Properties

Label 3267.2.a.u.1.3
Level $3267$
Weight $2$
Character 3267.1
Self dual yes
Analytic conductor $26.087$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3267,2,Mod(1,3267)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3267, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3267.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3267 = 3^{3} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3267.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.0871263404\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.321.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.46050\) of defining polynomial
Character \(\chi\) \(=\) 3267.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.46050 q^{2} +4.05408 q^{4} -0.406421 q^{5} -3.05408 q^{7} +5.05408 q^{8} -1.00000 q^{10} -6.32743 q^{13} -7.51459 q^{14} +4.32743 q^{16} -4.64766 q^{17} +3.00000 q^{19} -1.64766 q^{20} -7.64766 q^{23} -4.83482 q^{25} -15.5687 q^{26} -12.3815 q^{28} +4.10817 q^{29} -8.43560 q^{31} +0.539495 q^{32} -11.4356 q^{34} +1.24124 q^{35} +2.32743 q^{37} +7.38151 q^{38} -2.05408 q^{40} +12.5687 q^{41} +5.32743 q^{43} -18.8171 q^{46} +2.73385 q^{47} +2.32743 q^{49} -11.8961 q^{50} -25.6519 q^{52} -8.32743 q^{53} -15.4356 q^{56} +10.1082 q^{58} +5.89610 q^{59} +8.05408 q^{61} -20.7558 q^{62} -7.32743 q^{64} +2.57160 q^{65} -4.43560 q^{67} -18.8420 q^{68} +3.05408 q^{70} -3.94592 q^{71} +6.78074 q^{73} +5.72665 q^{74} +12.1623 q^{76} +5.50739 q^{79} -1.75876 q^{80} +30.9253 q^{82} +10.5438 q^{83} +1.88891 q^{85} +13.1082 q^{86} -2.05408 q^{89} +19.3245 q^{91} -31.0043 q^{92} +6.72665 q^{94} -1.21926 q^{95} -15.7630 q^{97} +5.72665 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{2} + 3 q^{4} - 4 q^{5} + 6 q^{8} - 3 q^{10} - 9 q^{13} - 7 q^{14} + 3 q^{16} - 2 q^{17} + 9 q^{19} + 7 q^{20} - 11 q^{23} + 3 q^{25} - 22 q^{26} - 18 q^{28} - 6 q^{29} + 3 q^{31} + 8 q^{32} - 6 q^{34}+ \cdots + 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.46050 1.73984 0.869920 0.493193i \(-0.164170\pi\)
0.869920 + 0.493193i \(0.164170\pi\)
\(3\) 0 0
\(4\) 4.05408 2.02704
\(5\) −0.406421 −0.181757 −0.0908784 0.995862i \(-0.528967\pi\)
−0.0908784 + 0.995862i \(0.528967\pi\)
\(6\) 0 0
\(7\) −3.05408 −1.15434 −0.577168 0.816626i \(-0.695842\pi\)
−0.577168 + 0.816626i \(0.695842\pi\)
\(8\) 5.05408 1.78689
\(9\) 0 0
\(10\) −1.00000 −0.316228
\(11\) 0 0
\(12\) 0 0
\(13\) −6.32743 −1.75491 −0.877457 0.479656i \(-0.840762\pi\)
−0.877457 + 0.479656i \(0.840762\pi\)
\(14\) −7.51459 −2.00836
\(15\) 0 0
\(16\) 4.32743 1.08186
\(17\) −4.64766 −1.12722 −0.563612 0.826040i \(-0.690589\pi\)
−0.563612 + 0.826040i \(0.690589\pi\)
\(18\) 0 0
\(19\) 3.00000 0.688247 0.344124 0.938924i \(-0.388176\pi\)
0.344124 + 0.938924i \(0.388176\pi\)
\(20\) −1.64766 −0.368429
\(21\) 0 0
\(22\) 0 0
\(23\) −7.64766 −1.59465 −0.797324 0.603551i \(-0.793752\pi\)
−0.797324 + 0.603551i \(0.793752\pi\)
\(24\) 0 0
\(25\) −4.83482 −0.966964
\(26\) −15.5687 −3.05327
\(27\) 0 0
\(28\) −12.3815 −2.33989
\(29\) 4.10817 0.762868 0.381434 0.924396i \(-0.375430\pi\)
0.381434 + 0.924396i \(0.375430\pi\)
\(30\) 0 0
\(31\) −8.43560 −1.51508 −0.757539 0.652790i \(-0.773599\pi\)
−0.757539 + 0.652790i \(0.773599\pi\)
\(32\) 0.539495 0.0953702
\(33\) 0 0
\(34\) −11.4356 −1.96119
\(35\) 1.24124 0.209808
\(36\) 0 0
\(37\) 2.32743 0.382627 0.191314 0.981529i \(-0.438725\pi\)
0.191314 + 0.981529i \(0.438725\pi\)
\(38\) 7.38151 1.19744
\(39\) 0 0
\(40\) −2.05408 −0.324779
\(41\) 12.5687 1.96290 0.981448 0.191726i \(-0.0614085\pi\)
0.981448 + 0.191726i \(0.0614085\pi\)
\(42\) 0 0
\(43\) 5.32743 0.812426 0.406213 0.913779i \(-0.366849\pi\)
0.406213 + 0.913779i \(0.366849\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −18.8171 −2.77443
\(47\) 2.73385 0.398773 0.199387 0.979921i \(-0.436105\pi\)
0.199387 + 0.979921i \(0.436105\pi\)
\(48\) 0 0
\(49\) 2.32743 0.332490
\(50\) −11.8961 −1.68236
\(51\) 0 0
\(52\) −25.6519 −3.55728
\(53\) −8.32743 −1.14386 −0.571930 0.820302i \(-0.693805\pi\)
−0.571930 + 0.820302i \(0.693805\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −15.4356 −2.06267
\(57\) 0 0
\(58\) 10.1082 1.32727
\(59\) 5.89610 0.767607 0.383804 0.923415i \(-0.374614\pi\)
0.383804 + 0.923415i \(0.374614\pi\)
\(60\) 0 0
\(61\) 8.05408 1.03122 0.515610 0.856823i \(-0.327565\pi\)
0.515610 + 0.856823i \(0.327565\pi\)
\(62\) −20.7558 −2.63599
\(63\) 0 0
\(64\) −7.32743 −0.915929
