Properties

Label 357.2.f.a.169.5
Level $357$
Weight $2$
Character 357.169
Analytic conductor $2.851$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [357,2,Mod(169,357)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(357, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("357.169");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 357 = 3 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 357.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.85065935216\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 169.5
Root \(0.403032 - 0.403032i\) of defining polynomial
Character \(\chi\) \(=\) 357.169
Dual form 357.2.f.a.169.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.48119 q^{2} -1.00000i q^{3} +4.15633 q^{4} -0.675131i q^{5} -2.48119i q^{6} +1.00000i q^{7} +5.35026 q^{8} -1.00000 q^{9} -1.67513i q^{10} +1.80606i q^{11} -4.15633i q^{12} -2.28726 q^{13} +2.48119i q^{14} -0.675131 q^{15} +4.96239 q^{16} +(-3.67513 - 1.86907i) q^{17} -2.48119 q^{18} +0.518806 q^{19} -2.80606i q^{20} +1.00000 q^{21} +4.48119i q^{22} -0.0376114i q^{23} -5.35026i q^{24} +4.54420 q^{25} -5.67513 q^{26} +1.00000i q^{27} +4.15633i q^{28} +0.806063i q^{29} -1.67513 q^{30} +1.28726i q^{31} +1.61213 q^{32} +1.80606 q^{33} +(-9.11871 - 4.63752i) q^{34} +0.675131 q^{35} -4.15633 q^{36} +7.83146i q^{37} +1.28726 q^{38} +2.28726i q^{39} -3.61213i q^{40} -0.518806i q^{41} +2.48119 q^{42} -3.57452 q^{43} +7.50659i q^{44} +0.675131i q^{45} -0.0933212i q^{46} -3.98778 q^{47} -4.96239i q^{48} -1.00000 q^{49} +11.2750 q^{50} +(-1.86907 + 3.67513i) q^{51} -9.50659 q^{52} -4.09332 q^{53} +2.48119i q^{54} +1.21933 q^{55} +5.35026i q^{56} -0.518806i q^{57} +2.00000i q^{58} +10.2496 q^{59} -2.80606 q^{60} -14.5623i q^{61} +3.19394i q^{62} -1.00000i q^{63} -5.92478 q^{64} +1.54420i q^{65} +4.48119 q^{66} +9.81924 q^{67} +(-15.2750 - 7.76845i) q^{68} -0.0376114 q^{69} +1.67513 q^{70} -13.6932i q^{71} -5.35026 q^{72} +12.0508i q^{73} +19.4314i q^{74} -4.54420i q^{75} +2.15633 q^{76} -1.80606 q^{77} +5.67513i q^{78} -4.99508i q^{79} -3.35026i q^{80} +1.00000 q^{81} -1.28726i q^{82} +2.26187 q^{83} +4.15633 q^{84} +(-1.26187 + 2.48119i) q^{85} -8.86907 q^{86} +0.806063 q^{87} +9.66291i q^{88} -13.2750 q^{89} +1.67513i q^{90} -2.28726i q^{91} -0.156325i q^{92} +1.28726 q^{93} -9.89446 q^{94} -0.350262i q^{95} -1.61213i q^{96} +13.3503i q^{97} -2.48119 q^{98} -1.80606i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 4 q^{2} + 4 q^{4} + 12 q^{8} - 6 q^{9} - 2 q^{13} + 6 q^{15} + 8 q^{16} - 12 q^{17} - 4 q^{18} + 14 q^{19} + 6 q^{21} + 8 q^{25} - 24 q^{26} + 8 q^{32} + 10 q^{33} - 12 q^{34} - 6 q^{35} - 4 q^{36}+ \cdots - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/357\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(190\) \(239\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.48119 1.75447 0.877235 0.480062i \(-0.159386\pi\)
0.877235 + 0.480062i \(0.159386\pi\)
\(3\) 1.00000i 0.577350i
\(4\) 4.15633 2.07816
\(5\) 0.675131i 0.301928i −0.988539 0.150964i \(-0.951762\pi\)
0.988539 0.150964i \(-0.0482377\pi\)
\(6\) 2.48119i 1.01294i
\(7\) 1.00000i 0.377964i
\(8\) 5.35026 1.89160
\(9\) −1.00000 −0.333333
\(10\) 1.67513i 0.529723i
\(11\) 1.80606i 0.544549i 0.962220 + 0.272274i \(0.0877758\pi\)
−0.962220 + 0.272274i \(0.912224\pi\)
\(12\) 4.15633i 1.19983i
\(13\) −2.28726 −0.634371 −0.317186 0.948363i \(-0.602738\pi\)
−0.317186 + 0.948363i \(0.602738\pi\)
\(14\) 2.48119i 0.663127i
\(15\) −0.675131 −0.174318
\(16\) 4.96239 1.24060
\(17\) −3.67513 1.86907i −0.891350 0.453315i
\(18\) −2.48119 −0.584823
\(19\) 0.518806 0.119022 0.0595111 0.998228i \(-0.481046\pi\)
0.0595111 + 0.998228i \(0.481046\pi\)
\(20\) 2.80606i 0.627455i
\(21\) 1.00000 0.218218
\(22\) 4.48119i 0.955394i
\(23\) 0.0376114i 0.00784252i −0.999992 0.00392126i \(-0.998752\pi\)
0.999992 0.00392126i \(-0.00124818\pi\)
\(24\) 5.35026i 1.09212i
\(25\) 4.54420 0.908840
\(26\) −5.67513 −1.11298
\(27\) 1.00000i 0.192450i
\(28\) 4.15633i 0.785472i
\(29\) 0.806063i 0.149682i 0.997195 + 0.0748411i \(0.0238450\pi\)
−0.997195 + 0.0748411i \(0.976155\pi\)
\(30\) −1.67513 −0.305836
\(31\) 1.28726i 0.231198i 0.993296 + 0.115599i \(0.0368788\pi\)
−0.993296 + 0.115599i \(0.963121\pi\)
\(32\) 1.61213 0.284986
\(33\) 1.80606 0.314395
\(34\) −9.11871 4.63752i −1.56385 0.795328i
\(35\) 0.675131 0.114118
\(36\) −4.15633 −0.692721
\(37\) 7.83146i 1.28748i 0.765243 + 0.643742i \(0.222619\pi\)
−0.765243 + 0.643742i \(0.777381\pi\)
\(38\) 1.28726 0.208821
\(39\) 2.28726i 0.366254i
\(40\) 3.61213i 0.571127i
\(41\) 0.518806i 0.0810238i −0.999179 0.0405119i \(-0.987101\pi\)
0.999179 0.0405119i \(-0.0128989\pi\)
\(42\) 2.48119 0.382857
\(43\) −3.57452 −0.545108 −0.272554 0.962140i \(-0.587868\pi\)
−0.272554 + 0.962140i \(0.587868\pi\)
\(44\) 7.50659i 1.13166i
\(45\) 0.675131i 0.100643i
\(46\) 0.0933212i 0.0137595i
\(47\) −3.98778 −0.581678 −0.290839 0.956772i \(-0.593934\pi\)
−0.290839 + 0.956772i \(0.593934\pi\)
\(48\) 4.96239i 0.716259i
\(49\) −1.00000 −0.142857
\(50\) 11.2750 1.59453
\(51\) −1.86907 + 3.67513i −0.261722 + 0.514621i
\(52\) −9.50659 −1.31833
\(53\) −4.09332 −0.562261 −0.281130 0.959670i \(-0.590709\pi\)
−0.281130 + 0.959670i \(0.590709\pi\)
\(54\) 2.48119i 0.337648i
\(55\) 1.21933 0.164414
\(56\) 5.35026i 0.714959i
\(57\) 0.518806i 0.0687175i
\(58\) 2.00000i 0.262613i
\(59\) 10.2496 1.33439 0.667195 0.744883i \(-0.267495\pi\)
0.667195 + 0.744883i \(0.267495\pi\)
