L(s) = 1 | − 3-s + i·5-s − 2i·7-s + 9-s − i·15-s + 2i·21-s − 25-s − 27-s − 2i·29-s + 2·35-s + i·45-s − 3·49-s − 2i·63-s + 75-s + 81-s + ⋯ |
L(s) = 1 | − 3-s + i·5-s − 2i·7-s + 9-s − i·15-s + 2i·21-s − 25-s − 27-s − 2i·29-s + 2·35-s + i·45-s − 3·49-s − 2i·63-s + 75-s + 81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7053144522\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7053144522\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + T \) |
| 5 | \( 1 - iT \) |
good | 7 | \( 1 + 2iT - T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 + 2iT - T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + 2T + T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.162962266682954535427776334129, −7.45970949274410699590909001572, −7.03095272785522171683243936835, −6.37512496409794968348021218976, −5.67554635948981915123587390057, −4.43371192726024344295222772254, −4.11202120942474389035166806814, −3.13723728411488524040092425459, −1.74734552763181374110662214763, −0.48438635220208810746647840892,
1.33672138886155401013222576204, 2.25826098126639690136700412319, 3.47293448985008455850743269577, 4.70531615339593748017124364836, 5.16917982287412399886064201762, 5.75349590667892268663322316178, 6.36681335763592780053856351684, 7.33438178128938753698114340475, 8.316959596523776567222883685941, 8.887484216916158388395060563386