\(65\) 2.57160 0.318968
\(66\) 0 0
\(67\) −4.43560 −0.541895 −0.270947 0.962594i \(-0.587337\pi\)
−0.270947 + 0.962594i \(0.587337\pi\)
\(68\) −18.8420 −2.28493
\(69\) 0 0
\(70\) 3.05408 0.365033
\(71\) −3.94592 −0.468294 −0.234147 0.972201i \(-0.575230\pi\)
−0.234147 + 0.972201i \(0.575230\pi\)
\(72\) 0 0
\(73\) 6.78074 0.793625 0.396813 0.917900i \(-0.370116\pi\)
0.396813 + 0.917900i \(0.370116\pi\)
\(74\) 5.72665 0.665710
\(75\) 0 0
\(76\) 12.1623 1.39511
\(77\) 0 0
\(78\) 0 0
\(79\) 5.50739 0.619630 0.309815 0.950797i \(-0.399733\pi\)
0.309815 + 0.950797i \(0.399733\pi\)
\(80\) −1.75876 −0.196635
\(81\) 0 0
\(82\) 30.9253 3.41513
\(83\) 10.5438 1.15733 0.578664 0.815566i \(-0.303574\pi\)
0.578664 + 0.815566i \(0.303574\pi\)
\(84\) 0 0
\(85\) 1.88891 0.204881
\(86\) 13.1082 1.41349
\(87\) 0 0
\(88\) 0 0
\(89\) −2.05408 −0.217732 −0.108866 0.994056i \(-0.534722\pi\)
−0.108866 + 0.994056i \(0.534722\pi\)
\(90\) 0 0
\(91\) 19.3245 2.02576
\(92\) −31.0043 −3.23242
\(93\) 0 0
\(94\) 6.72665 0.693801
\(95\) −1.21926 −0.125094
\(96\) 0 0
\(97\) −15.7630 −1.60049 −0.800247 0.599671i \(-0.795298\pi\)
−0.800247 + 0.599671i \(0.795298\pi\)
\(98\) 5.72665 0.578479
\(99\) 0 0
\(100\) −19.6008 −1.96008
\(101\) 2.46770 0.245546 0.122773 0.992435i \(-0.460821\pi\)
0.122773 + 0.992435i \(0.460821\pi\)
\(102\) 0 0
\(103\) 9.65486 0.951322 0.475661 0.879629i \(-0.342209\pi\)
0.475661 + 0.879629i \(0.342209\pi\)
\(104\) −31.9794 −3.13583
\(105\) 0 0
\(106\) −20.4897 −1.99013
\(107\) −16.2704 −1.57292 −0.786460 0.617641i \(-0.788089\pi\)
−0.786460 + 0.617641i \(0.788089\pi\)
\(108\) 0 0
\(109\) −1.67257 −0.160203 −0.0801016 0.996787i \(-0.525524\pi\)
−0.0801016 + 0.996787i \(0.525524\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −13.2163 −1.24883
\(113\) −13.9282 −1.31026 −0.655128 0.755518i \(-0.727385\pi\)
−0.655128 + 0.755518i \(0.727385\pi\)
\(114\) 0 0
\(115\) 3.10817 0.289838
\(116\) 16.6549 1.54637
\(117\) 0 0
\(118\) 14.5074 1.33551
\(119\) 14.1944 1.30119
\(120\) 0 0
\(121\) 0 0
\(122\) 19.8171 1.79416
\(123\) 0 0
\(124\) −34.1986 −3.07113
\(125\) 3.99707 0.357509
\(126\) 0 0
\(127\) −1.45331 −0.128960 −0.0644801 0.997919i \(-0.520539\pi\)
−0.0644801 + 0.997919i \(0.520539\pi\)
\(128\) −19.1082 −1.68894
\(129\) 0 0
\(130\) 6.32743 0.554952
\(131\) −0.708945 −0.0619408 −0.0309704 0.999520i \(-0.509860\pi\)
−0.0309704 + 0.999520i \(0.509860\pi\)
\(132\) 0 0
\(133\) −9.16225 −0.794468
\(134\) −10.9138 −0.942810
\(135\) 0 0
\(136\) −23.4897 −2.01422
\(137\) −9.26615 −0.791661 −0.395830 0.918324i \(-0.629543\pi\)
−0.395830 + 0.918324i \(0.629543\pi\)
\(138\) 0 0
\(139\) −12.6008 −1.06878 −0.534392 0.845237i \(-0.679459\pi\)
−0.534392 + 0.845237i \(0.679459\pi\)
\(140\) 5.03210 0.425290
\(141\) 0 0
\(142\) −9.70895 −0.814757
\(143\) 0 0
\(144\) 0 0
\(145\) −1.66964 −0.138656
\(146\) 16.6840 1.38078
\(147\) 0 0
\(148\) 9.43560 0.775601
\(149\) −9.44280 −0.773584 −0.386792 0.922167i \(-0.626417\pi\)
−0.386792 + 0.922167i \(0.626417\pi\)
\(150\) 0 0
\(151\) −0.618485 −0.0503316 −0.0251658 0.999683i \(-0.508011\pi\)
−0.0251658 + 0.999683i \(0.508011\pi\)
\(152\) 15.1623 1.22982
\(153\) 0 0
\(154\) 0 0
\(155\) 3.42840 0.275376
\(156\) 0 0
\(157\) 13.4897 1.07659 0.538297 0.842755i \(-0.319068\pi\)
0.538297 + 0.842755i \(0.319068\pi\)
\(158\) 13.5510 1.07806
\(159\) 0 0
\(160\) −0.219262 −0.0173342
\(161\) 23.3566 1.84076
\(162\) 0 0
\(163\) 2.78074 0.217804 0.108902 0.994052i \(-0.465266\pi\)
0.108902 + 0.994052i \(0.465266\pi\)
\(164\) 50.9545 3.97887
\(165\) 0 0
\(166\) 25.9430 2.01357
\(167\) −10.6549 −0.824498 −0.412249 0.911071i \(-0.635257\pi\)
−0.412249 + 0.911071i \(0.635257\pi\)
\(168\) 0 0
\(169\) 27.0364 2.07972
\(170\) 4.64766 0.356460
\(171\) 0 0
\(172\) 21.5979 1.64682
\(173\) −12.1623 −0.924679 −0.462339 0.886703i \(-0.652990\pi\)
−0.462339 + 0.886703i \(0.652990\pi\)
\(174\) 0 0
\(175\) 14.7660 1.11620
\(176\) 0 0
\(177\) 0 0
\(178\) −5.05408 −0.378820
\(179\) 17.7630 1.32767 0.663836 0.747879i \(-0.268927\pi\)
0.663836 + 0.747879i \(0.268927\pi\)
\(180\) 0 0
\(181\) −20.8712 −1.55134 −0.775672 0.631136i \(-0.782589\pi\)
−0.775672 + 0.631136i \(0.782589\pi\)
\(182\) 47.5480 3.52450
\(183\) 0 0
\(184\) −38.6519 −2.84946
\(185\) −0.945916 −0.0695451
\(186\) 0 0
\(187\) 0 0
\(188\) 11.0833 0.808330
\(189\) 0 0
\(190\) −3.00000 −0.217643
\(191\) −21.8492 −1.58095 −0.790477 0.612492i \(-0.790167\pi\)