\(60\) −2.80606 −0.362261
\(61\) 14.5623i 1.86451i −0.361801 0.932256i \(-0.617838\pi\)
0.361801 0.932256i \(-0.382162\pi\)
\(62\) 3.19394i 0.405630i
\(63\) 1.00000i 0.125988i
\(64\) −5.92478 −0.740597
\(65\) 1.54420i 0.191534i
\(66\) 4.48119 0.551597
\(67\) 9.81924 1.19961 0.599805 0.800146i \(-0.295245\pi\)
0.599805 + 0.800146i \(0.295245\pi\)
\(68\) −15.2750 7.76845i −1.85237 0.942063i
\(69\) −0.0376114 −0.00452788
\(70\) 1.67513 0.200216
\(71\) 13.6932i 1.62509i −0.582900 0.812544i \(-0.698082\pi\)
0.582900 0.812544i \(-0.301918\pi\)
\(72\) −5.35026 −0.630534
\(73\) 12.0508i 1.41044i 0.708990 + 0.705219i \(0.249151\pi\)
−0.708990 + 0.705219i \(0.750849\pi\)
\(74\) 19.4314i 2.25885i
\(75\) 4.54420i 0.524719i
\(76\) 2.15633 0.247347
\(77\) −1.80606 −0.205820
\(78\) 5.67513i 0.642582i
\(79\) 4.99508i 0.561990i −0.959709 0.280995i \(-0.909336\pi\)
0.959709 0.280995i \(-0.0906644\pi\)
\(80\) 3.35026i 0.374571i
\(81\) 1.00000 0.111111
\(82\) 1.28726i 0.142154i
\(83\) 2.26187 0.248272 0.124136 0.992265i \(-0.460384\pi\)
0.124136 + 0.992265i \(0.460384\pi\)
\(84\) 4.15633 0.453492
\(85\) −1.26187 + 2.48119i −0.136868 + 0.269123i
\(86\) −8.86907 −0.956376
\(87\) 0.806063 0.0864191
\(88\) 9.66291i 1.03007i
\(89\) −13.2750 −1.40715 −0.703576 0.710620i \(-0.748414\pi\)
−0.703576 + 0.710620i \(0.748414\pi\)
\(90\) 1.67513i 0.176574i
\(91\) 2.28726i 0.239770i
\(92\) 0.156325i 0.0162980i
\(93\) 1.28726 0.133482
\(94\) −9.89446 −1.02054
\(95\) 0.350262i 0.0359361i
\(96\) 1.61213i 0.164537i
\(97\) 13.3503i 1.35551i 0.735286 + 0.677757i \(0.237048\pi\)
−0.735286 + 0.677757i \(0.762952\pi\)
\(98\) −2.48119 −0.250638
\(99\) 1.80606i 0.181516i
\(100\) 18.8872 1.88872
\(101\) 9.47390 0.942688 0.471344 0.881949i \(-0.343769\pi\)
0.471344 + 0.881949i \(0.343769\pi\)
\(102\) −4.63752 + 9.11871i −0.459183 + 0.902887i
\(103\) 6.47390 0.637892 0.318946 0.947773i \(-0.396671\pi\)
0.318946 + 0.947773i \(0.396671\pi\)
\(104\) −12.2374 −1.19998
\(105\) 0.675131i 0.0658860i
\(106\) −10.1563 −0.986470
\(107\) 17.3634i 1.67859i −0.543679 0.839293i \(-0.682969\pi\)
0.543679 0.839293i \(-0.317031\pi\)
\(108\) 4.15633i 0.399943i
\(109\) 5.56959i 0.533470i 0.963770 + 0.266735i \(0.0859449\pi\)
−0.963770 + 0.266735i \(0.914055\pi\)
\(110\) 3.02539 0.288460
\(111\) 7.83146 0.743329
\(112\) 4.96239i 0.468902i
\(113\) 17.0059i 1.59978i −0.600148 0.799889i \(-0.704891\pi\)
0.600148 0.799889i \(-0.295109\pi\)
\(114\) 1.28726i 0.120563i
\(115\) −0.0253926 −0.00236787
\(116\) 3.35026i 0.311064i
\(117\) 2.28726 0.211457
\(118\) 25.4314 2.34115
\(119\) 1.86907 3.67513i 0.171337 0.336899i
\(120\) −3.61213 −0.329741
\(121\) 7.73813 0.703467
\(122\) 36.1319i 3.27123i
\(123\) −0.518806 −0.0467791
\(124\) 5.35026i 0.480468i
\(125\) 6.44358i 0.576332i
\(126\) 2.48119i 0.221042i
\(127\) 4.45580 0.395388 0.197694 0.980264i \(-0.436655\pi\)
0.197694 + 0.980264i \(0.436655\pi\)
\(128\) −17.9248 −1.58434
\(129\) 3.57452i 0.314719i
\(130\) 3.83146i 0.336041i
\(131\) 14.4133i 1.25929i −0.776882 0.629646i \(-0.783200\pi\)
0.776882 0.629646i \(-0.216800\pi\)
\(132\) 7.50659 0.653365
\(133\) 0.518806i 0.0449862i
\(134\) 24.3634 2.10468
\(135\) 0.675131 0.0581060
\(136\) −19.6629 10.0000i −1.68608 0.857493i
\(137\) 6.79384 0.580437 0.290219 0.956960i \(-0.406272\pi\)
0.290219 + 0.956960i \(0.406272\pi\)
\(138\) −0.0933212 −0.00794403
\(139\) 14.4993i 1.22981i 0.788600 + 0.614907i \(0.210806\pi\)
−0.788600 + 0.614907i \(0.789194\pi\)
\(140\) 2.80606 0.237156
\(141\) 3.98778i 0.335832i
\(142\) 33.9756i 2.85117i
\(143\) 4.13093i 0.345446i
\(144\) −4.96239 −0.413532
\(145\) 0.544198 0.0451932
\(146\) 29.9003i 2.47457i
\(147\) 1.00000i 0.0824786i
\(148\) 32.5501i 2.67560i
\(149\) −21.9003 −1.79415 −0.897073 0.441883i \(-0.854311\pi\)
−0.897073 + 0.441883i \(0.854311\pi\)
\(150\) 11.2750i 0.920603i
\(151\) 18.8061 1.53042 0.765208 0.643783i \(-0.222636\pi\)
0.765208 + 0.643783i \(0.222636\pi\)
\(152\) 2.77575 0.225143
\(153\) 3.67513 + 1.86907i 0.297117 + 0.151105i
\(154\) −4.48119 −0.361105
\(155\) 0.869067 0.0698052
\(156\) 9.50659i 0.761136i
\(157\) 0.756233 0.0603540 0.0301770 0.999545i \(-0.490393\pi\)
0.0301770 + 0.999545i \(0.490393\pi\)
\(158\) 12.3938i 0.985994i
\(159\) 4.09332i 0.324621i
\(160\) 1.08840i 0.0860453i
\(161\) 0.0376114 0.00296419
\(162\) 2.48119 0.194941
\(163\) 9.01317i 0.705966i −0.935630 0.352983i \(-0.885167\pi\)
0.935630 0.352983i \(-0.114833\pi\)
\(164\) 2.15633i 0.168381i
\(165\) 1.21933i 0.0949246i
\(166\) 5.61213 0.435586
\(167\) 17.1441i 1.32665i 0.748331 + 0.663325i \(0.230855\pi\)
−0.748331 + 0.663325i \(0.769145\pi\)
\(168\) 5.35026 0.412782
\(169\) −7.76845 −0.597573
\(170\) −3.13093 + 6.15633i −0.240132 + 0.472169i
\(171\) −0.518806 −0.0396741
\(172\) −14.8568 −1.13282
\(173\) 0.488489i 0.0371391i −0.999828 0.0185695i \(-0.994089\pi\)
0.999828 0.0185695i \(-0.00591121\pi\)
\(174\) 2.00000 0.151620
\(175\) 4.54420i 0.343509i
\(176\) 8.96239i 0.675565i
\(177\) 10.2496i 0.770411i
\(178\) −32.9380 −2.46880
\(179\) −3.41090 −0.254942 −0.127471 0.991842i \(-0.540686\pi\)
−0.127471 + 0.991842i \(0.540686\pi\)
\(180\) 2.80606i 0.209152i
\(181\) 5.14903i 0.382724i 0.981519 + 0.191362i \(0.0612905\pi\)
−0.981519 + 0.191362i \(0.938709\pi\)
\(182\) 5.67513i 0.420669i
\(183\) −14.5623 −1.07648
\(184\) 0.201231i 0.0148349i
\(185\) 5.28726 0.388727
\(186\) 3.19394 0.234191
\(187\) 3.37565 6.63752i 0.246852 0.485383i
\(188\) −16.5745 −1.20882
