Properties

Label 2-360-8.5-c5-0-93
Degree 22
Conductor 360360
Sign 0.993+0.116i-0.993 + 0.116i
Analytic cond. 57.738157.7381
Root an. cond. 7.598567.59856
Motivic weight 55
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (4.78 − 3.01i)2-s + (13.7 − 28.8i)4-s + 25i·5-s − 56.4·7-s + (−21.0 − 179. i)8-s + (75.4 + 119. i)10-s − 261. i·11-s − 720. i·13-s + (−270. + 170. i)14-s + (−643. − 796. i)16-s + 1.87e3·17-s + 1.99e3i·19-s + (721. + 344. i)20-s + (−787. − 1.24e3i)22-s − 2.57e3·23-s + ⋯
L(s)  = 1  + (0.845 − 0.533i)2-s + (0.431 − 0.902i)4-s + 0.447i·5-s − 0.435·7-s + (−0.116 − 0.993i)8-s + (0.238 + 0.378i)10-s − 0.650i·11-s − 1.18i·13-s + (−0.368 + 0.232i)14-s + (−0.628 − 0.778i)16-s + 1.57·17-s + 1.26i·19-s + (0.403 + 0.192i)20-s + (−0.346 − 0.550i)22-s − 1.01·23-s + ⋯

Functional equation

Λ(s)=(360s/2ΓC(s)L(s)=((0.993+0.116i)Λ(6s)\begin{aligned}\Lambda(s)=\mathstrut & 360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.993 + 0.116i)\, \overline{\Lambda}(6-s) \end{aligned}
Λ(s)=(360s/2ΓC(s+5/2)L(s)=((0.993+0.116i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 360 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.993 + 0.116i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 360360    =    233252^{3} \cdot 3^{2} \cdot 5
Sign: 0.993+0.116i-0.993 + 0.116i
Analytic conductor: 57.738157.7381
Root analytic conductor: 7.598567.59856
Motivic weight: 55
Rational: no
Arithmetic: yes
Character: χ360(181,)\chi_{360} (181, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 360, ( :5/2), 0.993+0.116i)(2,\ 360,\ (\ :5/2),\ -0.993 + 0.116i)

Particular Values

L(3)L(3) \approx 1.8937893901.893789390
L(12)L(\frac12) \approx 1.8937893901.893789390
L(72)L(\frac{7}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(4.78+3.01i)T 1 + (-4.78 + 3.01i)T
3 1 1
5 125iT 1 - 25iT
good7 1+56.4T+1.68e4T2 1 + 56.4T + 1.68e4T^{2}
11 1+261.iT1.61e5T2 1 + 261. iT - 1.61e5T^{2}
13 1+720.iT3.71e5T2 1 + 720. iT - 3.71e5T^{2}
17 11.87e3T+1.41e6T2 1 - 1.87e3T + 1.41e6T^{2}
19 11.99e3iT2.47e6T2 1 - 1.99e3iT - 2.47e6T^{2}
23 1+2.57e3T+6.43e6T2 1 + 2.57e3T + 6.43e6T^{2}
29 11.70e3iT2.05e7T2 1 - 1.70e3iT - 2.05e7T^{2}
31 1+7.73e3T+2.86e7T2 1 + 7.73e3T + 2.86e7T^{2}
37 1+1.22e4iT6.93e7T2 1 + 1.22e4iT - 6.93e7T^{2}
41 1+1.49e4T+1.15e8T2 1 + 1.49e4T + 1.15e8T^{2}
43 1+1.81e4iT1.47e8T2 1 + 1.81e4iT - 1.47e8T^{2}
47 1+2.14e3T+2.29e8T2 1 + 2.14e3T + 2.29e8T^{2}
53 11.60e3iT4.18e8T2 1 - 1.60e3iT - 4.18e8T^{2}
59 12.68e3iT7.14e8T2 1 - 2.68e3iT - 7.14e8T^{2}
61 1+4.45e4iT8.44e8T2 1 + 4.45e4iT - 8.44e8T^{2}
67 11.24e4iT1.35e9T2 1 - 1.24e4iT - 1.35e9T^{2}
71 1+8.18e3T+1.80e9T2 1 + 8.18e3T + 1.80e9T^{2}
73 1+4.10e4T+2.07e9T2 1 + 4.10e4T + 2.07e9T^{2}
79 14.63e4T+3.07e9T2 1 - 4.63e4T + 3.07e9T^{2}
83 16.16e4iT3.93e9T2 1 - 6.16e4iT - 3.93e9T^{2}
89 1+5.32e4T+5.58e9T2 1 + 5.32e4T + 5.58e9T^{2}
97 1+3.92e4T+8.58e9T2 1 + 3.92e4T + 8.58e9T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.31729815656893805297178151507, −9.707208163288533357170667149913, −8.195665420382237564243755648096, −7.17183890756217614105776189799, −5.85121668201411534462030908350, −5.49150911436203420454280454933, −3.67652534147793455630545132513, −3.25650353783891998038891973743, −1.77584305025505061400310945511, −0.32724985338002001614988813868, 1.71334156750915753822295096510, 3.12421158080268826447540289508, 4.26699966708305401168219599983, 5.13219339965880535620367483661, 6.24645887524989864403480775960, 7.11495678030438707807720204463, 8.041244713476131031367194288282, 9.147102279131487418021280779502, 10.02888605630489800997346391492, 11.49278957330199262281645114410

Graph of the ZZ-function along the critical line