−0.790477 + 0.612492i \(0.790167\pi\)
\(192\) 0 0
\(193\) −5.94299 −0.427786 −0.213893 0.976857i \(-0.568614\pi\)
−0.213893 + 0.976857i \(0.568614\pi\)
\(194\) −38.7850 −2.78460
\(195\) 0 0
\(196\) 9.43560 0.673971
\(197\) 18.5687 1.32296 0.661482 0.749961i \(-0.269928\pi\)
0.661482 + 0.749961i \(0.269928\pi\)
\(198\) 0 0
\(199\) 4.54377 0.322099 0.161050 0.986946i \(-0.448512\pi\)
0.161050 + 0.986946i \(0.448512\pi\)
\(200\) −24.4356 −1.72786
\(201\) 0 0
\(202\) 6.07179 0.427210
\(203\) −12.5467 −0.880605
\(204\) 0 0
\(205\) −5.10817 −0.356770
\(206\) 23.7558 1.65515
\(207\) 0 0
\(208\) −27.3815 −1.89857
\(209\) 0 0
\(210\) 0 0
\(211\) −0.510317 −0.0351317 −0.0175658 0.999846i \(-0.505592\pi\)
−0.0175658 + 0.999846i \(0.505592\pi\)
\(212\) −33.7601 −2.31865
\(213\) 0 0
\(214\) −40.0335 −2.73663
\(215\) −2.16518 −0.147664
\(216\) 0 0
\(217\) 25.7630 1.74891
\(218\) −4.11537 −0.278728
\(219\) 0 0
\(220\) 0 0
\(221\) 29.4078 1.97818
\(222\) 0 0
\(223\) −1.72665 −0.115625 −0.0578126 0.998327i \(-0.518413\pi\)
−0.0578126 + 0.998327i \(0.518413\pi\)
\(224\) −1.64766 −0.110089
\(225\) 0 0
\(226\) −34.2704 −2.27963
\(227\) 11.4897 0.762597 0.381299 0.924452i \(-0.375477\pi\)
0.381299 + 0.924452i \(0.375477\pi\)
\(228\) 0 0
\(229\) 4.78074 0.315920 0.157960 0.987446i \(-0.449508\pi\)
0.157960 + 0.987446i \(0.449508\pi\)
\(230\) 7.64766 0.504272
\(231\) 0 0
\(232\) 20.7630 1.36316
\(233\) −19.9282 −1.30554 −0.652770 0.757556i \(-0.726393\pi\)
−0.652770 + 0.757556i \(0.726393\pi\)
\(234\) 0 0
\(235\) −1.11109 −0.0724798
\(236\) 23.9033 1.55597
\(237\) 0 0
\(238\) 34.9253 2.26387
\(239\) −25.3815 −1.64179 −0.820897 0.571076i \(-0.806526\pi\)
−0.820897 + 0.571076i \(0.806526\pi\)
\(240\) 0 0
\(241\) 17.3245 1.11597 0.557985 0.829851i \(-0.311575\pi\)
0.557985 + 0.829851i \(0.311575\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 32.6519 2.09033
\(245\) −0.945916 −0.0604323
\(246\) 0 0
\(247\) −18.9823 −1.20781
\(248\) −42.6342 −2.70728
\(249\) 0 0
\(250\) 9.83482 0.622009
\(251\) 1.48541 0.0937583 0.0468792 0.998901i \(-0.485072\pi\)
0.0468792 + 0.998901i \(0.485072\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −3.57587 −0.224370
\(255\) 0 0
\(256\) −32.3609 −2.02256
\(257\) 12.7381 0.794582 0.397291 0.917693i \(-0.369950\pi\)
0.397291 + 0.917693i \(0.369950\pi\)
\(258\) 0 0
\(259\) −7.10817 −0.441680
\(260\) 10.4255 0.646561
\(261\) 0 0
\(262\) −1.74436 −0.107767
\(263\) 1.10097 0.0678888 0.0339444 0.999424i \(-0.489193\pi\)
0.0339444 + 0.999424i \(0.489193\pi\)
\(264\) 0 0
\(265\) 3.38444 0.207904
\(266\) −22.5438 −1.38225
\(267\) 0 0
\(268\) −17.9823 −1.09844
\(269\) 1.79513 0.109451 0.0547256 0.998501i \(-0.482572\pi\)
0.0547256 + 0.998501i \(0.482572\pi\)
\(270\) 0 0
\(271\) −23.0512 −1.40026 −0.700129 0.714016i \(-0.746874\pi\)
−0.700129 + 0.714016i \(0.746874\pi\)
\(272\) −20.1124 −1.21950
\(273\) 0 0
\(274\) −22.7994 −1.37736
\(275\) 0 0
\(276\) 0 0
\(277\) 27.5801 1.65713 0.828565 0.559893i \(-0.189158\pi\)
0.828565 + 0.559893i \(0.189158\pi\)
\(278\) −31.0043 −1.85951
\(279\) 0 0
\(280\) 6.27335 0.374904
\(281\) −5.74144 −0.342505 −0.171253 0.985227i \(-0.554781\pi\)
−0.171253 + 0.985227i \(0.554781\pi\)
\(282\) 0 0
\(283\) 31.7994 1.89028 0.945139 0.326668i \(-0.105926\pi\)
0.945139 + 0.326668i \(0.105926\pi\)
\(284\) −15.9971 −0.949252
\(285\) 0 0
\(286\) 0 0
\(287\) −38.3858 −2.26584
\(288\) 0 0
\(289\) 4.60078 0.270634
\(290\) −4.10817 −0.241240
\(291\) 0 0
\(292\) 27.4897 1.60871
\(293\) −15.8712 −0.927205 −0.463603 0.886043i \(-0.653443\pi\)
−0.463603 + 0.886043i \(0.653443\pi\)
\(294\) 0 0
\(295\) −2.39630 −0.139518
\(296\) 11.7630 0.683712
\(297\) 0 0
\(298\) −23.2340 −1.34591
\(299\) 48.3901 2.79847
\(300\) 0 0
\(301\) −16.2704 −0.937811
\(302\) −1.52179 −0.0875690
\(303\) 0 0
\(304\) 12.9823 0.744585
\(305\) −3.27335 −0.187431
\(306\) 0 0
\(307\) −3.89183 −0.222119 −0.111059 0.993814i \(-0.535424\pi\)
−0.111059 + 0.993814i \(0.535424\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 8.43560 0.479110
\(311\) 20.3422 1.15350 0.576751 0.816920i \(-0.304320\pi\)
0.576751 + 0.816920i \(0.304320\pi\)
\(312\) 0 0
\(313\) 2.51032 0.141892 0.0709458 0.997480i \(-0.477398\pi\)
0.0709458 + 0.997480i \(0.477398\pi\)
\(314\) 33.1914 1.87310
\(315\) 0 0
\(316\) 22.3274 1.25602
\(317\) −19.3523 −1.08694 −0.543468 0.839430i \(-0.682889\pi\)