\(189\) −1.00000 −0.0727393
\(190\) 0.869067i 0.0630488i
\(191\) −0.775746 −0.0561310 −0.0280655 0.999606i \(-0.508935\pi\)
−0.0280655 + 0.999606i \(0.508935\pi\)
\(192\) 5.92478i 0.427584i
\(193\) 25.4944i 1.83512i 0.397592 + 0.917562i \(0.369846\pi\)
−0.397592 + 0.917562i \(0.630154\pi\)
\(194\) 33.1246i 2.37821i
\(195\) 1.54420 0.110582
\(196\) −4.15633 −0.296880
\(197\) 7.93207i 0.565137i 0.959247 + 0.282568i \(0.0911864\pi\)
−0.959247 + 0.282568i \(0.908814\pi\)
\(198\) 4.48119i 0.318465i
\(199\) 3.21203i 0.227695i 0.993498 + 0.113848i \(0.0363175\pi\)
−0.993498 + 0.113848i \(0.963682\pi\)
\(200\) 24.3127 1.71916
\(201\) 9.81924i 0.692596i
\(202\) 23.5066 1.65392
\(203\) −0.806063 −0.0565746
\(204\) −7.76845 + 15.2750i −0.543900 + 1.06947i
\(205\) −0.350262 −0.0244633
\(206\) 16.0630 1.11916
\(207\) 0.0376114i 0.00261417i
\(208\) −11.3503 −0.786999
\(209\) 0.936996i 0.0648134i
\(210\) 1.67513i 0.115595i
\(211\) 22.4060i 1.54249i −0.636538 0.771245i \(-0.719634\pi\)
0.636538 0.771245i \(-0.280366\pi\)
\(212\) −17.0132 −1.16847
\(213\) −13.6932 −0.938245
\(214\) 43.0821i 2.94503i
\(215\) 2.41327i 0.164583i
\(216\) 5.35026i 0.364039i
\(217\) −1.28726 −0.0873847
\(218\) 13.8192i 0.935957i
\(219\) 12.0508 0.814317
\(220\) 5.06793 0.341680
\(221\) 8.40597 + 4.27504i 0.565447 + 0.287570i
\(222\) 19.4314 1.30415
\(223\) −9.37565 −0.627840 −0.313920 0.949449i \(-0.601642\pi\)
−0.313920 + 0.949449i \(0.601642\pi\)
\(224\) 1.61213i 0.107715i
\(225\) −4.54420 −0.302947
\(226\) 42.1949i 2.80676i
\(227\) 6.49437i 0.431046i −0.976499 0.215523i \(-0.930854\pi\)
0.976499 0.215523i \(-0.0691457\pi\)
\(228\) 2.15633i 0.142806i
\(229\) 7.64244 0.505027 0.252513 0.967593i \(-0.418743\pi\)
0.252513 + 0.967593i \(0.418743\pi\)
\(230\) −0.0630040 −0.00415436
\(231\) 1.80606i 0.118830i
\(232\) 4.31265i 0.283139i
\(233\) 12.6023i 0.825603i 0.910821 + 0.412801i \(0.135450\pi\)
−0.910821 + 0.412801i \(0.864550\pi\)
\(234\) 5.67513 0.370995
\(235\) 2.69227i 0.175625i
\(236\) 42.6009 2.77308
\(237\) −4.99508 −0.324465
\(238\) 4.63752 9.11871i 0.300606 0.591078i
\(239\) 15.6810 1.01432 0.507160 0.861852i \(-0.330695\pi\)
0.507160 + 0.861852i \(0.330695\pi\)
\(240\) −3.35026 −0.216258
\(241\) 2.23743i 0.144125i −0.997400 0.0720627i \(-0.977042\pi\)
0.997400 0.0720627i \(-0.0229582\pi\)
\(242\) 19.1998 1.23421
\(243\) 1.00000i 0.0641500i
\(244\) 60.5256i 3.87476i
\(245\) 0.675131i 0.0431325i
\(246\) −1.28726 −0.0820726
\(247\) −1.18664 −0.0755042
\(248\) 6.88717i 0.437335i
\(249\) 2.26187i 0.143340i
\(250\) 15.9878i 1.01116i
\(251\) 21.7767 1.37453 0.687267 0.726405i \(-0.258810\pi\)
0.687267 + 0.726405i \(0.258810\pi\)
\(252\) 4.15633i 0.261824i
\(253\) 0.0679286 0.00427063
\(254\) 11.0557 0.693697
\(255\) 2.48119 + 1.26187i 0.155378 + 0.0790211i
\(256\) −32.6253 −2.03908
\(257\) 6.51151 0.406177 0.203088 0.979160i \(-0.434902\pi\)
0.203088 + 0.979160i \(0.434902\pi\)
\(258\) 8.86907i 0.552164i
\(259\) −7.83146 −0.486623
\(260\) 6.41819i 0.398039i
\(261\) 0.806063i 0.0498941i
\(262\) 35.7621i 2.20939i
\(263\) −12.1866 −0.751461 −0.375730 0.926729i \(-0.622608\pi\)
−0.375730 + 0.926729i \(0.622608\pi\)
\(264\) 9.66291 0.594711
\(265\) 2.76353i 0.169762i
\(266\) 1.28726i 0.0789268i
\(267\) 13.2750i 0.812419i
\(268\) 40.8119 2.49299
\(269\) 7.09332i 0.432487i 0.976339 + 0.216244i \(0.0693806\pi\)
−0.976339 + 0.216244i \(0.930619\pi\)
\(270\) 1.67513 0.101945
\(271\) −28.1817 −1.71192 −0.855959 0.517044i \(-0.827032\pi\)
−0.855959 + 0.517044i \(0.827032\pi\)
\(272\) −18.2374 9.27504i −1.10581 0.562382i
\(273\) −2.28726 −0.138431
\(274\) 16.8568 1.01836
\(275\) 8.20711i 0.494907i
\(276\) −0.156325 −0.00940967
\(277\) 23.3357i 1.40210i −0.713110 0.701052i \(-0.752714\pi\)
0.713110 0.701052i \(-0.247286\pi\)
\(278\) 35.9756i 2.15767i
\(279\) 1.28726i 0.0770661i
\(280\) 3.61213 0.215866
\(281\) −19.7381 −1.17748 −0.588739 0.808323i \(-0.700375\pi\)
−0.588739 + 0.808323i \(0.700375\pi\)
\(282\) 9.89446i 0.589207i
\(283\) 10.4264i 0.619787i 0.950771 + 0.309894i \(0.100293\pi\)
−0.950771 + 0.309894i \(0.899707\pi\)
\(284\) 56.9135i 3.37720i
\(285\) −0.350262 −0.0207477
\(286\) 10.2496i 0.606074i
\(287\) 0.518806 0.0306241
\(288\) −1.61213 −0.0949955
\(289\) 10.0132 + 13.7381i 0.589010 + 0.808126i
\(290\) 1.35026 0.0792901
\(291\) 13.3503 0.782606
\(292\) 50.0870i 2.93112i
\(293\) −12.7250 −0.743400 −0.371700 0.928353i \(-0.621225\pi\)
−0.371700 + 0.928353i \(0.621225\pi\)
\(294\) 2.48119i 0.144706i
\(295\) 6.91985i 0.402889i
\(296\) 41.9003i 2.43541i
\(297\) −1.80606 −0.104798
\(298\) −54.3390 −3.14777
\(299\) 0.0860269i 0.00497507i
\(300\) 18.8872i 1.09045i
\(301\) 3.57452i 0.206032i
\(302\) 46.6615 2.68507
\(303\) 9.47390i 0.544261i
\(304\) 2.57452 0.147659
\(305\) −9.83146 −0.562948
\(306\) 9.11871 + 4.63752i 0.521282 + 0.265109i
\(307\) 22.6761 1.29419 0.647096 0.762408i \(-0.275983\pi\)
0.647096 + 0.762408i \(0.275983\pi\)
\(308\) −7.50659 −0.427727
\(309\) 6.47390i 0.368287i
\(310\) 2.15633 0.122471
\(311\) 26.0508i 1.47720i 0.674141 + 0.738602i \(0.264514\pi\)
−0.674141 + 0.738602i \(0.735486\pi\)
\(312\) 12.2374i 0.692808i
\(313\) 18.3512i 1.03727i 0.854995 + 0.518636i \(0.173560\pi\)
−0.854995 + 0.518636i \(0.826440\pi\)
\(314\) 1.87636 0.105889
\(315\) −0.675131 −0.0380393
\(316\) 20.7612i 1.16791i
\(317\) 13.1998i 0.741376i −0.928758 0.370688i \(-0.879122\pi\)
0.928758 0.370688i \(-0.120878\pi\)
\(318\) 10.1563i 0.569538i
