Properties

Label 6069.2.a.m
Level $6069$
Weight $2$
Character orbit 6069.a
Self dual yes
Analytic conductor $48.461$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6069,2,Mod(1,6069)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6069, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6069.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6069 = 3 \cdot 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6069.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.4612089867\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 357)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 1) q^{2} + q^{3} + (\beta_{2} - \beta_1 + 1) q^{4} + (\beta_{2} - 1) q^{5} + (\beta_1 - 1) q^{6} + q^{7} + ( - 2 \beta_{2} - 2) q^{8} + q^{9} - \beta_{2} q^{10} + ( - \beta_{2} - \beta_1 + 2) q^{11}+ \cdots + ( - \beta_{2} - \beta_1 + 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 2 q^{2} + 3 q^{3} + 2 q^{4} - 3 q^{5} - 2 q^{6} + 3 q^{7} - 6 q^{8} + 3 q^{9} + 5 q^{11} + 2 q^{12} - q^{13} - 2 q^{14} - 3 q^{15} + 4 q^{16} - 2 q^{18} - 7 q^{19} + 8 q^{20} + 3 q^{21} - 8 q^{22}+ \cdots + 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 3x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.48119
0.311108
2.17009
−2.48119 1.00000 4.15633 0.675131 −2.48119 1.00000 −5.35026 1.00000 −1.67513
1.2 −0.688892 1.00000 −1.52543 −3.21432 −0.688892 1.00000 2.42864 1.00000 2.21432
1.3 1.17009 1.00000 −0.630898 −0.460811 1.17009 1.00000 −3.07838 1.00000 −0.539189
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(7\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6069.2.a.m 3
17.b even 2 1 6069.2.a.k 3
17.c even 4 2 357.2.f.a 6
51.f odd 4 2 1071.2.f.a 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
357.2.f.a 6 17.c even 4 2
1071.2.f.a 6 51.f odd 4 2
6069.2.a.k 3 17.b even 2 1
6069.2.a.m 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6069))\):

\( T_{2}^{3} + 2T_{2}^{2} - 2T_{2} - 2 \) Copy content Toggle raw display
\( T_{5}^{3} + 3T_{5}^{2} - T_{5} - 1 \) Copy content Toggle raw display
\( T_{11}^{3} - 5T_{11}^{2} + 3T_{11} + 5 \) Copy content Toggle raw display
\( T_{23}^{3} + 11T_{23}^{2} + 27T_{23} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} + 2 T^{2} + \cdots - 2 \) Copy content Toggle raw display
$3$ \( (T - 1)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} + 3T^{2} - T - 1 \) Copy content Toggle raw display
$7$ \( (T - 1)^{3} \) Copy content Toggle raw display
$11$ \( T^{3} - 5 T^{2} + \cdots + 5 \) Copy content Toggle raw display
$13$ \( T^{3} + T^{2} + \cdots - 23 \) Copy content Toggle raw display
$17$ \( T^{3} \) Copy content Toggle raw display
$19$ \( T^{3} + 7 T^{2} + \cdots + 5 \) Copy content Toggle raw display
$23$ \( T^{3} + 11 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$29$ \( T^{3} + 2 T^{2} + \cdots - 4 \) Copy content Toggle raw display
$31$ \( T^{3} - 2 T^{2} + \cdots - 10 \) Copy content Toggle raw display
$37$ \( T^{3} + 8 T^{2} + \cdots - 26 \) Copy content Toggle raw display
$41$ \( T^{3} + 7 T^{2} + \cdots + 5 \) Copy content Toggle raw display
$43$ \( T^{3} + T^{2} + \cdots + 131 \) Copy content Toggle raw display
$47$ \( T^{3} - 14 T^{2} + \cdots + 302 \) Copy content Toggle raw display
$53$ \( T^{3} - 6 T^{2} + \cdots + 122 \) Copy content Toggle raw display
$59$ \( T^{3} + 14 T^{2} + \cdots - 230 \) Copy content Toggle raw display
$61$ \( T^{3} + 6 T^{2} + \cdots + 10 \) Copy content Toggle raw display
$67$ \( T^{3} + 12 T^{2} + \cdots - 1004 \) Copy content Toggle raw display
$71$ \( T^{3} - 8 T^{2} + \cdots + 740 \) Copy content Toggle raw display
$73$ \( T^{3} + 6 T^{2} + \cdots - 712 \) Copy content Toggle raw display
$79$ \( T^{3} + 2 T^{2} + \cdots - 1214 \) Copy content Toggle raw display
$83$ \( T^{3} + 16 T^{2} + \cdots - 16 \) Copy content Toggle raw display
$89$ \( T^{3} + 8 T^{2} + \cdots + 80 \) Copy content Toggle raw display
$97$ \( T^{3} + 30 T^{2} + \cdots + 824 \) Copy content Toggle raw display
show more
show less