L(s) = 1 | + 4·2-s + 4·4-s − 4·8-s − 3·9-s − 2·13-s − 8·16-s − 12·17-s − 12·18-s + 14·19-s + 19·25-s − 8·26-s − 48·34-s − 12·36-s + 56·38-s + 2·43-s + 28·47-s − 3·49-s + 76·50-s − 8·52-s − 12·53-s + 28·59-s − 4·64-s − 24·67-s − 48·68-s + 12·72-s + 56·76-s + 6·81-s + ⋯ |
L(s) = 1 | + 2.82·2-s + 2·4-s − 1.41·8-s − 9-s − 0.554·13-s − 2·16-s − 2.91·17-s − 2.82·18-s + 3.21·19-s + 19/5·25-s − 1.56·26-s − 8.23·34-s − 2·36-s + 9.08·38-s + 0.304·43-s + 4.08·47-s − 3/7·49-s + 10.7·50-s − 1.10·52-s − 1.64·53-s + 3.64·59-s − 1/2·64-s − 2.93·67-s − 5.82·68-s + 1.41·72-s + 6.42·76-s + 2/3·81-s + ⋯ |
Λ(s)=(=((36⋅76⋅176)s/2ΓC(s)6L(s)Λ(2−s)
Λ(s)=(=((36⋅76⋅176)s/2ΓC(s+1/2)6L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
7.890451661 |
L(21) |
≈ |
7.890451661 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | (1+T2)3 |
| 7 | (1+T2)3 |
| 17 | 1+12T+83T2+392T3+83pT4+12p2T5+p3T6 |
good | 2 | (1−pT+p2T2−3pT3+p3T4−p3T5+p3T6)2 |
| 5 | 1−19T2+162T4−919T6+162p2T8−19p4T10+p6T12 |
| 11 | 1−47T2+1038T4−14099T6+1038p2T8−47p4T10+p6T12 |
| 13 | (1+T+2pT2+3T3+2p2T4+p2T5+p3T6)2 |
| 19 | (1−7T+70T2−271T3+70pT4−7p2T5+p3T6)2 |
| 23 | 1−71T2+2478T4−63203T6+2478p2T8−71p4T10+p6T12 |
| 29 | 1−162T2+11255T4−429068T6+11255p2T8−162p4T10+p6T12 |
| 31 | 1−158T2+11047T4−440720T6+11047p2T8−158p4T10+p6T12 |
| 37 | 1−154T2+10891T4−484912T6+10891p2T8−154p4T10+p6T12 |
| 41 | 1−223T2+21542T4−1154535T6+21542p2T8−223p4T10+p6T12 |
| 43 | (1−T+76T2−217T3+76pT4−p2T5+p3T6)2 |
| 47 | (1−14T+145T2−1014T3+145pT4−14p2T5+p3T6)2 |
| 53 | (1+6T+137T2+514T3+137pT4+6p2T5+p3T6)2 |
| 59 | (1−14T+193T2−1422T3+193pT4−14p2T5+p3T6)2 |
| 61 | 1−82T2+1775T4−60168T6+1775p2T8−82p4T10+p6T12 |
| 67 | (1+12T+89T2+604T3+89pT4+12p2T5+p3T6)2 |
| 71 | 1−98T2+11727T4−845420T6+11727p2T8−98p4T10+p6T12 |
| 73 | 1−138T2+18303T4−1472524T6+18303p2T8−138p4T10+p6T12 |
| 79 | 1+46T2+715T4−199424T6+715p2T8+46p4T10+p6T12 |
| 83 | (1−16T+273T2−2640T3+273pT4−16p2T5+p3T6)2 |
| 89 | (1+8T+203T2+1504T3+203pT4+8p2T5+p3T6)2 |
| 97 | 1−250T2+43535T4−4887660T6+43535p2T8−250p4T10+p6T12 |
show more | |
show less | |
L(s)=p∏ j=1∏12(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−5.94198037855641249373282410753, −5.84528103235900689940143389184, −5.65372129823184107658826654602, −5.60295335655990068079615962212, −5.41503879342149395752606968810, −5.22607051775167748358954933808, −5.09582969945548044977539813874, −4.75441413740991324765730204411, −4.62507215911845802263415741882, −4.53311752144200065891665574188, −4.46744778039192477458673128981, −4.36768887542244328533530474927, −4.26399080512577102550800242519, −3.58215024939891053160806191324, −3.51853465519705374927020909830, −3.43226185131747918955277691799, −3.22529083826253773089832408657, −3.13843481398489898228176580190, −2.60927948028672519806040595415, −2.46596390334713804129975898683, −2.28261966680719741529164725766, −2.04241830571489699337641536563, −1.30623489778382231548444434294, −0.879783169499310090275501419239, −0.65330085683607734884152749976,
0.65330085683607734884152749976, 0.879783169499310090275501419239, 1.30623489778382231548444434294, 2.04241830571489699337641536563, 2.28261966680719741529164725766, 2.46596390334713804129975898683, 2.60927948028672519806040595415, 3.13843481398489898228176580190, 3.22529083826253773089832408657, 3.43226185131747918955277691799, 3.51853465519705374927020909830, 3.58215024939891053160806191324, 4.26399080512577102550800242519, 4.36768887542244328533530474927, 4.46744778039192477458673128981, 4.53311752144200065891665574188, 4.62507215911845802263415741882, 4.75441413740991324765730204411, 5.09582969945548044977539813874, 5.22607051775167748358954933808, 5.41503879342149395752606968810, 5.60295335655990068079615962212, 5.65372129823184107658826654602, 5.84528103235900689940143389184, 5.94198037855641249373282410753
Plot not available for L-functions of degree greater than 10.