\(319\) −1.45580 −0.0815092
\(320\) 4.00000i 0.223607i
\(321\) −17.3634 −0.969132
\(322\) 0.0933212 0.00520059
\(323\) −1.90668 0.969683i −0.106090 0.0539546i
\(324\) 4.15633 0.230907
\(325\) −10.3938 −0.576542
\(326\) 22.3634i 1.23860i
\(327\) 5.56959 0.307999
\(328\) 2.77575i 0.153265i
\(329\) 3.98778i 0.219853i
\(330\) 3.02539i 0.166542i
\(331\) 3.30677 0.181757 0.0908783 0.995862i \(-0.471033\pi\)
0.0908783 + 0.995862i \(0.471033\pi\)
\(332\) 9.40105 0.515949
\(333\) 7.83146i 0.429161i
\(334\) 42.5379i 2.32757i
\(335\) 6.62927i 0.362196i
\(336\) 4.96239 0.270720
\(337\) 29.8677i 1.62699i 0.581569 + 0.813497i \(0.302439\pi\)
−0.581569 + 0.813497i \(0.697561\pi\)
\(338\) −19.2750 −1.04842
\(339\) −17.0059 −0.923633
\(340\) −5.24472 + 10.3127i −0.284435 + 0.559282i
\(341\) −2.32487 −0.125899
\(342\) −1.28726 −0.0696069
\(343\) 1.00000i 0.0539949i
\(344\) −19.1246 −1.03113
\(345\) 0.0253926i 0.00136709i
\(346\) 1.21203i 0.0651594i
\(347\) 29.4821i 1.58268i 0.611373 + 0.791342i \(0.290617\pi\)
−0.611373 + 0.791342i \(0.709383\pi\)
\(348\) 3.35026 0.179593
\(349\) −32.2833 −1.72808 −0.864042 0.503419i \(-0.832075\pi\)
−0.864042 + 0.503419i \(0.832075\pi\)
\(350\) 11.2750i 0.602676i
\(351\) 2.28726i 0.122085i
\(352\) 2.91160i 0.155189i
\(353\) −18.4871 −0.983968 −0.491984 0.870604i \(-0.663728\pi\)
−0.491984 + 0.870604i \(0.663728\pi\)
\(354\) 25.4314i 1.35166i
\(355\) −9.24472 −0.490659
\(356\) −55.1754 −2.92429
\(357\) −3.67513 1.86907i −0.194509 0.0989215i
\(358\) −8.46310 −0.447289
\(359\) 3.78067 0.199536 0.0997681 0.995011i \(-0.468190\pi\)
0.0997681 + 0.995011i \(0.468190\pi\)
\(360\) 3.61213i 0.190376i
\(361\) −18.7308 −0.985834
\(362\) 12.7757i 0.671478i
\(363\) 7.73813i 0.406147i
\(364\) 9.50659i 0.498281i
\(365\) 8.13586 0.425850
\(366\) −36.1319 −1.88864
\(367\) 11.5975i 0.605387i −0.953088 0.302693i \(-0.902114\pi\)
0.953088 0.302693i \(-0.0978858\pi\)
\(368\) 0.186642i 0.00972940i
\(369\) 0.518806i 0.0270079i
\(370\) 13.1187 0.682009
\(371\) 4.09332i 0.212515i
\(372\) 5.35026 0.277398
\(373\) −17.1187 −0.886373 −0.443187 0.896429i \(-0.646152\pi\)
−0.443187 + 0.896429i \(0.646152\pi\)
\(374\) 8.37565 16.4690i 0.433095 0.851590i
\(375\) −6.44358 −0.332745
\(376\) −21.3357 −1.10030
\(377\) 1.84367i 0.0949541i
\(378\) −2.48119 −0.127619
\(379\) 11.5515i 0.593360i −0.954977 0.296680i \(-0.904120\pi\)
0.954977 0.296680i \(-0.0958795\pi\)
\(380\) 1.45580i 0.0746811i
\(381\) 4.45580i 0.228278i
\(382\) −1.92478 −0.0984802
\(383\) −20.4264 −1.04374 −0.521871 0.853024i \(-0.674766\pi\)
−0.521871 + 0.853024i \(0.674766\pi\)
\(384\) 17.9248i 0.914720i
\(385\) 1.21933i 0.0621428i
\(386\) 63.2565i 3.21967i
\(387\) 3.57452 0.181703
\(388\) 55.4880i 2.81698i
\(389\) −18.9887 −0.962767 −0.481384 0.876510i \(-0.659866\pi\)
−0.481384 + 0.876510i \(0.659866\pi\)
\(390\) 3.83146 0.194013
\(391\) −0.0702982 + 0.138227i −0.00355513 + 0.00699043i
\(392\) −5.35026 −0.270229
\(393\) −14.4133 −0.727053
\(394\) 19.6810i 0.991515i
\(395\) −3.37233 −0.169680
\(396\) 7.50659i 0.377220i
\(397\) 11.9271i 0.598606i 0.954158 + 0.299303i \(0.0967542\pi\)
−0.954158 + 0.299303i \(0.903246\pi\)
\(398\) 7.96968i 0.399484i
\(399\) 0.518806 0.0259728
\(400\) 22.5501 1.12750
\(401\) 17.3185i 0.864846i 0.901671 + 0.432423i \(0.142341\pi\)
−0.901671 + 0.432423i \(0.857659\pi\)
\(402\) 24.3634i 1.21514i
\(403\) 2.94429i 0.146666i
\(404\) 39.3766 1.95906
\(405\) 0.675131i 0.0335475i
\(406\) −2.00000 −0.0992583
\(407\) −14.1441 −0.701097
\(408\) −10.0000 + 19.6629i −0.495074 + 0.973459i
\(409\) 20.4641 1.01188 0.505941 0.862568i \(-0.331145\pi\)
0.505941 + 0.862568i \(0.331145\pi\)
\(410\) −0.869067 −0.0429202
\(411\) 6.79384i 0.335116i
\(412\) 26.9076 1.32564
\(413\) 10.2496i 0.504352i
\(414\) 0.0933212i 0.00458649i
\(415\) 1.52705i 0.0749602i
\(416\) −3.68735 −0.180787
\(417\) 14.4993 0.710033
\(418\) 2.32487i 0.113713i
\(419\) 13.8700i 0.677595i −0.940859 0.338797i \(-0.889980\pi\)
0.940859 0.338797i \(-0.110020\pi\)
\(420\) 2.80606i 0.136922i
\(421\) 1.43278 0.0698294 0.0349147 0.999390i \(-0.488884\pi\)
0.0349147 + 0.999390i \(0.488884\pi\)
\(422\) 55.5936i 2.70625i
\(423\) 3.98778 0.193893
\(424\) −21.9003 −1.06357
\(425\) −16.7005 8.49341i −0.810094 0.411991i
\(426\) −33.9756 −1.64612
\(427\) 14.5623 0.704719
\(428\) 72.1681i 3.48838i
\(429\) −4.13093 −0.199443
\(430\) 5.98778i 0.288756i
\(431\) 39.3258i 1.89426i 0.320853 + 0.947129i \(0.396031\pi\)
−0.320853 + 0.947129i \(0.603969\pi\)
\(432\) 4.96239i 0.238753i
\(433\) 24.6810 1.18609 0.593047 0.805168i \(-0.297925\pi\)
0.593047 + 0.805168i \(0.297925\pi\)
\(434\) −3.19394 −0.153314
\(435\) 0.544198i 0.0260923i
\(436\) 23.1490i 1.10864i
\(437\) 0.0195130i 0.000933434i
\(438\) 29.9003 1.42869
\(439\) 26.7489i 1.27666i −0.769764 0.638329i \(-0.779626\pi\)
0.769764 0.638329i \(-0.220374\pi\)
\(440\) 6.52373 0.311007
\(441\) 1.00000 0.0476190
\(442\) 20.8568 + 10.6072i 0.992059 + 0.504533i
\(443\) 20.9199 0.993932 0.496966 0.867770i \(-0.334447\pi\)
0.496966 + 0.867770i \(0.334447\pi\)
\(444\) 32.5501 1.54476
\(445\) 8.96239i 0.424858i
\(446\) −23.2628 −1.10153
\(447\) 21.9003i 1.03585i
\(448\) 5.92478i 0.279919i
\(449\) 19.3561i 0.913473i −0.889602 0.456736i \(-0.849018\pi\)
0.889602 0.456736i \(-0.150982\pi\)
\(450\) −11.2750 −0.531510
\(451\) 0.936996 0.0441214
\(452\) 70.6820i 3.32460i
\(453\) 18.8061i 0.883586i
\(454\) 16.1138i 0.756258i
\(455\) −1.54420 −0.0723931
