Properties

Label 3840.1.dy.a.1709.2
Level $3840$
Weight $1$
Character 3840.1709
Analytic conductor $1.916$
Analytic rank $0$
Dimension $64$
Projective image $D_{64}$
CM discriminant -15
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3840,1,Mod(29,3840)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3840, base_ring=CyclotomicField(64))
 
chi = DirichletCharacter(H, H._module([0, 59, 32, 32]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3840.29");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3840 = 2^{8} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3840.dy (of order \(64\), degree \(32\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.91640964851\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(2\) over \(\Q(\zeta_{64})\)
Coefficient field: \(\Q(\zeta_{128})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{64} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{64}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{64} + \cdots)\)

Embedding invariants

Embedding label 1709.2
Root \(-0.514103 - 0.857729i\) of defining polynomial
Character \(\chi\) \(=\) 3840.1709
Dual form 3840.1.dy.a.1829.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0490677 - 0.998795i) q^{2} +(0.514103 + 0.857729i) q^{3} +(-0.995185 - 0.0980171i) q^{4} +(0.336890 - 0.941544i) q^{5} +(0.881921 - 0.471397i) q^{6} +(-0.146730 + 0.989177i) q^{8} +(-0.471397 + 0.881921i) q^{9} +(-0.923880 - 0.382683i) q^{10} +(-0.427555 - 0.903989i) q^{12} +(0.980785 - 0.195090i) q^{15} +(0.980785 + 0.195090i) q^{16} +(1.77324 + 0.352719i) q^{17} +(0.857729 + 0.514103i) q^{18} +(0.293107 + 0.0143994i) q^{19} +(-0.427555 + 0.903989i) q^{20} +(-0.145252 + 1.47477i) q^{23} +(-0.923880 + 0.382683i) q^{24} +(-0.773010 - 0.634393i) q^{25} +(-0.998795 + 0.0490677i) q^{27} +(-0.146730 - 0.989177i) q^{30} +(0.181112 - 0.0750191i) q^{31} +(0.242980 - 0.970031i) q^{32} +(0.439303 - 1.75380i) q^{34} +(0.555570 - 0.831470i) q^{36} +(0.0287642 - 0.292048i) q^{38} +(0.881921 + 0.471397i) q^{40} +(0.671559 + 0.740951i) q^{45} +(1.46586 + 0.217440i) q^{46} +(0.404061 - 0.269985i) q^{47} +(0.336890 + 0.941544i) q^{48} +(0.831470 + 0.555570i) q^{49} +(-0.671559 + 0.740951i) q^{50} +(0.609090 + 1.70229i) q^{51} +(0.574286 + 0.0851872i) q^{53} +1.00000i q^{54} +(0.138337 + 0.258809i) q^{57} +(-0.995185 + 0.0980171i) q^{60} +(0.390327 - 1.55827i) q^{61} +(-0.0660420 - 0.184575i) q^{62} +(-0.956940 - 0.290285i) q^{64} +(-1.73013 - 0.524828i) q^{68} +(-1.33962 + 0.633595i) q^{69} +(-0.803208 - 0.595699i) q^{72} +(0.146730 - 0.989177i) q^{75} +(-0.290285 - 0.0430597i) q^{76} +(1.08979 - 1.63099i) q^{79} +(0.514103 - 0.857729i) q^{80} +(-0.555570 - 0.831470i) q^{81} +(-0.698564 + 0.633141i) q^{83} +(0.929487 - 1.55075i) q^{85} +(0.773010 - 0.634393i) q^{90} +(0.289105 - 1.45343i) q^{92} +(0.157456 + 0.116777i) q^{93} +(-0.249834 - 0.416822i) q^{94} +(0.112303 - 0.271123i) q^{95} +(0.956940 - 0.290285i) q^{96} +(0.595699 - 0.803208i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3840\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(1537\) \(2561\) \(2821\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(e\left(\frac{39}{64}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0490677 0.998795i 0.0490677 0.998795i
\(3\) 0.514103 + 0.857729i 0.514103 + 0.857729i
\(4\) −0.995185 0.0980171i −0.995185 0.0980171i
\(5\) 0.336890 0.941544i 0.336890 0.941544i
\(6\) 0.881921 0.471397i 0.881921 0.471397i
\(7\) 0 0 −0.956940 0.290285i \(-0.906250\pi\)
0.956940 + 0.290285i \(0.0937500\pi\)
\(8\) −0.146730 + 0.989177i −0.146730 + 0.989177i
\(9\) −0.471397 + 0.881921i −0.471397 + 0.881921i
\(10\) −0.923880 0.382683i −0.923880 0.382683i
\(11\) 0 0 0.803208 0.595699i \(-0.203125\pi\)
−0.803208 + 0.595699i \(0.796875\pi\)
\(12\) −0.427555 0.903989i −0.427555 0.903989i
\(13\) 0 0 0.427555 0.903989i \(-0.359375\pi\)
−0.427555 + 0.903989i \(0.640625\pi\)
\(14\) 0 0
\(15\) 0.980785 0.195090i 0.980785 0.195090i
\(16\) 0.980785 + 0.195090i 0.980785 + 0.195090i
\(17\) 1.77324 + 0.352719i 1.77324 + 0.352719i 0.970031 0.242980i \(-0.0781250\pi\)
0.803208 + 0.595699i \(0.203125\pi\)
\(18\) 0.857729 + 0.514103i 0.857729 + 0.514103i
\(19\) 0.293107 + 0.0143994i 0.293107 + 0.0143994i 0.195090 0.980785i \(-0.437500\pi\)
0.0980171 + 0.995185i \(0.468750\pi\)
\(20\) −0.427555 + 0.903989i −0.427555 + 0.903989i
\(21\) 0 0
\(22\) 0 0
\(23\) −0.145252 + 1.47477i −0.145252 + 1.47477i 0.595699 + 0.803208i \(0.296875\pi\)
−0.740951 + 0.671559i \(0.765625\pi\)
\(24\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(25\) −0.773010 0.634393i −0.773010 0.634393i
\(26\) 0 0
\(27\) −0.998795 + 0.0490677i −0.998795 + 0.0490677i
\(28\) 0 0
\(29\) 0 0 0.989177 0.146730i \(-0.0468750\pi\)
−0.989177 + 0.146730i \(0.953125\pi\)