−0.543468 + 0.839430i \(0.682889\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 2.97802 0.166476
\(321\) 0 0
\(322\) 57.4690 3.20262
\(323\) −13.9430 −0.775809
\(324\) 0 0
\(325\) 30.5920 1.69694
\(326\) 6.84202 0.378944
\(327\) 0 0
\(328\) 63.5231 3.50748
\(329\) −8.34941 −0.460318
\(330\) 0 0
\(331\) 23.5438 1.29408 0.647041 0.762455i \(-0.276006\pi\)
0.647041 + 0.762455i \(0.276006\pi\)
\(332\) 42.7453 2.34595
\(333\) 0 0
\(334\) −26.2163 −1.43449
\(335\) 1.80272 0.0984931
\(336\) 0 0
\(337\) −10.3422 −0.563376 −0.281688 0.959506i \(-0.590894\pi\)
−0.281688 + 0.959506i \(0.590894\pi\)
\(338\) 66.5231 3.61838
\(339\) 0 0
\(340\) 7.65779 0.415302
\(341\) 0 0
\(342\) 0 0
\(343\) 14.2704 0.770530
\(344\) 26.9253 1.45171
\(345\) 0 0
\(346\) −29.9253 −1.60879
\(347\) −23.0833 −1.23917 −0.619587 0.784928i \(-0.712700\pi\)
−0.619587 + 0.784928i \(0.712700\pi\)
\(348\) 0 0
\(349\) 28.5801 1.52986 0.764930 0.644113i \(-0.222774\pi\)
0.764930 + 0.644113i \(0.222774\pi\)
\(350\) 36.3317 1.94201
\(351\) 0 0
\(352\) 0 0
\(353\) −1.90662 −0.101479 −0.0507394 0.998712i \(-0.516158\pi\)
−0.0507394 + 0.998712i \(0.516158\pi\)
\(354\) 0 0
\(355\) 1.60370 0.0851156
\(356\) −8.32743 −0.441353
\(357\) 0 0
\(358\) 43.7060 2.30993
\(359\) −17.2455 −0.910183 −0.455092 0.890445i \(-0.650394\pi\)
−0.455092 + 0.890445i \(0.650394\pi\)
\(360\) 0 0
\(361\) −10.0000 −0.526316
\(362\) −51.3537 −2.69909
\(363\) 0 0
\(364\) 78.3432 4.10630
\(365\) −2.75583 −0.144247
\(366\) 0 0
\(367\) −6.09338 −0.318072 −0.159036 0.987273i \(-0.550839\pi\)
−0.159036 + 0.987273i \(0.550839\pi\)
\(368\) −33.0947 −1.72518
\(369\) 0 0
\(370\) −2.32743 −0.120997
\(371\) 25.4327 1.32040
\(372\) 0 0
\(373\) 8.12588 0.420742 0.210371 0.977622i \(-0.432533\pi\)
0.210371 + 0.977622i \(0.432533\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 13.8171 0.712563
\(377\) −25.9941 −1.33877
\(378\) 0 0
\(379\) 0.690278 0.0354572 0.0177286 0.999843i \(-0.494357\pi\)
0.0177286 + 0.999843i \(0.494357\pi\)
\(380\) −4.94299 −0.253570
\(381\) 0 0
\(382\) −53.7601 −2.75061
\(383\) −11.7558 −0.600695 −0.300347 0.953830i \(-0.597103\pi\)
−0.300347 + 0.953830i \(0.597103\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −14.6228 −0.744279
\(387\) 0 0
\(388\) −63.9046 −3.24427
\(389\) −21.0364 −1.06659 −0.533293 0.845930i \(-0.679046\pi\)
−0.533293 + 0.845930i \(0.679046\pi\)
\(390\) 0 0
\(391\) 35.5438 1.79753
\(392\) 11.7630 0.594123
\(393\) 0 0
\(394\) 45.6883 2.30174
\(395\) −2.23832 −0.112622
\(396\) 0 0
\(397\) −12.6185 −0.633304 −0.316652 0.948542i \(-0.602559\pi\)
−0.316652 + 0.948542i \(0.602559\pi\)
\(398\) 11.1800 0.560401
\(399\) 0 0
\(400\) −20.9224 −1.04612
\(401\) −12.3025 −0.614359 −0.307179 0.951652i \(-0.599385\pi\)
−0.307179 + 0.951652i \(0.599385\pi\)
\(402\) 0 0
\(403\) 53.3757 2.65883
\(404\) 10.0043 0.497731
\(405\) 0 0
\(406\) −30.8712 −1.53211
\(407\) 0 0
\(408\) 0 0
\(409\) 10.8171 0.534872 0.267436 0.963576i \(-0.413824\pi\)
0.267436 + 0.963576i \(0.413824\pi\)
\(410\) −12.5687 −0.620723
\(411\) 0 0
\(412\) 39.1416 1.92837
\(413\) −18.0072 −0.886076
\(414\) 0 0
\(415\) −4.28520 −0.210352
\(416\) −3.41362 −0.167366
\(417\) 0 0
\(418\) 0 0
\(419\) −16.5366 −0.807864 −0.403932 0.914789i \(-0.632357\pi\)
−0.403932 + 0.914789i \(0.632357\pi\)
\(420\) 0 0
\(421\) 34.5979 1.68620 0.843098 0.537760i \(-0.180729\pi\)
0.843098 + 0.537760i \(0.180729\pi\)
\(422\) −1.25564 −0.0611235
\(423\) 0 0
\(424\) −42.0875 −2.04395
\(425\) 22.4706 1.08999
\(426\) 0 0
\(427\) −24.5979 −1.19037
\(428\) −65.9617 −3.18838
\(429\) 0 0
\(430\) −5.32743 −0.256912
\(431\) −18.7601 −0.903642 −0.451821 0.892109i \(-0.649226\pi\)
−0.451821 + 0.892109i \(0.649226\pi\)
\(432\) 0 0
\(433\) 27.9253 1.34200 0.671002 0.741456i \(-0.265864\pi\)
0.671002 + 0.741456i \(0.265864\pi\)
\(434\) 63.3901 3.04282
\(435\) 0 0
\(436\) −6.78074 −0.324738
\(437\) −22.9430 −1.09751
\(438\) 0 0
\(439\) −18.3274 −0.874721 −0.437360 0.899286i \(-0.644087\pi\)
−0.437360 + 0.899286i \(0.644087\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 72.3580 3.44172
\(443\) 15.8640 0.753721 0.376861 0.926270i \(-0.377004\pi\)
0.376861 + 0.926270i \(0.377004\pi\)
\(444\) 0 0
\(445\) 0.834822 0.0395744
\(446\) −4.24844 −0.201169
\(447\) 0 0
\(448\) 22.3786 1.05729
\(449\) −33.4796 −1.58000 −0.789999 0.613108i \(-0.789919\pi\)
−0.789999 + 0.613108i \(0.789919\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −56.4661 −2.65594
\(453\) 0 0