\(456\) 2.77575i 0.129986i
\(457\) −31.5296 −1.47489 −0.737446 0.675406i \(-0.763969\pi\)
−0.737446 + 0.675406i \(0.763969\pi\)
\(458\) 18.9624 0.886054
\(459\) 1.86907 3.67513i 0.0872406 0.171540i
\(460\) −0.105540 −0.00492083
\(461\) 18.7997 0.875590 0.437795 0.899075i \(-0.355759\pi\)
0.437795 + 0.899075i \(0.355759\pi\)
\(462\) 4.48119i 0.208484i
\(463\) −5.94525 −0.276299 −0.138149 0.990411i \(-0.544115\pi\)
−0.138149 + 0.990411i \(0.544115\pi\)
\(464\) 4.00000i 0.185695i
\(465\) 0.869067i 0.0403020i
\(466\) 31.2687i 1.44849i
\(467\) 4.52373 0.209333 0.104667 0.994507i \(-0.466622\pi\)
0.104667 + 0.994507i \(0.466622\pi\)
\(468\) 9.50659 0.439442
\(469\) 9.81924i 0.453410i
\(470\) 6.68006i 0.308128i
\(471\) 0.756233i 0.0348454i
\(472\) 54.8383 2.52414
\(473\) 6.45580i 0.296838i
\(474\) −12.3938 −0.569264
\(475\) 2.35756 0.108172
\(476\) 7.76845 15.2750i 0.356066 0.700130i
\(477\) 4.09332 0.187420
\(478\) 38.9076 1.77959
\(479\) 1.94429i 0.0888369i 0.999013 + 0.0444184i \(0.0141435\pi\)
−0.999013 + 0.0444184i \(0.985857\pi\)
\(480\) −1.08840 −0.0496783
\(481\) 17.9126i 0.816742i
\(482\) 5.55149i 0.252864i
\(483\) 0.0376114i 0.00171138i
\(484\) 32.1622 1.46192
\(485\) 9.01317 0.409267
\(486\) 2.48119i 0.112549i
\(487\) 31.7743i 1.43983i 0.694061 + 0.719916i \(0.255820\pi\)
−0.694061 + 0.719916i \(0.744180\pi\)
\(488\) 77.9121i 3.52691i
\(489\) −9.01317 −0.407590
\(490\) 1.67513i 0.0756747i
\(491\) 19.0884 0.861447 0.430724 0.902484i \(-0.358258\pi\)
0.430724 + 0.902484i \(0.358258\pi\)
\(492\) −2.15633 −0.0972146
\(493\) 1.50659 2.96239i 0.0678533 0.133419i
\(494\) −2.94429 −0.132470
\(495\) −1.21933 −0.0548048
\(496\) 6.38787i 0.286824i
\(497\) 13.6932 0.614225
\(498\) 5.61213i 0.251485i
\(499\) 7.94288i 0.355572i 0.984069 + 0.177786i \(0.0568935\pi\)
−0.984069 + 0.177786i \(0.943107\pi\)
\(500\) 26.7816i 1.19771i
\(501\) 17.1441 0.765942
\(502\) 54.0322 2.41158
\(503\) 36.0616i 1.60791i 0.594692 + 0.803953i \(0.297274\pi\)
−0.594692 + 0.803953i \(0.702726\pi\)
\(504\) 5.35026i 0.238320i
\(505\) 6.39612i 0.284624i
\(506\) 0.168544 0.00749269
\(507\) 7.76845i 0.345009i
\(508\) 18.5198 0.821682
\(509\) −22.0362 −0.976737 −0.488369 0.872637i \(-0.662408\pi\)
−0.488369 + 0.872637i \(0.662408\pi\)
\(510\) 6.15633 + 3.13093i 0.272607 + 0.138640i
\(511\) −12.0508 −0.533095
\(512\) −45.1002 −1.99316
\(513\) 0.518806i 0.0229058i
\(514\) 16.1563 0.712625
\(515\) 4.37073i 0.192597i
\(516\) 14.8568i 0.654036i
\(517\) 7.20219i 0.316752i
\(518\) −19.4314 −0.853765
\(519\) −0.488489 −0.0214423
\(520\) 8.26187i 0.362307i
\(521\) 4.46802i 0.195748i 0.995199 + 0.0978738i \(0.0312041\pi\)
−0.995199 + 0.0978738i \(0.968796\pi\)
\(522\) 2.00000i 0.0875376i
\(523\) −26.0263 −1.13805 −0.569026 0.822319i \(-0.692680\pi\)
−0.569026 + 0.822319i \(0.692680\pi\)
\(524\) 59.9062i 2.61702i
\(525\) 4.54420 0.198325
\(526\) −30.2374 −1.31841
\(527\) 2.40597 4.73084i 0.104806 0.206079i
\(528\) 8.96239 0.390038
\(529\) 22.9986 0.999938
\(530\) 6.85685i 0.297842i
\(531\) −10.2496 −0.444797
\(532\) 2.15633i 0.0934886i
\(533\) 1.18664i 0.0513992i
\(534\) 32.9380i 1.42536i
\(535\) −11.7226 −0.506812
\(536\) 52.5355 2.26919
\(537\) 3.41090i 0.147191i
\(538\) 17.5999i 0.758786i
\(539\) 1.80606i 0.0777927i
\(540\) 2.80606 0.120754
\(541\) 2.57452i 0.110687i −0.998467 0.0553435i \(-0.982375\pi\)
0.998467 0.0553435i \(-0.0176254\pi\)
\(542\) −69.9243 −3.00351
\(543\) 5.14903 0.220966
\(544\) −5.92478 3.01317i −0.254023 0.129189i
\(545\) 3.76020 0.161069
\(546\) −5.67513 −0.242873
\(547\) 20.4568i 0.874668i −0.899299 0.437334i \(-0.855923\pi\)
0.899299 0.437334i \(-0.144077\pi\)
\(548\) 28.2374 1.20624
\(549\) 14.5623i 0.621504i
\(550\) 20.3634i 0.868300i
\(551\) 0.418190i 0.0178155i
\(552\) −0.201231 −0.00856495
\(553\) 4.99508 0.212412
\(554\) 57.9003i 2.45995i
\(555\) 5.28726i 0.224432i
\(556\) 60.2638i 2.55575i
\(557\) −18.9199 −0.801660 −0.400830 0.916152i \(-0.631278\pi\)
−0.400830 + 0.916152i \(0.631278\pi\)
\(558\) 3.19394i 0.135210i
\(559\) 8.17584 0.345801
\(560\) 3.35026 0.141574
\(561\) −6.63752 3.37565i −0.280236 0.142520i
\(562\) −48.9741 −2.06585
\(563\) 33.4617 1.41024 0.705121 0.709087i \(-0.250893\pi\)
0.705121 + 0.709087i \(0.250893\pi\)
\(564\) 16.5745i 0.697913i
\(565\) −11.4812 −0.483017
\(566\) 25.8700i 1.08740i
\(567\) 1.00000i 0.0419961i
\(568\) 73.2624i 3.07402i
\(569\) 7.58769 0.318092 0.159046 0.987271i \(-0.449158\pi\)
0.159046 + 0.987271i \(0.449158\pi\)
\(570\) −0.869067 −0.0364012
\(571\) 37.4128i 1.56568i −0.622225 0.782839i \(-0.713771\pi\)
0.622225 0.782839i \(-0.286229\pi\)
\(572\) 17.1695i 0.717893i
\(573\) 0.775746i 0.0324073i
\(574\) 1.28726 0.0537291
\(575\) 0.170914i 0.00712759i
\(576\) 5.92478 0.246866
\(577\) 9.70289 0.403937 0.201968 0.979392i \(-0.435266\pi\)
0.201968 + 0.979392i \(0.435266\pi\)
\(578\) 24.8446 + 34.0870i 1.03340 + 1.41783i
\(579\) 25.4944 1.05951
\(580\) 2.26187 0.0939188
\(581\) 2.26187i 0.0938380i
\(582\) 33.1246 1.37306
\(583\) 7.39280i 0.306178i
\(584\) 64.4749i 2.66799i
\(585\) 1.54420i 0.0638447i
\(586\) −31.5731 −1.30427
\(587\) 34.6375 1.42964 0.714822 0.699307i \(-0.246508\pi\)
0.714822 + 0.699307i \(0.246508\pi\)
\(588\) 4.15633i 0.171404i
\(589\) 0.667837i 0.0275177i
\(590\) 17.1695i 0.706857i
\(591\) 7.93207 0.326282
\(592\) 38.8627i 1.59725i
\(593\) 26.3512 1.08211 0.541057 0.840986i \(-0.318024\pi\)
0.541057 + 0.840986i \(0.318024\pi\)
\(594\) −4.48119 −0.183866
