L(s) = 1 | + (0.0490 − 0.998i)2-s + (0.514 + 0.857i)3-s + (−0.995 − 0.0980i)4-s + (0.336 − 0.941i)5-s + (0.881 − 0.471i)6-s + (−0.146 + 0.989i)8-s + (−0.471 + 0.881i)9-s + (−0.923 − 0.382i)10-s + (−0.427 − 0.903i)12-s + (0.980 − 0.195i)15-s + (0.980 + 0.195i)16-s + (1.77 + 0.352i)17-s + (0.857 + 0.514i)18-s + (0.293 + 0.0143i)19-s + (−0.427 + 0.903i)20-s + ⋯ |
L(s) = 1 | + (0.0490 − 0.998i)2-s + (0.514 + 0.857i)3-s + (−0.995 − 0.0980i)4-s + (0.336 − 0.941i)5-s + (0.881 − 0.471i)6-s + (−0.146 + 0.989i)8-s + (−0.471 + 0.881i)9-s + (−0.923 − 0.382i)10-s + (−0.427 − 0.903i)12-s + (0.980 − 0.195i)15-s + (0.980 + 0.195i)16-s + (1.77 + 0.352i)17-s + (0.857 + 0.514i)18-s + (0.293 + 0.0143i)19-s + (−0.427 + 0.903i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.817 + 0.575i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.817 + 0.575i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.547796171\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.547796171\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.0490 + 0.998i)T \) |
| 3 | \( 1 + (-0.514 - 0.857i)T \) |
| 5 | \( 1 + (-0.336 + 0.941i)T \) |
good | 7 | \( 1 + (-0.831 - 0.555i)T^{2} \) |
| 11 | \( 1 + (-0.290 + 0.956i)T^{2} \) |
| 13 | \( 1 + (0.634 + 0.773i)T^{2} \) |
| 17 | \( 1 + (-1.77 - 0.352i)T + (0.923 + 0.382i)T^{2} \) |
| 19 | \( 1 + (-0.293 - 0.0143i)T + (0.995 + 0.0980i)T^{2} \) |
| 23 | \( 1 + (0.145 - 1.47i)T + (-0.980 - 0.195i)T^{2} \) |
| 29 | \( 1 + (-0.956 + 0.290i)T^{2} \) |
| 31 | \( 1 + (-0.181 + 0.0750i)T + (0.707 - 0.707i)T^{2} \) |
| 37 | \( 1 + (-0.0980 - 0.995i)T^{2} \) |
| 41 | \( 1 + (-0.195 + 0.980i)T^{2} \) |
| 43 | \( 1 + (-0.471 - 0.881i)T^{2} \) |
| 47 | \( 1 + (-0.404 + 0.269i)T + (0.382 - 0.923i)T^{2} \) |
| 53 | \( 1 + (-0.574 - 0.0851i)T + (0.956 + 0.290i)T^{2} \) |
| 59 | \( 1 + (0.634 - 0.773i)T^{2} \) |
| 61 | \( 1 + (-0.390 + 1.55i)T + (-0.881 - 0.471i)T^{2} \) |
| 67 | \( 1 + (-0.881 - 0.471i)T^{2} \) |
| 71 | \( 1 + (-0.555 + 0.831i)T^{2} \) |
| 73 | \( 1 + (-0.831 + 0.555i)T^{2} \) |
| 79 | \( 1 + (-1.08 + 1.63i)T + (-0.382 - 0.923i)T^{2} \) |
| 83 | \( 1 + (0.698 - 0.633i)T + (0.0980 - 0.995i)T^{2} \) |
| 89 | \( 1 + (0.980 - 0.195i)T^{2} \) |
| 97 | \( 1 + (0.707 - 0.707i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.837703990590793528774063406132, −8.108713225245269429552442709807, −7.58861360629436449747737538757, −5.81213523759663097261622829203, −5.42538906509820984018495801499, −4.68437751640060550352855704386, −3.80029463018264226988793104407, −3.26770488388349878007206861585, −2.14631313322890035633347390395, −1.18269664870809742316742353317,
1.03271788724943338728817853611, 2.48119059993139024404462850774, 3.24519577524614751878416059524, 4.08986063915269881783256035517, 5.39449431734496505588286478940, 5.91113326906677415115268811953, 6.73010913645476971330694824505, 7.19030813674186631523910751942, 7.85475319896357741422668171968, 8.457126180747608084529700383251