\(30\) −0.146730 0.989177i −0.146730 0.989177i
\(31\) 0.181112 0.0750191i 0.181112 0.0750191i −0.290285 0.956940i \(-0.593750\pi\)
0.471397 + 0.881921i \(0.343750\pi\)
\(32\) 0.242980 0.970031i 0.242980 0.970031i
\(33\) 0 0
\(34\) 0.439303 1.75380i 0.439303 1.75380i
\(35\) 0 0
\(36\) 0.555570 0.831470i 0.555570 0.831470i
\(37\) 0 0 −0.740951 0.671559i \(-0.765625\pi\)
0.740951 + 0.671559i \(0.234375\pi\)
\(38\) 0.0287642 0.292048i 0.0287642 0.292048i
\(39\) 0 0
\(40\) 0.881921 + 0.471397i 0.881921 + 0.471397i
\(41\) 0 0 0.773010 0.634393i \(-0.218750\pi\)
−0.773010 + 0.634393i \(0.781250\pi\)
\(42\) 0 0
\(43\) 0 0 −0.857729 0.514103i \(-0.828125\pi\)
0.857729 + 0.514103i \(0.171875\pi\)
\(44\) 0 0
\(45\) 0.671559 + 0.740951i 0.671559 + 0.740951i
\(46\) 1.46586 + 0.217440i 1.46586 + 0.217440i
\(47\) 0.404061 0.269985i 0.404061 0.269985i −0.336890 0.941544i \(-0.609375\pi\)
0.740951 + 0.671559i \(0.234375\pi\)
\(48\) 0.336890 + 0.941544i 0.336890 + 0.941544i
\(49\) 0.831470 + 0.555570i 0.831470 + 0.555570i
\(50\) −0.671559 + 0.740951i −0.671559 + 0.740951i
\(51\) 0.609090 + 1.70229i 0.609090 + 1.70229i
\(52\) 0 0
\(53\) 0.574286 + 0.0851872i 0.574286 + 0.0851872i 0.427555 0.903989i \(-0.359375\pi\)
0.146730 + 0.989177i \(0.453125\pi\)
\(54\) 1.00000i 1.00000i
\(55\) 0 0
\(56\) 0 0
\(57\) 0.138337 + 0.258809i 0.138337 + 0.258809i
\(58\) 0 0
\(59\) 0 0 −0.427555 0.903989i \(-0.640625\pi\)
0.427555 + 0.903989i \(0.359375\pi\)
\(60\) −0.995185 + 0.0980171i −0.995185 + 0.0980171i
\(61\) 0.390327 1.55827i 0.390327 1.55827i −0.382683 0.923880i \(-0.625000\pi\)
0.773010 0.634393i \(-0.218750\pi\)
\(62\) −0.0660420 0.184575i −0.0660420 0.184575i
\(63\) 0 0
\(64\) −0.956940 0.290285i −0.956940 0.290285i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 −0.970031 0.242980i \(-0.921875\pi\)
0.970031 + 0.242980i \(0.0781250\pi\)
\(68\) −1.73013 0.524828i −1.73013 0.524828i
\(69\) −1.33962 + 0.633595i −1.33962 + 0.633595i
\(70\) 0 0
\(71\) 0 0 0.881921 0.471397i \(-0.156250\pi\)
−0.881921 + 0.471397i \(0.843750\pi\)
\(72\) −0.803208 0.595699i −0.803208 0.595699i
\(73\) 0 0 0.956940 0.290285i \(-0.0937500\pi\)
−0.956940 + 0.290285i \(0.906250\pi\)
\(74\) 0 0
\(75\) 0.146730 0.989177i 0.146730 0.989177i
\(76\) −0.290285 0.0430597i −0.290285 0.0430597i
\(77\) 0 0
\(78\) 0 0
\(79\) 1.08979 1.63099i 1.08979 1.63099i 0.382683 0.923880i \(-0.375000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(80\) 0.514103 0.857729i 0.514103 0.857729i
\(81\) −0.555570 0.831470i −0.555570 0.831470i
\(82\) 0 0
\(83\) −0.698564 + 0.633141i −0.698564 + 0.633141i −0.941544 0.336890i \(-0.890625\pi\)
0.242980 + 0.970031i \(0.421875\pi\)
\(84\) 0 0
\(85\) 0.929487 1.55075i 0.929487 1.55075i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.0980171 0.995185i \(-0.531250\pi\)
0.0980171 + 0.995185i \(0.468750\pi\)
\(90\) 0.773010 0.634393i 0.773010 0.634393i
\(91\) 0 0
\(92\) 0.289105 1.45343i 0.289105 1.45343i
\(93\) 0.157456 + 0.116777i 0.157456 + 0.116777i
\(94\) −0.249834 0.416822i −0.249834 0.416822i
\(95\) 0.112303 0.271123i 0.112303 0.271123i
\(96\) 0.956940 0.290285i 0.956940 0.290285i
\(97\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(98\) 0.595699 0.803208i 0.595699 0.803208i
\(99\) 0 0
\(100\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(101\) 0 0 −0.0490677 0.998795i \(-0.515625\pi\)
0.0490677 + 0.998795i \(0.484375\pi\)
\(102\) 1.73013 0.524828i 1.73013 0.524828i
\(103\) 0 0 0.634393 0.773010i \(-0.281250\pi\)
−0.634393 + 0.773010i \(0.718750\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0.113263 0.569414i 0.113263 0.569414i
\(107\) −1.49969 + 0.375652i −1.49969 + 0.375652i −0.903989 0.427555i \(-0.859375\pi\)
−0.595699 + 0.803208i \(0.703125\pi\)
\(108\) 0.998795 + 0.0490677i 0.998795 + 0.0490677i
\(109\) 0.0841735 1.71339i 0.0841735 1.71339i −0.471397 0.881921i \(-0.656250\pi\)
0.555570 0.831470i \(-0.312500\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0.378487 + 1.90278i 0.378487 + 1.90278i 0.427555 + 0.903989i \(0.359375\pi\)
−0.0490677 + 0.998795i \(0.515625\pi\)
\(114\) 0.265286 0.125471i 0.265286 0.125471i
\(115\) 1.33962 + 0.633595i 1.33962 + 0.633595i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0.0490677 + 0.998795i 0.0490677 + 0.998795i
\(121\) 0.290285 0.956940i 0.290285 0.956940i
\(122\) −1.53724 0.466318i −1.53724 0.466318i
\(123\) 0 0
\(124\) −0.187593 + 0.0569057i −0.187593 + 0.0569057i
\(125\) −0.857729 + 0.514103i −0.857729 + 0.514103i
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) −0.336890 + 0.941544i −0.336890 + 0.941544i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 0.857729 0.514103i \(-0.171875\pi\)
−0.857729 + 0.514103i \(0.828125\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −0.290285 + 0.956940i −0.290285 + 0.956940i
\(136\) −0.609090 + 1.70229i −0.609090 + 1.70229i
