L(s) = 1 | + (0.0490 − 0.998i)2-s + (0.514 + 0.857i)3-s + (−0.995 − 0.0980i)4-s + (0.336 − 0.941i)5-s + (0.881 − 0.471i)6-s + (−0.146 + 0.989i)8-s + (−0.471 + 0.881i)9-s + (−0.923 − 0.382i)10-s + (−0.427 − 0.903i)12-s + (0.980 − 0.195i)15-s + (0.980 + 0.195i)16-s + (1.77 + 0.352i)17-s + (0.857 + 0.514i)18-s + (0.293 + 0.0143i)19-s + (−0.427 + 0.903i)20-s + ⋯ |
L(s) = 1 | + (0.0490 − 0.998i)2-s + (0.514 + 0.857i)3-s + (−0.995 − 0.0980i)4-s + (0.336 − 0.941i)5-s + (0.881 − 0.471i)6-s + (−0.146 + 0.989i)8-s + (−0.471 + 0.881i)9-s + (−0.923 − 0.382i)10-s + (−0.427 − 0.903i)12-s + (0.980 − 0.195i)15-s + (0.980 + 0.195i)16-s + (1.77 + 0.352i)17-s + (0.857 + 0.514i)18-s + (0.293 + 0.0143i)19-s + (−0.427 + 0.903i)20-s + ⋯ |
Λ(s)=(=(3840s/2ΓC(s)L(s)(0.817+0.575i)Λ(1−s)
Λ(s)=(=(3840s/2ΓC(s)L(s)(0.817+0.575i)Λ(1−s)
Degree: |
2 |
Conductor: |
3840
= 28⋅3⋅5
|
Sign: |
0.817+0.575i
|
Analytic conductor: |
1.91640 |
Root analytic conductor: |
1.38434 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3840(1709,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3840, ( :0), 0.817+0.575i)
|
Particular Values
L(21) |
≈ |
1.547796171 |
L(21) |
≈ |
1.547796171 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.0490+0.998i)T |
| 3 | 1+(−0.514−0.857i)T |
| 5 | 1+(−0.336+0.941i)T |
good | 7 | 1+(−0.831−0.555i)T2 |
| 11 | 1+(−0.290+0.956i)T2 |
| 13 | 1+(0.634+0.773i)T2 |
| 17 | 1+(−1.77−0.352i)T+(0.923+0.382i)T2 |
| 19 | 1+(−0.293−0.0143i)T+(0.995+0.0980i)T2 |
| 23 | 1+(0.145−1.47i)T+(−0.980−0.195i)T2 |
| 29 | 1+(−0.956+0.290i)T2 |
| 31 | 1+(−0.181+0.0750i)T+(0.707−0.707i)T2 |
| 37 | 1+(−0.0980−0.995i)T2 |
| 41 | 1+(−0.195+0.980i)T2 |
| 43 | 1+(−0.471−0.881i)T2 |
| 47 | 1+(−0.404+0.269i)T+(0.382−0.923i)T2 |
| 53 | 1+(−0.574−0.0851i)T+(0.956+0.290i)T2 |
| 59 | 1+(0.634−0.773i)T2 |
| 61 | 1+(−0.390+1.55i)T+(−0.881−0.471i)T2 |
| 67 | 1+(−0.881−0.471i)T2 |
| 71 | 1+(−0.555+0.831i)T2 |
| 73 | 1+(−0.831+0.555i)T2 |
| 79 | 1+(−1.08+1.63i)T+(−0.382−0.923i)T2 |
| 83 | 1+(0.698−0.633i)T+(0.0980−0.995i)T2 |
| 89 | 1+(0.980−0.195i)T2 |
| 97 | 1+(0.707−0.707i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.837703990590793528774063406132, −8.108713225245269429552442709807, −7.58861360629436449747737538757, −5.81213523759663097261622829203, −5.42538906509820984018495801499, −4.68437751640060550352855704386, −3.80029463018264226988793104407, −3.26770488388349878007206861585, −2.14631313322890035633347390395, −1.18269664870809742316742353317,
1.03271788724943338728817853611, 2.48119059993139024404462850774, 3.24519577524614751878416059524, 4.08986063915269881783256035517, 5.39449431734496505588286478940, 5.91113326906677415115268811953, 6.73010913645476971330694824505, 7.19030813674186631523910751942, 7.85475319896357741422668171968, 8.457126180747608084529700383251