\(454\) 28.2704 1.32680
\(455\) −7.85388 −0.368195
\(456\) 0 0
\(457\) −6.68735 −0.312821 −0.156411 0.987692i \(-0.549992\pi\)
−0.156411 + 0.987692i \(0.549992\pi\)
\(458\) 11.7630 0.549650
\(459\) 0 0
\(460\) 12.6008 0.587514
\(461\) −21.8348 −1.01695 −0.508475 0.861077i \(-0.669790\pi\)
−0.508475 + 0.861077i \(0.669790\pi\)
\(462\) 0 0
\(463\) −18.5438 −0.861802 −0.430901 0.902399i \(-0.641804\pi\)
−0.430901 + 0.902399i \(0.641804\pi\)
\(464\) 17.7778 0.825314
\(465\) 0 0
\(466\) −49.0335 −2.27143
\(467\) 18.3097 0.847273 0.423636 0.905832i \(-0.360753\pi\)
0.423636 + 0.905832i \(0.360753\pi\)
\(468\) 0 0
\(469\) 13.5467 0.625528
\(470\) −2.73385 −0.126103
\(471\) 0 0
\(472\) 29.7994 1.37163
\(473\) 0 0
\(474\) 0 0
\(475\) −14.5045 −0.665511
\(476\) 57.5451 2.63758
\(477\) 0 0
\(478\) −62.4513 −2.85646
\(479\) −8.85973 −0.404811 −0.202406 0.979302i \(-0.564876\pi\)
−0.202406 + 0.979302i \(0.564876\pi\)
\(480\) 0 0
\(481\) −14.7267 −0.671478
\(482\) 42.6270 1.94161
\(483\) 0 0
\(484\) 0 0
\(485\) 6.40642 0.290901
\(486\) 0 0
\(487\) −19.9459 −0.903836 −0.451918 0.892060i \(-0.649260\pi\)
−0.451918 + 0.892060i \(0.649260\pi\)
\(488\) 40.7060 1.84267
\(489\) 0 0
\(490\) −2.32743 −0.105143
\(491\) 34.9650 1.57795 0.788974 0.614427i \(-0.210613\pi\)
0.788974 + 0.614427i \(0.210613\pi\)
\(492\) 0 0
\(493\) −19.0934 −0.859923
\(494\) −46.7060 −2.10140
\(495\) 0 0
\(496\) −36.5045 −1.63910
\(497\) 12.0512 0.540568
\(498\) 0 0
\(499\) 12.4327 0.556563 0.278281 0.960500i \(-0.410235\pi\)
0.278281 + 0.960500i \(0.410235\pi\)
\(500\) 16.2045 0.724686
\(501\) 0 0
\(502\) 3.65486 0.163124
\(503\) 5.46050 0.243472 0.121736 0.992563i \(-0.461154\pi\)
0.121736 + 0.992563i \(0.461154\pi\)
\(504\) 0 0
\(505\) −1.00293 −0.0446296
\(506\) 0 0
\(507\) 0 0
\(508\) −5.89183 −0.261408
\(509\) −7.23405 −0.320643 −0.160322 0.987065i \(-0.551253\pi\)
−0.160322 + 0.987065i \(0.551253\pi\)
\(510\) 0 0
\(511\) −20.7089 −0.916110
\(512\) −41.4078 −1.82998
\(513\) 0 0
\(514\) 31.3422 1.38245
\(515\) −3.92393 −0.172909
\(516\) 0 0
\(517\) 0 0
\(518\) −17.4897 −0.768453
\(519\) 0 0
\(520\) 12.9971 0.569959
\(521\) 8.03930 0.352208 0.176104 0.984372i \(-0.443650\pi\)
0.176104 + 0.984372i \(0.443650\pi\)
\(522\) 0 0
\(523\) −6.21926 −0.271949 −0.135975 0.990712i \(-0.543417\pi\)
−0.135975 + 0.990712i \(0.543417\pi\)
\(524\) −2.87412 −0.125557
\(525\) 0 0
\(526\) 2.70895 0.118116
\(527\) 39.2058 1.70783
\(528\) 0 0
\(529\) 35.4868 1.54290
\(530\) 8.32743 0.361720
\(531\) 0 0
\(532\) −37.1445 −1.61042
\(533\) −79.5274 −3.44471
\(534\) 0 0
\(535\) 6.61264 0.285889
\(536\) −22.4179 −0.968305
\(537\) 0 0
\(538\) 4.41693 0.190427
\(539\) 0 0
\(540\) 0 0
\(541\) 13.8377 0.594931 0.297466 0.954733i \(-0.403859\pi\)
0.297466 + 0.954733i \(0.403859\pi\)
\(542\) −56.7175 −2.43622
\(543\) 0 0
\(544\) −2.50739 −0.107504
\(545\) 0.679767 0.0291180
\(546\) 0 0
\(547\) 13.7237 0.586784 0.293392 0.955992i \(-0.405216\pi\)
0.293392 + 0.955992i \(0.405216\pi\)
\(548\) −37.5657 −1.60473
\(549\) 0 0
\(550\) 0 0
\(551\) 12.3245 0.525042
\(552\) 0 0
\(553\) −16.8200 −0.715261
\(554\) 67.8611 2.88314
\(555\) 0 0
\(556\) −51.0846 −2.16647
\(557\) −36.6634 −1.55348 −0.776739 0.629822i \(-0.783128\pi\)
−0.776739 + 0.629822i \(0.783128\pi\)
\(558\) 0 0
\(559\) −33.7089 −1.42574
\(560\) 5.37139 0.226983
\(561\) 0 0
\(562\) −14.1268 −0.595905
\(563\) 25.6257 1.07999 0.539997 0.841667i \(-0.318425\pi\)
0.539997 + 0.841667i \(0.318425\pi\)
\(564\) 0 0
\(565\) 5.66071 0.238148
\(566\) 78.2426 3.28878
\(567\) 0 0
\(568\) −19.9430 −0.836789
\(569\) 17.4150 0.730073 0.365037 0.930993i \(-0.381056\pi\)
0.365037 + 0.930993i \(0.381056\pi\)
\(570\) 0 0
\(571\) 11.3304 0.474161 0.237080 0.971490i \(-0.423810\pi\)
0.237080 + 0.971490i \(0.423810\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −94.4484 −3.94220
\(575\) 36.9751 1.54197
\(576\) 0 0
\(577\) −7.52218 −0.313152 −0.156576 0.987666i \(-0.550046\pi\)
−0.156576 + 0.987666i \(0.550046\pi\)
\(578\) 11.3202 0.470860
\(579\) 0 0
\(580\) −6.76888 −0.281062
\(581\) −32.2016 −1.33595
\(582\) 0 0
\(583\) 0 0
\(584\) 34.2704 1.41812
\(585\) 0 0
\(586\) −39.0512 −1.61319
\(587\) 5.54242 0.228760 0.114380 0.993437i \(-0.463512\pi\)
0.114380 + 0.993437i \(0.463512\pi\)
\(588\) 0 0
\(589\) −25.3068 −1.04275
\(590\) −5.89610 −0.242739
\(591\) 0 0
\(592\) 10.0718 0.413948
\(593\) −3.48114 −0.142953 −0.0714766 0.997442i \(-0.522771\pi\)