\(137\) 0.906796 + 0.484693i 0.906796 + 0.484693i 0.857729 0.514103i \(-0.171875\pi\)
0.0490677 + 0.998795i \(0.484375\pi\)
\(138\) 0.567099 + 1.36910i 0.567099 + 1.36910i
\(139\) 1.18996 + 1.60448i 1.18996 + 1.60448i 0.634393 + 0.773010i \(0.281250\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(140\) 0 0
\(141\) 0.439303 + 0.207775i 0.439303 + 0.207775i
\(142\) 0 0
\(143\) 0 0
\(144\) −0.634393 + 0.773010i −0.634393 + 0.773010i
\(145\) 0 0
\(146\) 0 0
\(147\) −0.0490677 + 0.998795i −0.0490677 + 0.998795i
\(148\) 0 0
\(149\) 0 0 0.970031 0.242980i \(-0.0781250\pi\)
−0.970031 + 0.242980i \(0.921875\pi\)
\(150\) −0.980785 0.195090i −0.980785 0.195090i
\(151\) −1.75535 0.172887i −1.75535 0.172887i −0.831470 0.555570i \(-0.812500\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(152\) −0.0572514 + 0.287822i −0.0572514 + 0.287822i
\(153\) −1.14697 + 1.39759i −1.14697 + 1.39759i
\(154\) 0 0
\(155\) −0.00961895 0.195798i −0.00961895 0.195798i
\(156\) 0 0
\(157\) 0 0 −0.146730 0.989177i \(-0.546875\pi\)
0.146730 + 0.989177i \(0.453125\pi\)
\(158\) −1.57555 1.16851i −1.57555 1.16851i
\(159\) 0.222174 + 0.536376i 0.222174 + 0.536376i
\(160\) −0.831470 0.555570i −0.831470 0.555570i
\(161\) 0 0
\(162\) −0.857729 + 0.514103i −0.857729 + 0.514103i
\(163\) 0 0 −0.803208 0.595699i \(-0.796875\pi\)
0.803208 + 0.595699i \(0.203125\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0.598102 + 0.728789i 0.598102 + 0.728789i
\(167\) 0.184575 + 1.87402i 0.184575 + 1.87402i 0.427555 + 0.903989i \(0.359375\pi\)
−0.242980 + 0.970031i \(0.578125\pi\)
\(168\) 0 0
\(169\) −0.634393 0.773010i −0.634393 0.773010i
\(170\) −1.50328 1.00446i −1.50328 1.00446i
\(171\) −0.150869 + 0.251710i −0.150869 + 0.251710i
\(172\) 0 0
\(173\) 0.940109 0.852065i 0.940109 0.852065i −0.0490677 0.998795i \(-0.515625\pi\)
0.989177 + 0.146730i \(0.0468750\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 0.941544 0.336890i \(-0.109375\pi\)
−0.941544 + 0.336890i \(0.890625\pi\)
\(180\) −0.595699 0.803208i −0.595699 0.803208i
\(181\) −0.0988640 + 0.666487i −0.0988640 + 0.666487i 0.881921 + 0.471397i \(0.156250\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(182\) 0 0
\(183\) 1.53724 0.466318i 1.53724 0.466318i
\(184\) −1.43749 0.360073i −1.43749 0.360073i
\(185\) 0 0
\(186\) 0.124363 0.151537i 0.124363 0.151537i
\(187\) 0 0
\(188\) −0.428579 + 0.229080i −0.428579 + 0.229080i
\(189\) 0 0
\(190\) −0.265286 0.125471i −0.265286 0.125471i
\(191\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(192\) −0.242980 0.970031i −0.242980 0.970031i
\(193\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −0.773010 0.634393i −0.773010 0.634393i
\(197\) −0.710998 1.50328i −0.710998 1.50328i −0.857729 0.514103i \(-0.828125\pi\)
0.146730 0.989177i \(-0.453125\pi\)
\(198\) 0 0
\(199\) −0.523788 0.979938i −0.523788 0.979938i −0.995185 0.0980171i \(-0.968750\pi\)
0.471397 0.881921i \(-0.343750\pi\)
\(200\) 0.740951 0.671559i 0.740951 0.671559i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) −0.439303 1.75380i −0.439303 1.75380i
\(205\) 0 0
\(206\) 0 0
\(207\) −1.23216 0.823301i −1.23216 0.823301i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 1.15203 + 1.27107i 1.15203 + 1.27107i 0.956940 + 0.290285i \(0.0937500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(212\) −0.563170 0.141067i −0.563170 0.141067i
\(213\) 0 0
\(214\) 0.301614 + 1.51631i 0.301614 + 1.51631i
\(215\) 0 0
\(216\) 0.0980171 0.995185i 0.0980171 0.995185i
\(217\) 0 0
\(218\) −1.70720 0.168144i −1.70720 0.168144i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(224\) 0 0
\(225\) 0.923880 0.382683i 0.923880 0.382683i
\(226\) 1.91906 0.284666i 1.91906 0.284666i
\(227\) −1.89317 + 0.280825i −1.89317 + 0.280825i −0.989177 0.146730i \(-0.953125\pi\)
−0.903989 + 0.427555i \(0.859375\pi\)
\(228\) −0.112303 0.271123i −0.112303 0.271123i
\(229\) −0.0980171 + 0.00481527i −0.0980171 + 0.00481527i −0.0980171 0.995185i \(-0.531250\pi\)
1.00000i \(0.5\pi\)
\(230\) 0.698564 1.30692i 0.698564 1.30692i
\(231\) 0 0
\(232\) 0 0
\(233\) 0.00961895 0.0976628i 0.00961895 0.0976628i −0.989177 0.146730i \(-0.953125\pi\)
0.998795 + 0.0490677i \(0.0156250\pi\)
\(234\) 0 0
\(235\) −0.118079 0.471397i −0.118079 0.471397i
\(236\) 0 0
\(237\) 1.95921 + 0.0962497i 1.95921 + 0.0962497i
\(238\) 0 0
\(239\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(240\) 1.00000 1.00000
\(241\) −1.95213 + 0.388302i −1.95213 + 0.388302i −0.956940 + 0.290285i \(0.906250\pi\)
−0.995185 + 0.0980171i \(0.968750\pi\)
\(242\) −0.941544 0.336890i −0.941544 0.336890i
\(243\) 0.427555 0.903989i 0.427555 0.903989i
\(244\) −0.541185 + 1.51251i −0.541185 + 1.51251i
\(245\) 0.803208 0.595699i 0.803208 0.595699i
\(246\) 0 0
\(247\) 0 0
\(248\) 0.0476324 + 0.190159i 0.0476324 + 0.190159i