\(595\) −2.48119 1.26187i −0.101719 0.0517314i
\(596\) −91.0249 −3.72853
\(597\) 3.21203 0.131460
\(598\) 0.213450i 0.00872860i
\(599\) −14.4485 −0.590350 −0.295175 0.955443i \(-0.595378\pi\)
−0.295175 + 0.955443i \(0.595378\pi\)
\(600\) 24.3127i 0.992560i
\(601\) 22.8242i 0.931017i −0.885043 0.465508i \(-0.845871\pi\)
0.885043 0.465508i \(-0.154129\pi\)
\(602\) 8.86907i 0.361476i
\(603\) −9.81924 −0.399870
\(604\) 78.1641 3.18045
\(605\) 5.22425i 0.212396i
\(606\) 23.5066i 0.954890i
\(607\) 27.1974i 1.10391i −0.833874 0.551955i \(-0.813882\pi\)
0.833874 0.551955i \(-0.186118\pi\)
\(608\) 0.836381 0.0339197
\(609\) 0.806063i 0.0326633i
\(610\) −24.3938 −0.987674
\(611\) 9.12108 0.369000
\(612\) 15.2750 + 7.76845i 0.617457 + 0.314021i
\(613\) 11.4387 0.462003 0.231002 0.972953i \(-0.425800\pi\)
0.231002 + 0.972953i \(0.425800\pi\)
\(614\) 56.2638 2.27062
\(615\) 0.350262i 0.0141239i
\(616\) −9.66291 −0.389330
\(617\) 10.0205i 0.403409i 0.979446 + 0.201704i \(0.0646480\pi\)
−0.979446 + 0.201704i \(0.935352\pi\)
\(618\) 16.0630i 0.646149i
\(619\) 1.47390i 0.0592410i 0.999561 + 0.0296205i \(0.00942988\pi\)
−0.999561 + 0.0296205i \(0.990570\pi\)
\(620\) 3.61213 0.145067
\(621\) 0.0376114 0.00150929
\(622\) 64.6371i 2.59171i
\(623\) 13.2750i 0.531853i
\(624\) 11.3503i 0.454374i
\(625\) 18.3707 0.734829
\(626\) 45.5329i 1.81986i
\(627\) 0.936996 0.0374200
\(628\) 3.14315 0.125425
\(629\) 14.6375 28.7816i 0.583636 1.14760i
\(630\) −1.67513 −0.0667388
\(631\) 31.2736 1.24498 0.622492 0.782626i \(-0.286120\pi\)
0.622492 + 0.782626i \(0.286120\pi\)
\(632\) 26.7250i 1.06306i
\(633\) −22.4060 −0.890557
\(634\) 32.7513i 1.30072i
\(635\) 3.00825i 0.119379i
\(636\) 17.0132i 0.674616i
\(637\) 2.28726 0.0906245
\(638\) −3.61213 −0.143005
\(639\) 13.6932i 0.541696i
\(640\) 12.1016i 0.478357i
\(641\) 21.4847i 0.848595i 0.905523 + 0.424297i \(0.139479\pi\)
−0.905523 + 0.424297i \(0.860521\pi\)
\(642\) −43.0821 −1.70031
\(643\) 17.5633i 0.692627i 0.938119 + 0.346314i \(0.112567\pi\)
−0.938119 + 0.346314i \(0.887433\pi\)
\(644\) 0.156325 0.00616007
\(645\) 2.41327 0.0950222
\(646\) −4.73084 2.40597i −0.186132 0.0946617i
\(647\) 3.88858 0.152876 0.0764379 0.997074i \(-0.475645\pi\)
0.0764379 + 0.997074i \(0.475645\pi\)
\(648\) 5.35026 0.210178
\(649\) 18.5115i 0.726640i
\(650\) −25.7889 −1.01152
\(651\) 1.28726i 0.0504516i
\(652\) 37.4617i 1.46711i
\(653\) 17.0244i 0.666218i 0.942888 + 0.333109i \(0.108098\pi\)
−0.942888 + 0.333109i \(0.891902\pi\)
\(654\) 13.8192 0.540375
\(655\) −9.73084 −0.380215
\(656\) 2.57452i 0.100518i
\(657\) 12.0508i 0.470146i
\(658\) 9.89446i 0.385726i
\(659\) −16.0835 −0.626523 −0.313262 0.949667i \(-0.601422\pi\)
−0.313262 + 0.949667i \(0.601422\pi\)
\(660\) 5.06793i 0.197269i
\(661\) 21.0082 0.817126 0.408563 0.912730i \(-0.366030\pi\)
0.408563 + 0.912730i \(0.366030\pi\)
\(662\) 8.20474 0.318886
\(663\) 4.27504 8.40597i 0.166029 0.326461i
\(664\) 12.1016 0.469632
\(665\) 0.350262 0.0135826
\(666\) 19.4314i 0.752950i
\(667\) 0.0303172 0.00117389
\(668\) 71.2565i 2.75700i
\(669\) 9.37565i 0.362484i
\(670\) 16.4485i 0.635461i
\(671\) 26.3004 1.01532
\(672\) 1.61213 0.0621891
\(673\) 50.8481i 1.96005i −0.198870 0.980026i \(-0.563727\pi\)
0.198870 0.980026i \(-0.436273\pi\)
\(674\) 74.1075i 2.85451i
\(675\) 4.54420i 0.174906i
\(676\) −32.2882 −1.24185
\(677\) 41.1051i 1.57980i −0.613238 0.789898i \(-0.710133\pi\)
0.613238 0.789898i \(-0.289867\pi\)
\(678\) −42.1949 −1.62049
\(679\) −13.3503 −0.512336
\(680\) −6.75131 + 13.2750i −0.258901 + 0.509075i
\(681\) −6.49437 −0.248865
\(682\) −5.76845 −0.220885
\(683\) 18.0336i 0.690038i 0.938596 + 0.345019i \(0.112128\pi\)
−0.938596 + 0.345019i \(0.887872\pi\)
\(684\) −2.15633 −0.0824492
\(685\) 4.58673i 0.175250i
\(686\) 2.48119i 0.0947324i
\(687\) 7.64244i 0.291577i
\(688\) −17.7381 −0.676260
\(689\) 9.36248 0.356682
\(690\) 0.0630040i 0.00239852i
\(691\) 10.3150i 0.392402i −0.980564 0.196201i \(-0.937140\pi\)
0.980564 0.196201i \(-0.0628605\pi\)
\(692\) 2.03032i 0.0771811i
\(693\) 1.80606 0.0686067
\(694\) 73.1509i 2.77677i
\(695\) 9.78892 0.371315
\(696\) 4.31265 0.163471
\(697\) −0.969683 + 1.90668i −0.0367294 + 0.0722206i
\(698\) −80.1011 −3.03187
\(699\) 12.6023 0.476662
\(700\) 18.8872i 0.713868i
\(701\) −21.2750 −0.803547 −0.401774 0.915739i \(-0.631606\pi\)
−0.401774 + 0.915739i \(0.631606\pi\)
\(702\) 5.67513i 0.214194i
\(703\) 4.06300i 0.153239i
\(704\) 10.7005i 0.403291i
\(705\) 2.69227 0.101397
\(706\) −45.8700 −1.72634
\(707\) 9.47390i 0.356303i
\(708\) 42.6009i 1.60104i
\(709\) 11.8496i 0.445019i −0.974930 0.222510i \(-0.928575\pi\)
0.974930 0.222510i \(-0.0714249\pi\)
\(710\) −22.9380 −0.860846
\(711\) 4.99508i 0.187330i
\(712\) −71.0249 −2.66177
\(713\) 0.0484156 0.00181318
\(714\) −9.11871 4.63752i −0.341259 0.173555i
\(715\) −2.78892 −0.104300
\(716\) −14.1768 −0.529812
\(717\) 15.6810i 0.585618i
\(718\) 9.38058 0.350080
\(719\) 19.5379i 0.728639i −0.931274 0.364320i \(-0.881302\pi\)
0.931274 0.364320i \(-0.118698\pi\)
\(720\) 3.35026i 0.124857i
\(721\) 6.47390i 0.241101i
\(722\) −46.4749 −1.72962
\(723\) −2.23743 −0.0832108
\(724\) 21.4010i 0.795364i
\(725\) 3.66291i 0.136037i
\(726\) 19.1998i 0.712572i
\(727\) −46.6761 −1.73112 −0.865560 0.500805i \(-0.833037\pi\)
−0.865560 + 0.500805i \(0.833037\pi\)
\(728\) 12.2374i 0.453549i
\(729\) −1.00000 −0.0370370
\(730\) 20.1866 0.747141
\(731\) 13.1368 + 6.68101i 0.485883 + 0.247106i
