L(s) = 1 | − 3-s + i·5-s − 2i·7-s + 9-s − i·15-s + 2i·21-s − 25-s − 27-s − 2i·29-s + 2·35-s + i·45-s − 3·49-s − 2i·63-s + 75-s + 81-s + ⋯ |
L(s) = 1 | − 3-s + i·5-s − 2i·7-s + 9-s − i·15-s + 2i·21-s − 25-s − 27-s − 2i·29-s + 2·35-s + i·45-s − 3·49-s − 2i·63-s + 75-s + 81-s + ⋯ |
Λ(s)=(=(3840s/2ΓC(s)L(s)iΛ(1−s)
Λ(s)=(=(3840s/2ΓC(s)L(s)iΛ(1−s)
Degree: |
2 |
Conductor: |
3840
= 28⋅3⋅5
|
Sign: |
i
|
Analytic conductor: |
1.91640 |
Root analytic conductor: |
1.38434 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3840(3329,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3840, ( :0), i)
|
Particular Values
L(21) |
≈ |
0.7053144522 |
L(21) |
≈ |
0.7053144522 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+T |
| 5 | 1−iT |
good | 7 | 1+2iT−T2 |
| 11 | 1−T2 |
| 13 | 1−T2 |
| 17 | 1+T2 |
| 19 | 1+T2 |
| 23 | 1+T2 |
| 29 | 1+2iT−T2 |
| 31 | 1+T2 |
| 37 | 1−T2 |
| 41 | 1−T2 |
| 43 | 1−T2 |
| 47 | 1+T2 |
| 53 | 1+T2 |
| 59 | 1−T2 |
| 61 | 1+T2 |
| 67 | 1−T2 |
| 71 | 1−T2 |
| 73 | 1−T2 |
| 79 | 1+T2 |
| 83 | 1+2T+T2 |
| 89 | 1−T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.162962266682954535427776334129, −7.45970949274410699590909001572, −7.03095272785522171683243936835, −6.37512496409794968348021218976, −5.67554635948981915123587390057, −4.43371192726024344295222772254, −4.11202120942474389035166806814, −3.13723728411488524040092425459, −1.74734552763181374110662214763, −0.48438635220208810746647840892,
1.33672138886155401013222576204, 2.25826098126639690136700412319, 3.47293448985008455850743269577, 4.70531615339593748017124364836, 5.16917982287412399886064201762, 5.75349590667892268663322316178, 6.36681335763592780053856351684, 7.33438178128938753698114340475, 8.316959596523776567222883685941, 8.887484216916158388395060563386