\(249\) −0.902197 0.273678i −0.902197 0.273678i
\(250\) 0.471397 + 0.881921i 0.471397 + 0.881921i
\(251\) 0 0 0.336890 0.941544i \(-0.390625\pi\)
−0.336890 + 0.941544i \(0.609375\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 1.80798 1.80798
\(256\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(257\) −1.34312 −1.34312 −0.671559 0.740951i \(-0.734375\pi\)
−0.671559 + 0.740951i \(0.734375\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0.818289 + 0.248225i 0.818289 + 0.248225i 0.671559 0.740951i \(-0.265625\pi\)
0.146730 + 0.989177i \(0.453125\pi\)
\(264\) 0 0
\(265\) 0.273678 0.512016i 0.273678 0.512016i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 0.427555 0.903989i \(-0.359375\pi\)
−0.427555 + 0.903989i \(0.640625\pi\)
\(270\) 0.941544 + 0.336890i 0.941544 + 0.336890i
\(271\) −1.81225 + 0.360480i −1.81225 + 0.360480i −0.980785 0.195090i \(-0.937500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(272\) 1.67035 + 0.691883i 1.67035 + 0.691883i
\(273\) 0 0
\(274\) 0.528603 0.881921i 0.528603 0.881921i
\(275\) 0 0
\(276\) 1.39528 0.499238i 1.39528 0.499238i
\(277\) 0 0 −0.242980 0.970031i \(-0.578125\pi\)
0.242980 + 0.970031i \(0.421875\pi\)
\(278\) 1.66094 1.10980i 1.66094 1.10980i
\(279\) −0.0192147 + 0.195090i −0.0192147 + 0.195090i
\(280\) 0 0
\(281\) 0 0 −0.773010 0.634393i \(-0.781250\pi\)
0.773010 + 0.634393i \(0.218750\pi\)
\(282\) 0.229080 0.428579i 0.229080 0.428579i
\(283\) 0 0 0.998795 0.0490677i \(-0.0156250\pi\)
−0.998795 + 0.0490677i \(0.984375\pi\)
\(284\) 0 0
\(285\) 0.290285 0.0430597i 0.290285 0.0430597i
\(286\) 0 0
\(287\) 0 0
\(288\) 0.740951 + 0.671559i 0.740951 + 0.671559i
\(289\) 2.09609 + 0.868227i 2.09609 + 0.868227i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −0.698564 0.633141i −0.698564 0.633141i 0.242980 0.970031i \(-0.421875\pi\)
−0.941544 + 0.336890i \(0.890625\pi\)
\(294\) 0.995185 + 0.0980171i 0.995185 + 0.0980171i
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) −0.242980 + 0.970031i −0.242980 + 0.970031i
\(301\) 0 0
\(302\) −0.258809 + 1.74475i −0.258809 + 1.74475i
\(303\) 0 0
\(304\) 0.284666 + 0.0713052i 0.284666 + 0.0713052i
\(305\) −1.33569 0.892476i −1.33569 0.892476i
\(306\) 1.33962 + 1.21416i 1.33962 + 1.21416i
\(307\) 0 0 −0.336890 0.941544i \(-0.609375\pi\)
0.336890 + 0.941544i \(0.390625\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −0.196034 −0.196034
\(311\) 0 0 −0.290285 0.956940i \(-0.593750\pi\)
0.290285 + 0.956940i \(0.406250\pi\)
\(312\) 0 0
\(313\) 0 0 −0.471397 0.881921i \(-0.656250\pi\)
0.471397 + 0.881921i \(0.343750\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −1.24441 + 1.51631i −1.24441 + 1.51631i
\(317\) −0.0948062 + 0.378487i −0.0948062 + 0.378487i −0.998795 0.0490677i \(-0.984375\pi\)
0.903989 + 0.427555i \(0.140625\pi\)
\(318\) 0.546632 0.195588i 0.546632 0.195588i
\(319\) 0 0
\(320\) −0.595699 + 0.803208i −0.595699 + 0.803208i
\(321\) −1.09320 1.09320i −1.09320 1.09320i
\(322\) 0 0
\(323\) 0.514671 + 0.128918i 0.514671 + 0.128918i
\(324\) 0.471397 + 0.881921i 0.471397 + 0.881921i
\(325\) 0 0
\(326\) 0 0
\(327\) 1.51290 0.808661i 1.51290 0.808661i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0.276306 1.86271i 0.276306 1.86271i −0.195090 0.980785i \(-0.562500\pi\)
0.471397 0.881921i \(-0.343750\pi\)
\(332\) 0.757259 0.561621i 0.757259 0.561621i
\(333\) 0 0
\(334\) 1.88082 0.0923988i 1.88082 0.0923988i
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(338\) −0.803208 + 0.595699i −0.803208 + 0.595699i
\(339\) −1.43749 + 1.30287i −1.43749 + 1.30287i
\(340\) −1.07701 + 1.45218i −1.07701 + 1.45218i
\(341\) 0 0
\(342\) 0.244004 + 0.163038i 0.244004 + 0.163038i
\(343\) 0 0
\(344\) 0 0
\(345\) 0.145252 + 1.47477i 0.145252 + 1.47477i
\(346\) −0.804910 0.980785i −0.804910 0.980785i
\(347\) 0.262029 0.289105i 0.262029 0.289105i −0.595699 0.803208i \(-0.703125\pi\)
0.857729 + 0.514103i \(0.171875\pi\)
\(348\) 0 0
\(349\) −1.58903 1.17850i −1.58903 1.17850i −0.881921 0.471397i \(-0.843750\pi\)
−0.707107 0.707107i \(-0.750000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −0.455929 1.10071i −0.455929 1.10071i −0.970031 0.242980i \(-0.921875\pi\)
0.514103 0.857729i \(-0.328125\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.634393 0.773010i \(-0.281250\pi\)
−0.634393 + 0.773010i \(0.718750\pi\)
\(360\) −0.831470 + 0.555570i −0.831470 + 0.555570i
\(361\) −0.909480 0.0895760i −0.909480 0.0895760i
\(362\) 0.660833 + 0.131448i 0.660833 + 0.131448i
\(363\) 0.970031 0.242980i 0.970031 0.242980i
\(364\) 0 0
\(365\) 0 0
\(366\) −0.390327 1.55827i −0.390327 1.55827i
\(367\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(368\) −0.430174 + 1.41809i −0.430174 + 1.41809i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) −0.145252 0.131649i −0.145252 0.131649i