\(732\) −60.5256 −2.23709
\(733\) −9.13918 −0.337563 −0.168782 0.985653i \(-0.553983\pi\)
−0.168782 + 0.985653i \(0.553983\pi\)
\(734\) 28.7757i 1.06213i
\(735\) 0.675131 0.0249026
\(736\) 0.0606343i 0.00223501i
\(737\) 17.7342i 0.653246i
\(738\) 1.28726i 0.0473846i
\(739\) 41.8481 1.53941 0.769704 0.638401i \(-0.220404\pi\)
0.769704 + 0.638401i \(0.220404\pi\)
\(740\) 21.9756 0.807838
\(741\) 1.18664i 0.0435924i
\(742\) 10.1563i 0.372850i
\(743\) 6.33121i 0.232270i −0.993233 0.116135i \(-0.962950\pi\)
0.993233 0.116135i \(-0.0370504\pi\)
\(744\) 6.88717 0.252496
\(745\) 14.7856i 0.541702i
\(746\) −42.4749 −1.55511
\(747\) −2.26187 −0.0827573
\(748\) 14.0303 27.5877i 0.512999 1.00871i
\(749\) 17.3634 0.634446
\(750\) −15.9878 −0.583791
\(751\) 1.04395i 0.0380943i −0.999819 0.0190471i \(-0.993937\pi\)
0.999819 0.0190471i \(-0.00606326\pi\)
\(752\) −19.7889 −0.721628
\(753\) 21.7767i 0.793587i
\(754\) 4.57452i 0.166594i
\(755\) 12.6966i 0.462075i
\(756\) −4.15633 −0.151164
\(757\) 45.3839 1.64951 0.824753 0.565493i \(-0.191314\pi\)
0.824753 + 0.565493i \(0.191314\pi\)
\(758\) 28.6615i 1.04103i
\(759\) 0.0679286i 0.00246565i
\(760\) 1.87399i 0.0679768i
\(761\) 41.6893 1.51123 0.755617 0.655013i \(-0.227337\pi\)
0.755617 + 0.655013i \(0.227337\pi\)
\(762\) 11.0557i 0.400506i
\(763\) −5.56959 −0.201633
\(764\) −3.22425 −0.116649
\(765\) 1.26187 2.48119i 0.0456228 0.0897078i
\(766\) −50.6820 −1.83121
\(767\) −23.4436 −0.846499
\(768\) 32.6253i 1.17726i
\(769\) −47.3122 −1.70612 −0.853061 0.521812i \(-0.825256\pi\)
−0.853061 + 0.521812i \(0.825256\pi\)
\(770\) 3.02539i 0.109028i
\(771\) 6.51151i 0.234506i
\(772\) 105.963i 3.81369i
\(773\) 28.2252 1.01519 0.507595 0.861596i \(-0.330535\pi\)
0.507595 + 0.861596i \(0.330535\pi\)
\(774\) 8.86907 0.318792
\(775\) 5.84955i 0.210122i
\(776\) 71.4274i 2.56409i
\(777\) 7.83146i 0.280952i
\(778\) −47.1147 −1.68915
\(779\) 0.269159i 0.00964363i
\(780\) 6.41819 0.229808
\(781\) 24.7308 0.884939
\(782\) −0.174424 + 0.342968i −0.00623737 + 0.0122645i
\(783\) −0.806063 −0.0288064
\(784\) −4.96239 −0.177228
\(785\) 0.510556i 0.0182225i
\(786\) −35.7621 −1.27559
\(787\) 26.9257i 0.959799i −0.877324 0.479899i \(-0.840673\pi\)
0.877324 0.479899i \(-0.159327\pi\)
\(788\) 32.9683i 1.17445i
\(789\) 12.1866i 0.433856i
\(790\) −8.36741 −0.297699
\(791\) 17.0059 0.604659
\(792\) 9.66291i 0.343357i
\(793\) 33.3077i 1.18279i
\(794\) 29.5936i 1.05024i
\(795\) 2.76353 0.0980122
\(796\) 13.3503i 0.473187i
\(797\) −30.2882 −1.07286 −0.536432 0.843944i \(-0.680228\pi\)
−0.536432 + 0.843944i \(0.680228\pi\)
\(798\) 1.28726 0.0455684
\(799\) 14.6556 + 7.45343i 0.518478 + 0.263683i
\(800\) 7.32582 0.259007
\(801\) 13.2750 0.469050
\(802\) 42.9706i 1.51735i
\(803\) −21.7645 −0.768052
\(804\) 40.8119i 1.43933i
\(805\) 0.0253926i 0.000894972i
\(806\) 7.30536i 0.257320i
\(807\) 7.09332 0.249697
\(808\) 50.6878 1.78319
\(809\) 2.59166i 0.0911179i −0.998962 0.0455589i \(-0.985493\pi\)
0.998962 0.0455589i \(-0.0145069\pi\)
\(810\) 1.67513i 0.0588581i
\(811\) 27.4128i 0.962594i −0.876558 0.481297i \(-0.840166\pi\)
0.876558 0.481297i \(-0.159834\pi\)
\(812\) −3.35026 −0.117571
\(813\) 28.1817i 0.988376i
\(814\) −35.0943 −1.23005
\(815\) −6.08507 −0.213151
\(816\) −9.27504 + 18.2374i −0.324691 + 0.638438i
\(817\) −1.85448 −0.0648800
\(818\) 50.7753 1.77532
\(819\) 2.28726i 0.0799233i
\(820\) −1.45580 −0.0508388
\(821\) 39.8119i 1.38945i 0.719277 + 0.694723i \(0.244473\pi\)
−0.719277 + 0.694723i \(0.755527\pi\)
\(822\) 16.8568i 0.587950i
\(823\) 8.95414i 0.312122i −0.987747 0.156061i \(-0.950120\pi\)
0.987747 0.156061i \(-0.0498796\pi\)
\(824\) 34.6371 1.20664
\(825\) 8.20711 0.285735
\(826\) 25.4314i 0.884870i
\(827\) 35.7210i 1.24214i 0.783755 + 0.621070i \(0.213302\pi\)
−0.783755 + 0.621070i \(0.786698\pi\)
\(828\) 0.156325i 0.00543268i
\(829\) 16.8218 0.584245 0.292122 0.956381i \(-0.405639\pi\)
0.292122 + 0.956381i \(0.405639\pi\)
\(830\) 3.78892i 0.131515i
\(831\) −23.3357 −0.809506
\(832\) 13.5515 0.469813
\(833\) 3.67513 + 1.86907i 0.127336 + 0.0647593i
\(834\) 35.9756 1.24573
\(835\) 11.5745 0.400553
\(836\) 3.89446i 0.134693i
\(837\) −1.28726 −0.0444941
\(838\) 34.4142i 1.18882i
\(839\) 50.2541i 1.73496i −0.497468 0.867482i \(-0.665737\pi\)
0.497468 0.867482i \(-0.334263\pi\)
\(840\) 3.61213i 0.124630i
\(841\) 28.3503 0.977595
\(842\) 3.55500 0.122513
\(843\) 19.7381i 0.679817i
\(844\) 93.1265i 3.20555i
\(845\) 5.24472i 0.180424i
\(846\) 9.89446 0.340179
\(847\) 7.73813i 0.265885i
\(848\) −20.3127 −0.697539
\(849\) 10.4264 0.357834
\(850\) −41.4372 21.0738i −1.42129 0.722826i
\(851\) 0.294552 0.0100971
\(852\) −56.9135 −1.94982
\(853\) 4.10905i 0.140691i 0.997523 + 0.0703456i \(0.0224102\pi\)
−0.997523 + 0.0703456i \(0.977590\pi\)
\(854\) 36.1319 1.23641
\(855\) 0.350262i 0.0119787i
\(856\) 92.8989i 3.17522i
\(857\) 27.9854i 0.955963i −0.878370 0.477982i \(-0.841369\pi\)
0.878370 0.477982i \(-0.158631\pi\)
\(858\) −10.2496 −0.349917
\(859\) 30.2981 1.03376 0.516878 0.856059i \(-0.327094\pi\)
0.516878 + 0.856059i \(0.327094\pi\)
\(860\) 10.0303i 0.342031i
\(861\) 0.518806i 0.0176809i
\(862\) 97.5750i 3.32342i
\(863\) −55.9937 −1.90605 −0.953023 0.302897i \(-0.902046\pi\)
−0.953023 + 0.302897i \(0.902046\pi\)
\(864\) 1.61213i 0.0548457i
\(865\) −0.329794 −0.0112133
\(866\) 61.2384 2.08096
\(867\) 13.7381 10.0132i 0.466572 0.340065i
\(868\) −5.35026 −0.181600
\(869\) 9.02142 0.306031
\(870\) 1.35026i 0.0457782i