−0.0714766 + 0.997442i \(0.522771\pi\)
\(594\) 0 0
\(595\) −5.76888 −0.236501
\(596\) −38.2819 −1.56809
\(597\) 0 0
\(598\) 119.064 4.86889
\(599\) −11.0249 −0.450465 −0.225233 0.974305i \(-0.572314\pi\)
−0.225233 + 0.974305i \(0.572314\pi\)
\(600\) 0 0
\(601\) −21.8171 −0.889939 −0.444969 0.895546i \(-0.646785\pi\)
−0.444969 + 0.895546i \(0.646785\pi\)
\(602\) −40.0335 −1.63164
\(603\) 0 0
\(604\) −2.50739 −0.102024
\(605\) 0 0
\(606\) 0 0
\(607\) −7.17996 −0.291426 −0.145713 0.989327i \(-0.546548\pi\)
−0.145713 + 0.989327i \(0.546548\pi\)
\(608\) 1.61849 0.0656383
\(609\) 0 0
\(610\) −8.05408 −0.326100
\(611\) −17.2983 −0.699812
\(612\) 0 0
\(613\) −36.0335 −1.45538 −0.727689 0.685908i \(-0.759405\pi\)
−0.727689 + 0.685908i \(0.759405\pi\)
\(614\) −9.57587 −0.386451
\(615\) 0 0
\(616\) 0 0
\(617\) −44.4002 −1.78748 −0.893742 0.448581i \(-0.851929\pi\)
−0.893742 + 0.448581i \(0.851929\pi\)
\(618\) 0 0
\(619\) 1.19475 0.0480209 0.0240104 0.999712i \(-0.492357\pi\)
0.0240104 + 0.999712i \(0.492357\pi\)
\(620\) 13.8990 0.558198
\(621\) 0 0
\(622\) 50.0521 2.00691
\(623\) 6.27335 0.251336
\(624\) 0 0
\(625\) 22.5496 0.901985
\(626\) 6.17665 0.246868
\(627\) 0 0
\(628\) 54.6883 2.18230
\(629\) −10.8171 −0.431307
\(630\) 0 0
\(631\) 16.3245 0.649868 0.324934 0.945737i \(-0.394658\pi\)
0.324934 + 0.945737i \(0.394658\pi\)
\(632\) 27.8348 1.10721
\(633\) 0 0
\(634\) −47.6165 −1.89109
\(635\) 0.590654 0.0234394
\(636\) 0 0
\(637\) −14.7267 −0.583491
\(638\) 0 0
\(639\) 0 0
\(640\) 7.76595 0.306976
\(641\) 22.1082 0.873220 0.436610 0.899651i \(-0.356179\pi\)
0.436610 + 0.899651i \(0.356179\pi\)
\(642\) 0 0
\(643\) −34.1623 −1.34723 −0.673614 0.739083i \(-0.735259\pi\)
−0.673614 + 0.739083i \(0.735259\pi\)
\(644\) 94.6897 3.73130
\(645\) 0 0
\(646\) −34.3068 −1.34978
\(647\) −22.2848 −0.876107 −0.438053 0.898949i \(-0.644332\pi\)
−0.438053 + 0.898949i \(0.644332\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 75.2718 2.95240
\(651\) 0 0
\(652\) 11.2733 0.441498
\(653\) −14.8813 −0.582351 −0.291176 0.956670i \(-0.594046\pi\)
−0.291176 + 0.956670i \(0.594046\pi\)
\(654\) 0 0
\(655\) 0.288130 0.0112582
\(656\) 54.3901 2.12358
\(657\) 0 0
\(658\) −20.5438 −0.800879
\(659\) 42.7457 1.66514 0.832568 0.553923i \(-0.186870\pi\)
0.832568 + 0.553923i \(0.186870\pi\)
\(660\) 0 0
\(661\) 19.7237 0.767164 0.383582 0.923507i \(-0.374690\pi\)
0.383582 + 0.923507i \(0.374690\pi\)
\(662\) 57.9296 2.25150
\(663\) 0 0
\(664\) 53.2891 2.06802
\(665\) 3.72373 0.144400
\(666\) 0 0
\(667\) −31.4179 −1.21651
\(668\) −43.1957 −1.67129
\(669\) 0 0
\(670\) 4.43560 0.171362
\(671\) 0 0
\(672\) 0 0
\(673\) −30.3580 −1.17021 −0.585107 0.810956i \(-0.698947\pi\)
−0.585107 + 0.810956i \(0.698947\pi\)
\(674\) −25.4471 −0.980184
\(675\) 0 0
\(676\) 109.608 4.21568
\(677\) 19.2340 0.739224 0.369612 0.929186i \(-0.379491\pi\)
0.369612 + 0.929186i \(0.379491\pi\)
\(678\) 0 0
\(679\) 48.1416 1.84751
\(680\) 9.54669 0.366099
\(681\) 0 0
\(682\) 0 0
\(683\) 28.8391 1.10350 0.551749 0.834010i \(-0.313961\pi\)
0.551749 + 0.834010i \(0.313961\pi\)
\(684\) 0 0
\(685\) 3.76595 0.143890
\(686\) 35.1124 1.34060
\(687\) 0 0
\(688\) 23.0541 0.878929
\(689\) 52.6912 2.00738
\(690\) 0 0
\(691\) 13.5045 0.513734 0.256867 0.966447i \(-0.417310\pi\)
0.256867 + 0.966447i \(0.417310\pi\)
\(692\) −49.3068 −1.87436
\(693\) 0 0
\(694\) −56.7965 −2.15596
\(695\) 5.12122 0.194259
\(696\) 0 0
\(697\) −58.4150 −2.21262
\(698\) 70.3216 2.66171
\(699\) 0 0
\(700\) 59.8624 2.26259
\(701\) −33.5687 −1.26787 −0.633936 0.773386i \(-0.718562\pi\)
−0.633936 + 0.773386i \(0.718562\pi\)
\(702\) 0 0
\(703\) 6.98229 0.263342
\(704\) 0 0
\(705\) 0 0
\(706\) −4.69124 −0.176557
\(707\) −7.53657 −0.283442
\(708\) 0 0
\(709\) 34.6667 1.30194 0.650968 0.759105i \(-0.274363\pi\)
0.650968 + 0.759105i \(0.274363\pi\)
\(710\) 3.94592 0.148088
\(711\) 0 0
\(712\) −10.3815 −0.389064
\(713\) 64.5126 2.41602
\(714\) 0 0
\(715\) 0 0
\(716\) 72.0128 2.69125
\(717\) 0 0
\(718\) −42.4327 −1.58357
\(719\) 44.2675 1.65090 0.825450 0.564476i \(-0.190922\pi\)
0.825450 + 0.564476i \(0.190922\pi\)
\(720\) 0 0
\(721\) −29.4868 −1.09814
\(722\) −24.6050 −0.915705
\(723\) 0 0
\(724\) −84.6136 −3.14464
\(725\) −19.8623 −0.737666
\(726\) 0 0
\(727\) −41.0157 −1.52119 −0.760595 0.649227i \(-0.775093\pi\)
−0.760595 + 0.649227i \(0.775093\pi\)
\(728\) 97.6677 3.61980
\(729\) 0 0
\(730\) −6.78074 −0.250966