\(373\) 0 0 −0.595699 0.803208i \(-0.703125\pi\)
0.595699 + 0.803208i \(0.296875\pi\)
\(374\) 0 0
\(375\) −0.881921 0.471397i −0.881921 0.471397i
\(376\) 0.207775 + 0.439303i 0.207775 + 0.439303i
\(377\) 0 0
\(378\) 0 0
\(379\) −0.634393 0.226990i −0.634393 0.226990i 1.00000i \(-0.5\pi\)
−0.634393 + 0.773010i \(0.718750\pi\)
\(380\) −0.138337 + 0.258809i −0.138337 + 0.258809i
\(381\) 0 0
\(382\) 0 0
\(383\) 1.19140i 1.19140i 0.803208 + 0.595699i \(0.203125\pi\)
−0.803208 + 0.595699i \(0.796875\pi\)
\(384\) −0.980785 + 0.195090i −0.980785 + 0.195090i
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 −0.941544 0.336890i \(-0.890625\pi\)
0.941544 + 0.336890i \(0.109375\pi\)
\(390\) 0 0
\(391\) −0.777745 + 2.56388i −0.777745 + 2.56388i
\(392\) −0.671559 + 0.740951i −0.671559 + 0.740951i
\(393\) 0 0
\(394\) −1.53636 + 0.636379i −1.53636 + 0.636379i
\(395\) −1.16851 1.57555i −1.16851 1.57555i
\(396\) 0 0
\(397\) 0 0 −0.903989 0.427555i \(-0.859375\pi\)
0.903989 + 0.427555i \(0.140625\pi\)
\(398\) −1.00446 + 0.475074i −1.00446 + 0.475074i
\(399\) 0 0
\(400\) −0.634393 0.773010i −0.634393 0.773010i
\(401\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −0.970031 + 0.242980i −0.970031 + 0.242980i
\(406\) 0 0
\(407\) 0 0
\(408\) −1.77324 + 0.352719i −1.77324 + 0.352719i
\(409\) −1.11897 + 1.36347i −1.11897 + 1.36347i −0.195090 + 0.980785i \(0.562500\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(410\) 0 0
\(411\) 0.0504517 + 1.02697i 0.0504517 + 1.02697i
\(412\) 0 0
\(413\) 0 0
\(414\) −0.882768 + 1.19028i −0.882768 + 1.19028i
\(415\) 0.360791 + 0.871028i 0.360791 + 0.871028i
\(416\) 0 0
\(417\) −0.764445 + 1.84553i −0.764445 + 1.84553i
\(418\) 0 0
\(419\) 0 0 −0.803208 0.595699i \(-0.796875\pi\)
0.803208 + 0.595699i \(0.203125\pi\)
\(420\) 0 0
\(421\) −1.34150 + 1.48012i −1.34150 + 1.48012i −0.634393 + 0.773010i \(0.718750\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(422\) 1.32607 1.08827i 1.32607 1.08827i
\(423\) 0.0476324 + 0.483620i 0.0476324 + 0.483620i
\(424\) −0.168530 + 0.555570i −0.168530 + 0.555570i
\(425\) −1.14697 1.39759i −1.14697 1.39759i
\(426\) 0 0
\(427\) 0 0
\(428\) 1.52929 0.226848i 1.52929 0.226848i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(432\) −0.989177 0.146730i −0.989177 0.146730i
\(433\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −0.251710 + 1.69689i −0.251710 + 1.69689i
\(437\) −0.0638102 + 0.430174i −0.0638102 + 0.430174i
\(438\) 0 0
\(439\) 1.59133 0.482726i 1.59133 0.482726i 0.634393 0.773010i \(-0.281250\pi\)
0.956940 + 0.290285i \(0.0937500\pi\)
\(440\) 0 0
\(441\) −0.881921 + 0.471397i −0.881921 + 0.471397i
\(442\) 0 0
\(443\) 1.79927 0.850993i 1.79927 0.850993i 0.857729 0.514103i \(-0.171875\pi\)
0.941544 0.336890i \(-0.109375\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(450\) −0.336890 0.941544i −0.336890 0.941544i
\(451\) 0 0
\(452\) −0.190159 1.93072i −0.190159 1.93072i
\(453\) −0.754140 1.59449i −0.754140 1.59449i
\(454\) 0.187593 + 1.90466i 0.187593 + 1.90466i
\(455\) 0 0
\(456\) −0.276306 + 0.0988640i −0.276306 + 0.0988640i
\(457\) 0 0 −0.290285 0.956940i \(-0.593750\pi\)
0.290285 + 0.956940i \(0.406250\pi\)
\(458\) 0.0981353i 0.0981353i
\(459\) −1.78841 0.265286i −1.78841 0.265286i
\(460\) −1.27107 0.761850i −1.27107 0.761850i
\(461\) 0 0 −0.336890 0.941544i \(-0.609375\pi\)
0.336890 + 0.941544i \(0.390625\pi\)
\(462\) 0 0
\(463\) 0 0 −0.831470 0.555570i \(-0.812500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(464\) 0 0
\(465\) 0.162997 0.108911i 0.162997 0.108911i
\(466\) −0.0970732 0.0143994i −0.0970732 0.0143994i
\(467\) −1.11676 1.23216i −1.11676 1.23216i −0.970031 0.242980i \(-0.921875\pi\)
−0.146730 0.989177i \(-0.546875\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −0.476623 + 0.0948062i −0.476623 + 0.0948062i
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0.192268 1.95213i 0.192268 1.95213i
\(475\) −0.217440 0.197076i −0.217440 0.197076i
\(476\) 0 0
\(477\) −0.345845 + 0.466318i −0.345845 + 0.466318i
\(478\) 0 0
\(479\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(480\) 0.0490677 0.998795i 0.0490677 0.998795i
\(481\) 0 0
\(482\) 0.292048 + 1.96883i 0.292048 + 1.96883i
\(483\) 0 0
\(484\) −0.382683 + 0.923880i −0.382683 + 0.923880i
\(485\) 0 0
\(486\) −0.881921 0.471397i −0.881921 0.471397i
\(487\) 0 0 −0.773010 0.634393i \(-0.781250\pi\)
0.773010 + 0.634393i \(0.218750\pi\)
\(488\) 1.48413 + 0.614748i 1.48413 + 0.614748i
\(489\) 0 0
\(490\) −0.555570 0.831470i −0.555570 0.831470i
\(491\) 0 0 −0.242980 0.970031i \(-0.578125\pi\)
0.242980 + 0.970031i \(0.421875\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0.192268 0.0382444i 0.192268 0.0382444i
\(497\) 0 0
\(498\) −0.317618 + 0.887682i −0.317618 + 0.887682i