\(871\) −22.4591 −0.760998
\(872\) 29.7988i 1.00911i
\(873\) 13.3503i 0.451838i
\(874\) 0.0484156i 0.00163768i
\(875\) 6.44358 0.217833
\(876\) 50.0870 1.69228
\(877\) 3.31757i 0.112027i 0.998430 + 0.0560133i \(0.0178389\pi\)
−0.998430 + 0.0560133i \(0.982161\pi\)
\(878\) 66.3693i 2.23986i
\(879\) 12.7250i 0.429202i
\(880\) 6.05079 0.203972
\(881\) 51.0640i 1.72039i −0.509967 0.860194i \(-0.670342\pi\)
0.509967 0.860194i \(-0.329658\pi\)
\(882\) 2.48119 0.0835462
\(883\) −24.0581 −0.809619 −0.404809 0.914401i \(-0.632662\pi\)
−0.404809 + 0.914401i \(0.632662\pi\)
\(884\) 34.9380 + 17.7685i 1.17509 + 0.597618i
\(885\) −6.91985 −0.232608
\(886\) 51.9062 1.74382
\(887\) 37.8446i 1.27070i 0.772225 + 0.635349i \(0.219144\pi\)
−0.772225 + 0.635349i \(0.780856\pi\)
\(888\) 41.9003 1.40608
\(889\) 4.45580i 0.149443i
\(890\) 22.2374i 0.745400i
\(891\) 1.80606i 0.0605054i
\(892\) −38.9683 −1.30475
\(893\) −2.06888 −0.0692326
\(894\) 54.3390i 1.81737i
\(895\) 2.30280i 0.0769742i
\(896\) 17.9248i 0.598825i
\(897\) 0.0860269 0.00287236
\(898\) 48.0263i 1.60266i
\(899\) −1.03761 −0.0346063
\(900\) −18.8872 −0.629572
\(901\) 15.0435 + 7.65069i 0.501171 + 0.254882i
\(902\) 2.32487 0.0774097
\(903\) −3.57452 −0.118952
\(904\) 90.9859i 3.02615i
\(905\) 3.47627 0.115555
\(906\) 46.6615i 1.55022i
\(907\) 12.1114i 0.402153i 0.979576 + 0.201077i \(0.0644440\pi\)
−0.979576 + 0.201077i \(0.935556\pi\)
\(908\) 26.9927i 0.895784i
\(909\) −9.47390 −0.314229
\(910\) −3.83146 −0.127012
\(911\) 7.69464i 0.254935i 0.991843 + 0.127467i \(0.0406848\pi\)
−0.991843 + 0.127467i \(0.959315\pi\)
\(912\) 2.57452i 0.0852507i
\(913\) 4.08507i 0.135196i
\(914\) −78.2311 −2.58765
\(915\) 9.83146i 0.325018i
\(916\) 31.7645 1.04953
\(917\) 14.4133 0.475968
\(918\) 4.63752 9.11871i 0.153061 0.300962i
\(919\) 8.54675 0.281931 0.140966 0.990014i \(-0.454979\pi\)
0.140966 + 0.990014i \(0.454979\pi\)
\(920\) −0.135857 −0.00447908
\(921\) 22.6761i 0.747202i
\(922\) 46.6458 1.53620
\(923\) 31.3199i 1.03091i
\(924\) 7.50659i 0.246949i
\(925\) 35.5877i 1.17012i
\(926\) −14.7513 −0.484758
\(927\) −6.47390 −0.212631
\(928\) 1.29948i 0.0426574i
\(929\) 10.1671i 0.333573i 0.985993 + 0.166786i \(0.0533390\pi\)
−0.985993 + 0.166786i \(0.946661\pi\)
\(930\) 2.15633i 0.0707087i
\(931\) −0.518806 −0.0170032
\(932\) 52.3792i 1.71574i
\(933\) 26.0508 0.852864
\(934\) 11.2243 0.367269
\(935\) −4.48119 2.27901i −0.146551 0.0745315i
\(936\) 12.2374 0.399993
\(937\) −43.6834 −1.42707 −0.713537 0.700618i \(-0.752908\pi\)
−0.713537 + 0.700618i \(0.752908\pi\)
\(938\) 24.3634i 0.795494i
\(939\) 18.3512 0.598869
\(940\) 11.1900i 0.364976i
\(941\) 51.2262i 1.66993i −0.550307 0.834963i \(-0.685489\pi\)
0.550307 0.834963i \(-0.314511\pi\)
\(942\) 1.87636i 0.0611352i
\(943\) −0.0195130 −0.000635431
\(944\) 50.8627 1.65544
\(945\) 0.675131i 0.0219620i
\(946\) 16.0181i 0.520793i
\(947\) 30.0713i 0.977184i −0.872512 0.488592i \(-0.837511\pi\)
0.872512 0.488592i \(-0.162489\pi\)
\(948\) −20.7612 −0.674291
\(949\) 27.5633i 0.894741i
\(950\) 5.84955 0.189785
\(951\) −13.1998 −0.428033
\(952\) 10.0000 19.6629i 0.324102 0.637279i
\(953\) 3.30582 0.107086 0.0535429 0.998566i \(-0.482949\pi\)
0.0535429 + 0.998566i \(0.482949\pi\)
\(954\) 10.1563 0.328823
\(955\) 0.523730i 0.0169475i
\(956\) 65.1754 2.10792
\(957\) 1.45580i 0.0470594i
\(958\) 4.82416i 0.155862i
\(959\) 6.79384i 0.219385i
\(960\) 4.00000 0.129099
\(961\) 29.3430 0.946547
\(962\) 44.4445i 1.43295i
\(963\) 17.3634i 0.559529i
\(964\) 9.29948i 0.299516i
\(965\) 17.2120 0.554075
\(966\) 0.0933212i 0.00300256i
\(967\) −22.2955 −0.716975 −0.358488 0.933534i \(-0.616707\pi\)
−0.358488 + 0.933534i \(0.616707\pi\)
\(968\) 41.4010 1.33068
\(969\) −0.969683 + 1.90668i −0.0311507 + 0.0612513i
\(970\) 22.3634 0.718047
\(971\) 37.1754 1.19301 0.596507 0.802608i \(-0.296555\pi\)
0.596507 + 0.802608i \(0.296555\pi\)
\(972\) 4.15633i 0.133314i
\(973\) −14.4993 −0.464826
\(974\) 78.8383i 2.52614i
\(975\) 10.3938i 0.332866i
\(976\) 72.2638i 2.31311i
\(977\) 5.39914 0.172734 0.0863668 0.996263i \(-0.472474\pi\)
0.0863668 + 0.996263i \(0.472474\pi\)
\(978\) −22.3634 −0.715104
\(979\) 23.9756i 0.766262i
\(980\) 2.80606i 0.0896364i
\(981\) 5.56959i 0.177823i
\(982\) 47.3620 1.51138
\(983\) 8.25694i 0.263356i 0.991293 + 0.131678i \(0.0420364\pi\)
−0.991293 + 0.131678i \(0.957964\pi\)
\(984\) −2.77575 −0.0884876
\(985\) 5.35519 0.170630
\(986\) 3.73813 7.35026i 0.119046 0.234080i
\(987\) −3.98778 −0.126932
\(988\) −4.93207 −0.156910
\(989\) 0.134443i 0.00427502i
\(990\) −3.02539 −0.0961533
\(991\) 60.8627i 1.93337i −0.255972 0.966684i \(-0.582396\pi\)
0.255972 0.966684i \(-0.417604\pi\)
\(992\) 2.07522i 0.0658884i
\(993\) 3.30677i 0.104937i
\(994\) 33.9756 1.07764
\(995\) 2.16854 0.0687475
\(996\) 9.40105i 0.297884i
\(997\) 56.1768i 1.77914i −0.456802 0.889568i \(-0.651005\pi\)
0.456802 0.889568i \(-0.348995\pi\)
\(998\) 19.7078i 0.623840i
\(999\) −7.83146 −0.247776
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 357.2.f.a.169.5 6
3.2 odd 2 1071.2.f.a.883.2 6
17.4 even 4 6069.2.a.k.1.1 3
17.13 even 4 6069.2.a.m.1.1 3
17.16 even 2 inner 357.2.f.a.169.6 yes 6
51.50 odd 2 1071.2.f.a.883.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
357.2.f.a.169.5 6 1.1 even 1 trivial
357.2.f.a.169.6 yes 6 17.16 even 2 inner
1071.2.f.a.883.1 6 51.50 odd 2
1071.2.f.a.883.2 6 3.2 odd 2
6069.2.a.k.1.1 3 17.4 even 4
6069.2.a.m.1.1 3 17.13 even 4