Properties

Label 3840.1.c.e
Level 38403840
Weight 11
Character orbit 3840.c
Analytic conductor 1.9161.916
Analytic rank 00
Dimension 22
Projective image D2D_{2}
CM/RM discs -20, -24, 120
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3840,1,Mod(3329,3840)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3840, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3840.3329");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3840=2835 3840 = 2^{8} \cdot 3 \cdot 5
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3840.c (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.916409648511.91640964851
Analytic rank: 00
Dimension: 22
Coefficient field: Q(i)\Q(i)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 1920)
Projective image: D2D_{2}
Projective field: Galois closure of Q(5,6)\Q(\sqrt{-5}, \sqrt{-6})
Artin image: D4:C2D_4:C_2
Artin field: Galois closure of 8.0.33973862400.3

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qq3iq5+2iq7+q9+iq152iq21q25q27+2iq29+2q35iq453q49+2iq63+q75+q812q832iq87+O(q100) q - q^{3} - i q^{5} + 2 i q^{7} + q^{9} + i q^{15} - 2 i q^{21} - q^{25} - q^{27} + 2 i q^{29} + 2 q^{35} - i q^{45} - 3 q^{49} + 2 i q^{63} + q^{75} + q^{81} - 2 q^{83} - 2 i q^{87} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q3+2q92q252q27+4q356q49+2q75+2q814q83+O(q100) 2 q - 2 q^{3} + 2 q^{9} - 2 q^{25} - 2 q^{27} + 4 q^{35} - 6 q^{49} + 2 q^{75} + 2 q^{81} - 4 q^{83}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3840Z)×\left(\mathbb{Z}/3840\mathbb{Z}\right)^\times.

nn 511511 15371537 25612561 28212821
χ(n)\chi(n) 11 1-1 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
3329.1
1.00000i
1.00000i
0 −1.00000 0 1.00000i 0 2.00000i 0 1.00000 0
3329.2 0 −1.00000 0 1.00000i 0 2.00000i 0 1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
20.d odd 2 1 CM by Q(5)\Q(\sqrt{-5})
24.h odd 2 1 CM by Q(6)\Q(\sqrt{-6})
120.m even 2 1 RM by Q(30)\Q(\sqrt{30})
8.d odd 2 1 inner
12.b even 2 1 inner
15.d odd 2 1 inner
40.f even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3840.1.c.e 2
3.b odd 2 1 3840.1.c.h 2
4.b odd 2 1 3840.1.c.h 2
5.b even 2 1 3840.1.c.h 2
8.b even 2 1 3840.1.c.h 2
8.d odd 2 1 inner 3840.1.c.e 2
12.b even 2 1 inner 3840.1.c.e 2
15.d odd 2 1 inner 3840.1.c.e 2
16.e even 4 1 1920.1.i.e 2
16.e even 4 1 1920.1.i.f yes 2
16.f odd 4 1 1920.1.i.e 2
16.f odd 4 1 1920.1.i.f yes 2
20.d odd 2 1 CM 3840.1.c.e 2
24.f even 2 1 3840.1.c.h 2
24.h odd 2 1 CM 3840.1.c.e 2
40.e odd 2 1 3840.1.c.h 2
40.f even 2 1 inner 3840.1.c.e 2
48.i odd 4 1 1920.1.i.e 2
48.i odd 4 1 1920.1.i.f yes 2
48.k even 4 1 1920.1.i.e 2
48.k even 4 1 1920.1.i.f yes 2
60.h even 2 1 3840.1.c.h 2
80.k odd 4 1 1920.1.i.e 2
80.k odd 4 1 1920.1.i.f yes 2
80.q even 4 1 1920.1.i.e 2
80.q even 4 1 1920.1.i.f yes 2
120.i odd 2 1 3840.1.c.h 2
120.m even 2 1 RM 3840.1.c.e 2
240.t even 4 1 1920.1.i.e 2
240.t even 4 1 1920.1.i.f yes 2
240.bm odd 4 1 1920.1.i.e 2
240.bm odd 4 1 1920.1.i.f yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1920.1.i.e 2 16.e even 4 1
1920.1.i.e 2 16.f odd 4 1
1920.1.i.e 2 48.i odd 4 1
1920.1.i.e 2 48.k even 4 1
1920.1.i.e 2 80.k odd 4 1
1920.1.i.e 2 80.q even 4 1
1920.1.i.e 2 240.t even 4 1
1920.1.i.e 2 240.bm odd 4 1
1920.1.i.f yes 2 16.e even 4 1
1920.1.i.f yes 2 16.f odd 4 1
1920.1.i.f yes 2 48.i odd 4 1
1920.1.i.f yes 2 48.k even 4 1
1920.1.i.f yes 2 80.k odd 4 1
1920.1.i.f yes 2 80.q even 4 1
1920.1.i.f yes 2 240.t even 4 1
1920.1.i.f yes 2 240.bm odd 4 1
3840.1.c.e 2 1.a even 1 1 trivial
3840.1.c.e 2 8.d odd 2 1 inner
3840.1.c.e 2 12.b even 2 1 inner
3840.1.c.e 2 15.d odd 2 1 inner
3840.1.c.e 2 20.d odd 2 1 CM
3840.1.c.e 2 24.h odd 2 1 CM
3840.1.c.e 2 40.f even 2 1 inner
3840.1.c.e 2 120.m even 2 1 RM
3840.1.c.h 2 3.b odd 2 1
3840.1.c.h 2 4.b odd 2 1
3840.1.c.h 2 5.b even 2 1
3840.1.c.h 2 8.b even 2 1
3840.1.c.h 2 24.f even 2 1
3840.1.c.h 2 40.e odd 2 1
3840.1.c.h 2 60.h even 2 1
3840.1.c.h 2 120.i odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S1new(3840,[χ])S_{1}^{\mathrm{new}}(3840, [\chi]):

T72+4 T_{7}^{2} + 4 Copy content Toggle raw display
T23 T_{23} Copy content Toggle raw display
T31 T_{31} Copy content Toggle raw display
T53 T_{53} Copy content Toggle raw display
T83+2 T_{83} + 2 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
55 T2+1 T^{2} + 1 Copy content Toggle raw display
77 T2+4 T^{2} + 4 Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2 T^{2} Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 T2 T^{2} Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T2+4 T^{2} + 4 Copy content Toggle raw display
3131 T2 T^{2} Copy content Toggle raw display
3737 T2 T^{2} Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 T2 T^{2} Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 T2 T^{2} Copy content Toggle raw display
6767 T2 T^{2} Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T2 T^{2} Copy content Toggle raw display
7979 T2 T^{2} Copy content Toggle raw display
8383 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
8989 T2 T^{2} Copy content Toggle raw display
9797 T2 T^{2} Copy content Toggle raw display
show more
show less