\(499\) 0.0419583 0.0887133i 0.0419583 0.0887133i −0.881921 0.471397i \(-0.843750\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(500\) 0.903989 0.427555i 0.903989 0.427555i
\(501\) −1.51251 + 1.12175i −1.51251 + 1.12175i
\(502\) 0 0
\(503\) 0.484693 0.906796i 0.484693 0.906796i −0.514103 0.857729i \(-0.671875\pi\)
0.998795 0.0490677i \(-0.0156250\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0.336890 0.941544i 0.336890 0.941544i
\(508\) 0 0
\(509\) 0 0 −0.514103 0.857729i \(-0.671875\pi\)
0.514103 + 0.857729i \(0.328125\pi\)
\(510\) 0.0887133 1.80580i 0.0887133 1.80580i
\(511\) 0 0
\(512\) 0.427555 0.903989i 0.427555 0.903989i
\(513\) −0.293461 −0.293461
\(514\) −0.0659037 + 1.34150i −0.0659037 + 1.34150i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 1.21415 + 0.368309i 1.21415 + 0.368309i
\(520\) 0 0
\(521\) 0 0 0.471397 0.881921i \(-0.343750\pi\)
−0.471397 + 0.881921i \(0.656250\pi\)
\(522\) 0 0
\(523\) 0 0 0.803208 0.595699i \(-0.203125\pi\)
−0.803208 + 0.595699i \(0.796875\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0.288078 0.805124i 0.288078 0.805124i
\(527\) 0.347616 0.0691450i 0.347616 0.0691450i
\(528\) 0 0
\(529\) −1.17305 0.233335i −1.17305 0.233335i
\(530\) −0.497971 0.298472i −0.497971 0.298472i
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −0.151537 + 1.53858i −0.151537 + 1.53858i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0.382683 0.923880i 0.382683 0.923880i
\(541\) −1.86271 + 0.276306i −1.86271 + 0.276306i −0.980785 0.195090i \(-0.937500\pi\)
−0.881921 + 0.471397i \(0.843750\pi\)
\(542\) 0.271123 + 1.82776i 0.271123 + 1.82776i
\(543\) −0.622491 + 0.257844i −0.622491 + 0.257844i
\(544\) 0.773010 1.63439i 0.773010 1.63439i
\(545\) −1.58488 0.656477i −1.58488 0.656477i
\(546\) 0 0
\(547\) 0 0 0.595699 0.803208i \(-0.296875\pi\)
−0.595699 + 0.803208i \(0.703125\pi\)
\(548\) −0.854922 0.571240i −0.854922 0.571240i
\(549\) 1.19028 + 1.07880i 1.19028 + 1.07880i
\(550\) 0 0
\(551\) 0 0
\(552\) −0.430174 1.41809i −0.430174 1.41809i
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) −1.02697 1.71339i −1.02697 1.71339i
\(557\) 1.18452 + 1.30692i 1.18452 + 1.30692i 0.941544 + 0.336890i \(0.109375\pi\)
0.242980 + 0.970031i \(0.421875\pi\)
\(558\) 0.193913 + 0.0287642i 0.193913 + 0.0287642i
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −0.560227 1.56573i −0.560227 1.56573i −0.803208 0.595699i \(-0.796875\pi\)
0.242980 0.970031i \(-0.421875\pi\)
\(564\) −0.416822 0.249834i −0.416822 0.249834i
\(565\) 1.91906 + 0.284666i 1.91906 + 0.284666i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 −0.471397 0.881921i \(-0.656250\pi\)
0.471397 + 0.881921i \(0.343750\pi\)
\(570\) −0.0287642 0.292048i −0.0287642 0.292048i
\(571\) −0.574257 1.21416i −0.574257 1.21416i −0.956940 0.290285i \(-0.906250\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1.04786 1.04786i 1.04786 1.04786i
\(576\) 0.707107 0.707107i 0.707107 0.707107i
\(577\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(578\) 0.970031 2.05096i 0.970031 2.05096i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) −0.666656 + 0.666656i −0.666656 + 0.666656i
\(587\) −0.186170 + 1.25505i −0.186170 + 1.25505i 0.671559 + 0.740951i \(0.265625\pi\)
−0.857729 + 0.514103i \(0.828125\pi\)
\(588\) 0.146730 0.989177i 0.146730 0.989177i
\(589\) 0.0541655 0.0193807i 0.0541655 0.0193807i
\(590\) 0 0
\(591\) 0.923880 1.38268i 0.923880 1.38268i
\(592\) 0 0
\(593\) 1.10980 + 1.66094i 1.10980 + 1.66094i 0.595699 + 0.803208i \(0.296875\pi\)
0.514103 + 0.857729i \(0.328125\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0.571240 0.953057i 0.571240 0.953057i
\(598\) 0 0
\(599\) 0 0 −0.634393 0.773010i \(-0.718750\pi\)
0.634393 + 0.773010i \(0.281250\pi\)
\(600\) 0.956940 + 0.290285i 0.956940 + 0.290285i
\(601\) 0.172887 + 1.75535i 0.172887 + 1.75535i 0.555570 + 0.831470i \(0.312500\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 1.72995 + 0.344109i 1.72995 + 0.344109i
\(605\) −0.803208 0.595699i −0.803208 0.595699i
\(606\) 0 0
\(607\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(608\) 0.0851872 0.280825i 0.0851872 0.280825i
\(609\) 0 0
\(610\) −0.956940 + 1.29028i −0.956940 + 1.29028i
\(611\) 0 0
\(612\) 1.27843 1.27843i 1.27843 1.27843i
\(613\) 0 0 −0.0490677 0.998795i \(-0.515625\pi\)
0.0490677 + 0.998795i \(0.484375\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −0.483620 0.0476324i −0.483620 0.0476324i −0.146730 0.989177i \(-0.546875\pi\)
−0.336890 + 0.941544i \(0.609375\pi\)
\(618\) 0 0
\(619\) −0.997391 + 0.249834i −0.997391 + 0.249834i −0.707107 0.707107i \(-0.750000\pi\)
−0.290285 + 0.956940i \(0.593750\pi\)
\(620\) −0.00961895 + 0.195798i −0.00961895 + 0.195798i
\(621\) 0.0727135 1.48012i 0.0727135 1.48012i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0.195090 + 0.980785i 0.195090 + 0.980785i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0.674993 + 0.360791i 0.674993 + 0.360791i 0.773010 0.634393i \(-0.218750\pi\)