\(731\) −24.7601 −0.915786
\(732\) 0 0
\(733\) −21.6126 −0.798281 −0.399140 0.916890i \(-0.630691\pi\)
−0.399140 + 0.916890i \(0.630691\pi\)
\(734\) −14.9928 −0.553394
\(735\) 0 0
\(736\) −4.12588 −0.152082
\(737\) 0 0
\(738\) 0 0
\(739\) −27.2920 −1.00395 −0.501976 0.864881i \(-0.667394\pi\)
−0.501976 + 0.864881i \(0.667394\pi\)
\(740\) −3.83482 −0.140971
\(741\) 0 0
\(742\) 62.5772 2.29728
\(743\) −12.5031 −0.458695 −0.229347 0.973345i \(-0.573659\pi\)
−0.229347 + 0.973345i \(0.573659\pi\)
\(744\) 0 0
\(745\) 3.83775 0.140604
\(746\) 19.9938 0.732024
\(747\) 0 0
\(748\) 0 0
\(749\) 49.6912 1.81568
\(750\) 0 0
\(751\) 6.37859 0.232758 0.116379 0.993205i \(-0.462871\pi\)
0.116379 + 0.993205i \(0.462871\pi\)
\(752\) 11.8306 0.431416
\(753\) 0 0
\(754\) −63.9587 −2.32924
\(755\) 0.251365 0.00914812
\(756\) 0 0
\(757\) 10.2311 0.371856 0.185928 0.982563i \(-0.440471\pi\)
0.185928 + 0.982563i \(0.440471\pi\)
\(758\) 1.69843 0.0616899
\(759\) 0 0
\(760\) −6.16225 −0.223528
\(761\) −47.9401 −1.73783 −0.868913 0.494965i \(-0.835181\pi\)
−0.868913 + 0.494965i \(0.835181\pi\)
\(762\) 0 0
\(763\) 5.10817 0.184928
\(764\) −88.5786 −3.20466
\(765\) 0 0
\(766\) −28.9253 −1.04511
\(767\) −37.3072 −1.34708
\(768\) 0 0
\(769\) −14.5831 −0.525879 −0.262939 0.964812i \(-0.584692\pi\)
−0.262939 + 0.964812i \(0.584692\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −24.0934 −0.867140
\(773\) 7.81711 0.281162 0.140581 0.990069i \(-0.455103\pi\)
0.140581 + 0.990069i \(0.455103\pi\)
\(774\) 0 0
\(775\) 40.7846 1.46503
\(776\) −79.6677 −2.85990
\(777\) 0 0
\(778\) −51.7601 −1.85569
\(779\) 37.7060 1.35096
\(780\) 0 0
\(781\) 0 0
\(782\) 87.4556 3.12741
\(783\) 0 0
\(784\) 10.0718 0.359707
\(785\) −5.48249 −0.195678
\(786\) 0 0
\(787\) 31.2527 1.11404 0.557019 0.830499i \(-0.311945\pi\)
0.557019 + 0.830499i \(0.311945\pi\)
\(788\) 75.2790 2.68170
\(789\) 0 0
\(790\) −5.50739 −0.195944
\(791\) 42.5379 1.51247
\(792\) 0 0
\(793\) −50.9617 −1.80970
\(794\) −31.0478 −1.10185
\(795\) 0 0
\(796\) 18.4208 0.652908
\(797\) 3.87839 0.137380 0.0686899 0.997638i \(-0.478118\pi\)
0.0686899 + 0.997638i \(0.478118\pi\)
\(798\) 0 0
\(799\) −12.7060 −0.449507
\(800\) −2.60836 −0.0922196
\(801\) 0 0
\(802\) −30.2704 −1.06889
\(803\) 0 0
\(804\) 0 0
\(805\) −9.49261 −0.334570
\(806\) 131.331 4.62594
\(807\) 0 0
\(808\) 12.4720 0.438763
\(809\) 23.8377 0.838091 0.419045 0.907965i \(-0.362365\pi\)
0.419045 + 0.907965i \(0.362365\pi\)
\(810\) 0 0
\(811\) −15.5261 −0.545194 −0.272597 0.962128i \(-0.587883\pi\)
−0.272597 + 0.962128i \(0.587883\pi\)
\(812\) −50.8653 −1.78502
\(813\) 0 0
\(814\) 0 0
\(815\) −1.13015 −0.0395874
\(816\) 0 0
\(817\) 15.9823 0.559150
\(818\) 26.6156 0.930591
\(819\) 0 0
\(820\) −20.7089 −0.723188
\(821\) 16.2560 0.567339 0.283670 0.958922i \(-0.408448\pi\)
0.283670 + 0.958922i \(0.408448\pi\)
\(822\) 0 0
\(823\) 42.6126 1.48538 0.742692 0.669634i \(-0.233549\pi\)
0.742692 + 0.669634i \(0.233549\pi\)
\(824\) 48.7965 1.69991
\(825\) 0 0
\(826\) −44.3068 −1.54163
\(827\) −2.75544 −0.0958161 −0.0479081 0.998852i \(-0.515255\pi\)
−0.0479081 + 0.998852i \(0.515255\pi\)
\(828\) 0 0
\(829\) 2.14454 0.0744831 0.0372415 0.999306i \(-0.488143\pi\)
0.0372415 + 0.999306i \(0.488143\pi\)
\(830\) −10.5438 −0.365980
\(831\) 0 0
\(832\) 46.3638 1.60738
\(833\) −10.8171 −0.374791
\(834\) 0 0
\(835\) 4.33036 0.149858
\(836\) 0 0
\(837\) 0 0
\(838\) −40.6883 −1.40555
\(839\) −45.2934 −1.56370 −0.781850 0.623466i \(-0.785724\pi\)
−0.781850 + 0.623466i \(0.785724\pi\)
\(840\) 0 0
\(841\) −12.1230 −0.418033
\(842\) 85.1282 2.93371
\(843\) 0 0
\(844\) −2.06887 −0.0712134
\(845\) −10.9881 −0.378004
\(846\) 0 0
\(847\) 0 0
\(848\) −36.0364 −1.23749
\(849\) 0 0
\(850\) 55.2891 1.89640
\(851\) −17.7994 −0.610156
\(852\) 0 0
\(853\) 3.30584 0.113190 0.0565949 0.998397i \(-0.481976\pi\)
0.0565949 + 0.998397i \(0.481976\pi\)
\(854\) −60.5231 −2.07106
\(855\) 0 0
\(856\) −82.2321 −2.81063
\(857\) −27.8784 −0.952308 −0.476154 0.879362i \(-0.657969\pi\)
−0.476154 + 0.879362i \(0.657969\pi\)
\(858\) 0 0
\(859\) −20.3934 −0.695813 −0.347906 0.937529i \(-0.613107\pi\)
−0.347906 + 0.937529i \(0.613107\pi\)
\(860\) −8.77781 −0.299321
\(861\) 0 0
\(862\) −46.1593 −1.57219
\(863\) 40.2920 1.37156 0.685778 0.727811i \(-0.259462\pi\)
0.685778 + 0.727811i \(0.259462\pi\)
\(864\) 0 0
\(865\) 4.94299 0.168067
\(866\) 68.7103 2.33487
\(867\) 0 0
