) Copy content Toggle raw display
\( T_{7}^{3} - 9T_{7} - 1 \) Copy content Toggle raw display
\( T_{23}^{3} + 11T_{23}^{2} + 14T_{23} - 89 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} + T^{2} - 4T - 1 \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} + 4T^{2} - T - 1 \) Copy content Toggle raw display
$7$ \( T^{3} - 9T - 1 \) Copy content Toggle raw display
$11$ \( T^{3} \) Copy content Toggle raw display
$13$ \( T^{3} - 9T^{2} + 107 \) Copy content Toggle raw display
$17$ \( T^{3} - 2 T^{2} + \cdots + 59 \) Copy content Toggle raw display
$19$ \( (T + 3)^{3} \) Copy content Toggle raw display
$23$ \( T^{3} + 11 T^{2} + \cdots - 89 \) Copy content Toggle raw display
$29$ \( T^{3} - 6 T^{2} + \cdots + 72 \) Copy content Toggle raw display
$31$ \( T^{3} - 3 T^{2} + \cdots + 257 \) Copy content Toggle raw display
$37$ \( T^{3} + 3 T^{2} + \cdots + 27 \) Copy content Toggle raw display
$41$ \( T^{3} + 13 T^{2} + \cdots - 43 \) Copy content Toggle raw display
$43$ \( T^{3} + 6 T^{2} + \cdots - 99 \) Copy content Toggle raw display
$47$ \( T^{3} - T^{2} + \cdots + 121 \) Copy content Toggle raw display
$53$ \( T^{3} + 15 T^{2} + \cdots - 63 \) Copy content Toggle raw display
$59$ \( T^{3} + 17 T^{2} + \cdots - 737 \) Copy content Toggle raw display
$61$ \( T^{3} + 15 T^{2} + \cdots + 81 \) Copy content Toggle raw display
$67$ \( T^{3} - 15 T^{2} + \cdots + 409 \) Copy content Toggle raw display
$71$ \( T^{3} + 21 T^{2} + \cdots + 279 \) Copy content Toggle raw display
$73$ \( T^{3} + 12 T^{2} + \cdots - 301 \) Copy content Toggle raw display
$79$ \( T^{3} + 9 T^{2} + \cdots - 899 \) Copy content Toggle raw display
$83$ \( T^{3} - 15 T^{2} + \cdots + 1701 \) Copy content Toggle raw display
$89$ \( T^{3} - 3 T^{2} + \cdots + 9 \) Copy content Toggle raw display
$97$ \( T^{3} + 9 T^{2} + \cdots - 353 \) Copy content Toggle raw display
show more
show less