−0.0980171 + 0.995185i \(0.531250\pi\)
\(632\) 1.45343 + 1.31731i 1.45343 + 1.31731i
\(633\) −0.497971 + 1.64159i −0.497971 + 1.64159i
\(634\) 0.373380 + 0.113263i 0.373380 + 0.113263i
\(635\) 0 0
\(636\) −0.168530 0.555570i −0.168530 0.555570i
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0.773010 + 0.634393i 0.773010 + 0.634393i
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) −1.14553 + 1.03824i −1.14553 + 1.03824i
\(643\) 0 0 0.857729 0.514103i \(-0.171875\pi\)
−0.857729 + 0.514103i \(0.828125\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0.154017 0.507725i 0.154017 0.507725i
\(647\) −0.574286 + 1.89317i −0.574286 + 1.89317i −0.146730 + 0.989177i \(0.546875\pi\)
−0.427555 + 0.903989i \(0.640625\pi\)
\(648\) 0.903989 0.427555i 0.903989 0.427555i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1.39759 0.661009i −1.39759 0.661009i −0.427555 0.903989i \(-0.640625\pi\)
−0.970031 + 0.242980i \(0.921875\pi\)
\(654\) −0.733452 1.55075i −0.733452 1.55075i
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 0.0490677 0.998795i \(-0.484375\pi\)
−0.0490677 + 0.998795i \(0.515625\pi\)
\(660\) 0 0
\(661\) 0.997391 0.249834i 0.997391 0.249834i 0.290285 0.956940i \(-0.406250\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(662\) −1.84691 0.367372i −1.84691 0.367372i
\(663\) 0 0
\(664\) −0.523788 0.783904i −0.523788 0.783904i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 1.88309i 1.88309i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(674\) 0 0
\(675\) 0.803208 + 0.595699i 0.803208 + 0.595699i
\(676\) 0.555570 + 0.831470i 0.555570 + 0.831470i
\(677\) 1.33665 1.47477i 1.33665 1.47477i 0.595699 0.803208i \(-0.296875\pi\)
0.740951 0.671559i \(-0.234375\pi\)
\(678\) 1.23076 + 1.49969i 1.23076 + 1.49969i
\(679\) 0 0
\(680\) 1.39759 + 1.14697i 1.39759 + 1.14697i
\(681\) −1.21415 1.47945i −1.21415 1.47945i
\(682\) 0 0
\(683\) −1.00845 + 1.68250i −1.00845 + 1.68250i −0.336890 + 0.941544i \(0.609375\pi\)
−0.671559 + 0.740951i \(0.734375\pi\)
\(684\) 0.174814 0.235710i 0.174814 0.235710i
\(685\) 0.761850 0.690501i 0.761850 0.690501i
\(686\) 0 0
\(687\) −0.0545211 0.0815966i −0.0545211 0.0815966i
\(688\) 0 0
\(689\) 0 0
\(690\) 1.48012 0.0727135i 1.48012 0.0727135i
\(691\) −0.634393 + 0.226990i −0.634393 + 0.226990i −0.634393 0.773010i \(-0.718750\pi\)
1.00000i \(0.5\pi\)
\(692\) −1.01910 + 0.755815i −1.01910 + 0.755815i
\(693\) 0 0
\(694\) −0.275899 0.275899i −0.275899 0.275899i
\(695\) 1.91158 0.579870i 1.91158 0.579870i
\(696\) 0 0
\(697\) 0 0
\(698\) −1.25505 + 1.52929i −1.25505 + 1.52929i
\(699\) 0.0887133 0.0419583i 0.0887133 0.0419583i
\(700\) 0 0
\(701\) 0 0 −0.970031 0.242980i \(-0.921875\pi\)
0.970031 + 0.242980i \(0.0781250\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0.343626 0.343626i 0.343626 0.343626i
\(706\) −1.12175 + 0.401370i −1.12175 + 0.401370i
\(707\) 0 0
\(708\) 0 0
\(709\) −0.845855 1.78841i −0.845855 1.78841i −0.555570 0.831470i \(-0.687500\pi\)
−0.290285 0.956940i \(-0.593750\pi\)
\(710\) 0 0
\(711\) 0.924678 + 1.72995i 0.924678 + 1.72995i
\(712\) 0 0
\(713\) 0.0843288 + 0.277995i 0.0843288 + 0.277995i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.831470 0.555570i \(-0.812500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(720\) 0.514103 + 0.857729i 0.514103 + 0.857729i
\(721\) 0 0
\(722\) −0.134094 + 0.903989i −0.134094 + 0.903989i
\(723\) −1.33665 1.47477i −1.33665 1.47477i
\(724\) 0.163715 0.653587i 0.163715 0.653587i
\(725\) 0 0
\(726\) −0.195090 0.980785i −0.195090 0.980785i
\(727\) 0 0 0.773010 0.634393i \(-0.218750\pi\)
−0.773010 + 0.634393i \(0.781250\pi\)
\(728\) 0 0
\(729\) 0.995185 0.0980171i 0.995185 0.0980171i
\(730\) 0 0
\(731\) 0 0
\(732\) −1.57555 + 0.313396i −1.57555 + 0.313396i
\(733\) 0 0 0.595699 0.803208i \(-0.296875\pi\)
−0.595699 + 0.803208i \(0.703125\pi\)
\(734\) 0 0
\(735\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(736\) 1.39528 + 0.499238i 1.39528 + 0.499238i
\(737\) 0 0
\(738\) 0 0
\(739\) 1.91906 0.284666i 1.91906 0.284666i 0.923880 0.382683i \(-0.125000\pi\)
0.995185 + 0.0980171i \(0.0312500\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −0.920964 0.755815i −0.920964 0.755815i 0.0490677 0.998795i \(-0.484375\pi\)
−0.970031 + 0.242980i \(0.921875\pi\)
\(744\) −0.138617 + 0.138617i −0.138617 + 0.138617i
\(745\) 0 0
\(746\) 0 0
\(747\) −0.229080 0.914539i −0.229080 0.914539i
\(748\) 0 0
\(749\) 0 0
\(750\) −0.514103 + 0.857729i −0.514103 + 0.857729i
\(751\) −1.51631 0.301614i −1.51631 0.301614i −0.634393 0.773010i \(-0.718750\pi\)
−0.881921 + 0.471397i \(0.843750\pi\)
\(752\) 0.448969 0.185969i 0.448969 0.185969i
\(753\) 0 0
\(754\) 0 0
\(755\) −0.754140 + 1.59449i −0.754140 + 1.59449i
