Properties

Label 357.2.f.a
Level $357$
Weight $2$
Character orbit 357.f
Analytic conductor $2.851$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [357,2,Mod(169,357)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(357, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("357.169");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 357 = 3 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 357.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.85065935216\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} + 1) q^{2} + \beta_{3} q^{3} + (\beta_{2} + \beta_1 + 1) q^{4} + ( - \beta_{5} - \beta_{3}) q^{5} + ( - \beta_{4} + \beta_{3}) q^{6} - \beta_{3} q^{7} + (2 \beta_1 + 2) q^{8} - q^{9} - \beta_{5} q^{10}+ \cdots + (\beta_{5} - \beta_{4} + 2 \beta_{3}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 4 q^{2} + 4 q^{4} + 12 q^{8} - 6 q^{9} - 2 q^{13} + 6 q^{15} + 8 q^{16} - 12 q^{17} - 4 q^{18} + 14 q^{19} + 6 q^{21} + 8 q^{25} - 24 q^{26} + 8 q^{32} + 10 q^{33} - 12 q^{34} - 6 q^{35} - 4 q^{36}+ \cdots - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{5} + 8\nu^{4} - 4\nu^{3} - \nu^{2} + 2\nu + 38 ) / 23 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -5\nu^{5} + 17\nu^{4} - 20\nu^{3} - 5\nu^{2} + 10\nu + 29 ) / 23 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 7\nu^{5} - 10\nu^{4} + 5\nu^{3} + 30\nu^{2} + 32\nu - 13 ) / 23 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -11\nu^{5} + 19\nu^{4} - 21\nu^{3} - 11\nu^{2} - 70\nu + 27 ) / 23 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -14\nu^{5} + 20\nu^{4} - 10\nu^{3} - 37\nu^{2} - 64\nu + 26 ) / 23 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{5} - \beta_{4} + \beta_{3} + \beta_{2} - \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} + 2\beta_{3} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{5} - \beta_{4} + 2\beta_{3} - \beta_{2} + 2\beta _1 - 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -\beta_{2} + 5\beta _1 - 7 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -8\beta_{5} + 3\beta_{4} - 9\beta_{3} - 3\beta_{2} + 8\beta _1 - 9 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/357\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(190\) \(239\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
169.1
−0.854638 + 0.854638i
−0.854638 0.854638i
1.45161 1.45161i
1.45161 + 1.45161i
0.403032 0.403032i
0.403032 + 0.403032i
−1.17009 1.00000i −0.630898 0.460811i 1.17009i 1.00000i 3.07838 −1.00000 0.539189i
169.2 −1.17009 1.00000i −0.630898 0.460811i 1.17009i 1.00000i 3.07838 −1.00000 0.539189i
169.3 0.688892 1.00000i −1.52543 3.21432i 0.688892i 1.00000i −2.42864 −1.00000 2.21432i
169.4 0.688892 1.00000i −1.52543 3.21432i 0.688892i 1.00000i −2.42864 −1.00000 2.21432i
169.5 2.48119 1.00000i 4.15633 0.675131i 2.48119i 1.00000i 5.35026 −1.00000 1.67513i
169.6 2.48119 1.00000i 4.15633 0.675131i 2.48119i 1.00000i 5.35026 −1.00000 1.67513i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 169.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 357.2.f.a 6
3.b odd 2 1 1071.2.f.a 6
17.b even 2 1 inner 357.2.f.a 6
17.c even 4 1 6069.2.a.k 3
17.c even 4 1 6069.2.a.m 3
51.c odd 2 1 1071.2.f.a 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
357.2.f.a 6 1.a even 1 1 trivial
357.2.f.a 6 17.b even 2 1 inner
1071.2.f.a 6 3.b odd 2 1
1071.2.f.a 6 51.c odd 2 1
6069.2.a.k 3 17.c even 4 1
6069.2.a.m 3 17.c even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{3} - 2T_{2}^{2} - 2T_{2} + 2 \) acting on \(S_{2}^{\mathrm{new}}(357, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{3} - 2 T^{2} - 2 T + 2)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} + 1)^{3} \) Copy content Toggle raw display
$5$ \( T^{6} + 11 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( (T^{2} + 1)^{3} \) Copy content Toggle raw display
$11$ \( T^{6} + 19 T^{4} + \cdots + 25 \) Copy content Toggle raw display
$13$ \( (T^{3} + T^{2} - 13 T - 23)^{2} \) Copy content Toggle raw display
$17$ \( T^{6} + 12 T^{5} + \cdots + 4913 \) Copy content Toggle raw display
$19$ \( (T^{3} - 7 T^{2} + 13 T - 5)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + 67 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$29$ \( T^{6} + 12 T^{4} + \cdots + 16 \) Copy content Toggle raw display
$31$ \( T^{6} + 28 T^{4} + \cdots + 100 \) Copy content Toggle raw display
$37$ \( T^{6} + 68 T^{4} + \cdots + 676 \) Copy content Toggle raw display
$41$ \( T^{6} + 23 T^{4} + \cdots + 25 \) Copy content Toggle raw display
$43$ \( (T^{3} - T^{2} - 53 T - 131)^{2} \) Copy content Toggle raw display
$47$ \( (T^{3} - 14 T^{2} + \cdots + 302)^{2} \) Copy content Toggle raw display
$53$ \( (T^{3} + 6 T^{2} + \cdots - 122)^{2} \) Copy content Toggle raw display
$59$ \( (T^{3} - 14 T^{2} + \cdots + 230)^{2} \) Copy content Toggle raw display
$61$ \( T^{6} + 284 T^{4} + \cdots + 100 \) Copy content Toggle raw display
$67$ \( (T^{3} + 12 T^{2} + \cdots - 1004)^{2} \) Copy content Toggle raw display
$71$ \( T^{6} + 328 T^{4} + \cdots + 547600 \) Copy content Toggle raw display
$73$ \( T^{6} + 300 T^{4} + \cdots + 506944 \) Copy content Toggle raw display
$79$ \( T^{6} + 520 T^{4} + \cdots + 1473796 \) Copy content Toggle raw display
$83$ \( (T^{3} - 16 T^{2} + \cdots + 16)^{2} \) Copy content Toggle raw display
$89$ \( (T^{3} + 8 T^{2} - 64 T + 80)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} + 332 T^{4} + \cdots + 678976 \) Copy content Toggle raw display
show more
show less