\(868\) 104.445 3.54511
\(869\) 0 0
\(870\) 0 0
\(871\) 28.0659 0.950978
\(872\) −8.45331 −0.286265
\(873\) 0 0
\(874\) −56.4513 −1.90950
\(875\) −12.2074 −0.412686
\(876\) 0 0
\(877\) −19.5654 −0.660675 −0.330338 0.943863i \(-0.607163\pi\)
−0.330338 + 0.943863i \(0.607163\pi\)
\(878\) −45.0947 −1.52187
\(879\) 0 0
\(880\) 0 0
\(881\) −37.8679 −1.27580 −0.637901 0.770119i \(-0.720197\pi\)
−0.637901 + 0.770119i \(0.720197\pi\)
\(882\) 0 0
\(883\) 17.1082 0.575736 0.287868 0.957670i \(-0.407054\pi\)
0.287868 + 0.957670i \(0.407054\pi\)
\(884\) 119.222 4.00986
\(885\) 0 0
\(886\) 39.0335 1.31135
\(887\) −33.2354 −1.11594 −0.557968 0.829863i \(-0.688419\pi\)
−0.557968 + 0.829863i \(0.688419\pi\)
\(888\) 0 0
\(889\) 4.43852 0.148863
\(890\) 2.05408 0.0688531
\(891\) 0 0
\(892\) −7.00000 −0.234377
\(893\) 8.20155 0.274455
\(894\) 0 0
\(895\) −7.21926 −0.241313
\(896\) 58.3580 1.94960
\(897\) 0 0
\(898\) −82.3766 −2.74894
\(899\) −34.6549 −1.15580
\(900\) 0 0
\(901\) 38.7031 1.28939
\(902\) 0 0
\(903\) 0 0
\(904\) −70.3943 −2.34128
\(905\) 8.48249 0.281967
\(906\) 0 0
\(907\) 47.5624 1.57928 0.789642 0.613567i \(-0.210266\pi\)
0.789642 + 0.613567i \(0.210266\pi\)
\(908\) 46.5801 1.54582
\(909\) 0 0
\(910\) −19.3245 −0.640601
\(911\) 25.2556 0.836757 0.418378 0.908273i \(-0.362599\pi\)
0.418378 + 0.908273i \(0.362599\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −16.4543 −0.544259
\(915\) 0 0
\(916\) 19.3815 0.640383
\(917\) 2.16518 0.0715005
\(918\) 0 0
\(919\) −7.69416 −0.253807 −0.126903 0.991915i \(-0.540504\pi\)
−0.126903 + 0.991915i \(0.540504\pi\)
\(920\) 15.7089 0.517909
\(921\) 0 0
\(922\) −53.7247 −1.76933
\(923\) 24.9675 0.821816
\(924\) 0 0
\(925\) −11.2527 −0.369987
\(926\) −45.6270 −1.49940
\(927\) 0 0
\(928\) 2.21634 0.0727548
\(929\) −39.7817 −1.30520 −0.652598 0.757705i \(-0.726321\pi\)
−0.652598 + 0.757705i \(0.726321\pi\)
\(930\) 0 0
\(931\) 6.98229 0.228835
\(932\) −80.7906 −2.64639
\(933\) 0 0
\(934\) 45.0512 1.47412
\(935\) 0 0
\(936\) 0 0
\(937\) −4.43852 −0.145000 −0.0725001 0.997368i \(-0.523098\pi\)
−0.0725001 + 0.997368i \(0.523098\pi\)
\(938\) 33.3317 1.08832
\(939\) 0 0
\(940\) −4.50447 −0.146920
\(941\) 2.09046 0.0681470 0.0340735 0.999419i \(-0.489152\pi\)
0.0340735 + 0.999419i \(0.489152\pi\)
\(942\) 0 0
\(943\) −96.1210 −3.13013
\(944\) 25.5150 0.830442
\(945\) 0 0
\(946\) 0 0
\(947\) 22.3432 0.726056 0.363028 0.931778i \(-0.381743\pi\)
0.363028 + 0.931778i \(0.381743\pi\)
\(948\) 0 0
\(949\) −42.9046 −1.39274
\(950\) −35.6883 −1.15788
\(951\) 0 0
\(952\) 71.7395 2.32509
\(953\) 42.9679 1.39187 0.695933 0.718106i \(-0.254991\pi\)
0.695933 + 0.718106i \(0.254991\pi\)
\(954\) 0 0
\(955\) 8.87997 0.287349
\(956\) −102.899 −3.32798
\(957\) 0 0
\(958\) −21.7994 −0.704307
\(959\) 28.2996 0.913842
\(960\) 0 0
\(961\) 40.1593 1.29546
\(962\) −36.2350 −1.16826
\(963\) 0 0
\(964\) 70.2350 2.26212
\(965\) 2.41535 0.0777530
\(966\) 0 0
\(967\) 51.8683 1.66797 0.833986 0.551786i \(-0.186054\pi\)
0.833986 + 0.551786i \(0.186054\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 15.7630 0.506120
\(971\) −41.8138 −1.34187 −0.670934 0.741517i \(-0.734107\pi\)
−0.670934 + 0.741517i \(0.734107\pi\)
\(972\) 0 0
\(973\) 38.4838 1.23374
\(974\) −49.0770 −1.57253
\(975\) 0 0
\(976\) 34.8535 1.11563
\(977\) −27.9459 −0.894069 −0.447035 0.894517i \(-0.647520\pi\)
−0.447035 + 0.894517i \(0.647520\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −3.83482 −0.122499
\(981\) 0 0
\(982\) 86.0315 2.74537
\(983\) 26.1416 0.833788 0.416894 0.908955i \(-0.363119\pi\)
0.416894 + 0.908955i \(0.363119\pi\)
\(984\) 0 0
\(985\) −7.54669 −0.240458
\(986\) −46.9794 −1.49613
\(987\) 0 0
\(988\) −76.9558 −2.44829
\(989\) −40.7424 −1.29553
\(990\) 0 0
\(991\) 52.4720 1.66683 0.833414 0.552650i \(-0.186383\pi\)
0.833414 + 0.552650i \(0.186383\pi\)
\(992\) −4.55096 −0.144493
\(993\) 0 0
\(994\) 29.6519 0.940502
\(995\) −1.84668 −0.0585437
\(996\) 0 0
\(997\) 21.4749 0.680117 0.340058 0.940404i \(-0.389553\pi\)
0.340058 + 0.940404i \(0.389553\pi\)
\(998\) 30.5907 0.968330
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3267.2.a.u.1.3 yes 3
3.2 odd 2 3267.2.a.s.1.1 yes 3
11.10 odd 2 3267.2.a.r.1.1 3
33.32 even 2 3267.2.a.v.1.3 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3267.2.a.r.1.1 3 11.10 odd 2
3267.2.a.s.1.1 yes 3 3.2 odd 2
3267.2.a.u.1.3 yes 3 1.1 even 1 trivial
3267.2.a.v.1.3 yes 3 33.32 even 2