\(756\) 0 0
\(757\) 0 0 0.803208 0.595699i \(-0.203125\pi\)
−0.803208 + 0.595699i \(0.796875\pi\)
\(758\) −0.257844 + 0.622491i −0.257844 + 0.622491i
\(759\) 0 0
\(760\) 0.251710 + 0.150869i 0.251710 + 0.150869i
\(761\) 0 0 −0.956940 0.290285i \(-0.906250\pi\)
0.956940 + 0.290285i \(0.0937500\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0.929487 + 1.55075i 0.929487 + 1.55075i
\(766\) 1.18996 + 0.0584592i 1.18996 + 0.0584592i
\(767\) 0 0
\(768\) 0.146730 + 0.989177i 0.146730 + 0.989177i
\(769\) 1.54602 1.54602 0.773010 0.634393i \(-0.218750\pi\)
0.773010 + 0.634393i \(0.218750\pi\)
\(770\) 0 0
\(771\) −0.690501 1.15203i −0.690501 1.15203i
\(772\) 0 0
\(773\) −0.257844 + 0.720627i −0.257844 + 0.720627i 0.740951 + 0.671559i \(0.234375\pi\)
−0.998795 + 0.0490677i \(0.984375\pi\)
\(774\) 0 0
\(775\) −0.187593 0.0569057i −0.187593 0.0569057i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 2.52263 + 0.902611i 2.52263 + 0.902611i
\(783\) 0 0
\(784\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 −0.998795 0.0490677i \(-0.984375\pi\)
0.998795 + 0.0490677i \(0.0156250\pi\)
\(788\) 0.560227 + 1.56573i 0.560227 + 1.56573i
\(789\) 0.207775 + 0.829484i 0.207775 + 0.829484i
\(790\) −1.63099 + 1.08979i −1.63099 + 1.08979i
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0.579870 0.0284872i 0.579870 0.0284872i
\(796\) 0.425215 + 1.02656i 0.425215 + 1.02656i
\(797\) 0.385958 0.0572514i 0.385958 0.0572514i 0.0490677 0.998795i \(-0.484375\pi\)
0.336890 + 0.941544i \(0.390625\pi\)
\(798\) 0 0
\(799\) 0.811726 0.336228i 0.811726 0.336228i
\(800\) −0.803208 + 0.595699i −0.803208 + 0.595699i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 0.773010 0.634393i \(-0.218750\pi\)
−0.773010 + 0.634393i \(0.781250\pi\)
\(810\) 0.195090 + 0.980785i 0.195090 + 0.980785i
\(811\) −1.02190 0.612501i −1.02190 0.612501i −0.0980171 0.995185i \(-0.531250\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(812\) 0 0
\(813\) −1.24088 1.36910i −1.24088 1.36910i
\(814\) 0 0
\(815\) 0 0
\(816\) 0.265286 + 1.78841i 0.265286 + 1.78841i
\(817\) 0 0
\(818\) 1.30692 + 1.18452i 1.30692 + 1.18452i
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 −0.989177 0.146730i \(-0.953125\pi\)
0.989177 + 0.146730i \(0.0468750\pi\)
\(822\) 1.02821 1.02821
\(823\) 0 0 −0.290285 0.956940i \(-0.593750\pi\)
0.290285 + 0.956940i \(0.406250\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −0.166824 0.352719i −0.166824 0.352719i 0.803208 0.595699i \(-0.203125\pi\)
−0.970031 + 0.242980i \(0.921875\pi\)
\(828\) 1.14553 + 0.940109i 1.14553 + 0.940109i
\(829\) 0.207775 0.829484i 0.207775 0.829484i −0.773010 0.634393i \(-0.781250\pi\)
0.980785 0.195090i \(-0.0625000\pi\)
\(830\) 0.887682 0.317618i 0.887682 0.317618i
\(831\) 0 0
\(832\) 0 0
\(833\) 1.27843 + 1.27843i 1.27843 + 1.27843i
\(834\) 1.80580 + 0.854080i 1.80580 + 0.854080i
\(835\) 1.82665 + 0.457553i 1.82665 + 0.457553i
\(836\) 0 0
\(837\) −0.177213 + 0.0838155i −0.177213 + 0.0838155i
\(838\) 0 0
\(839\) 0 0 0.881921 0.471397i \(-0.156250\pi\)
−0.881921 + 0.471397i \(0.843750\pi\)
\(840\) 0 0
\(841\) 0.956940 0.290285i 0.956940 0.290285i
\(842\) 1.41251 + 1.41251i 1.41251 + 1.41251i
\(843\) 0 0
\(844\) −1.02190 1.37787i −1.02190 1.37787i
\(845\) −0.941544 + 0.336890i −0.941544 + 0.336890i
\(846\) 0.485375 0.0238449i 0.485375 0.0238449i
\(847\) 0 0
\(848\) 0.546632 + 0.195588i 0.546632 + 0.195588i
\(849\) 0 0
\(850\) −1.45218 + 1.07701i −1.45218 + 1.07701i
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 0.514103 0.857729i \(-0.328125\pi\)
−0.514103 + 0.857729i \(0.671875\pi\)
\(854\) 0 0
\(855\) 0.186170 + 0.226848i 0.186170 + 0.226848i
\(856\) −0.151537 1.53858i −0.151537 1.53858i
\(857\) −0.157456 1.59868i −0.157456 1.59868i −0.671559 0.740951i \(-0.734375\pi\)
0.514103 0.857729i \(-0.328125\pi\)
\(858\) 0 0
\(859\) 1.07880 1.19028i 1.07880 1.19028i 0.0980171 0.995185i \(-0.468750\pi\)
0.980785 0.195090i \(-0.0625000\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −0.764445 + 1.84553i −0.764445 + 1.84553i −0.336890 + 0.941544i \(0.609375\pi\)
−0.427555 + 0.903989i \(0.640625\pi\)
\(864\) −0.195090 + 0.980785i −0.195090 + 0.980785i
\(865\) −0.485544 1.17221i −0.485544 1.17221i
\(866\) 0 0
\(867\) 0.332900 + 2.24423i 0.332900 + 2.24423i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 1.68250 + 0.334669i 1.68250 + 0.334669i
\(873\) 0 0
\(874\) 0.426524 + 0.0848410i 0.426524 + 0.0848410i
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 0.0490677 0.998795i \(-0.484375\pi\)
−0.0490677 + 0.998795i \(0.515625\pi\)
\(878\) −0.404061 1.61310i −0.404061 1.61310i
\(879\) 0.183930 0.924678i 0.183930 0.924678i
\(880\) 0 0
\(881\) 0 0 −0.195090 0.980785i \(-0.562500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(882\) 0.427555 + 0.903989i 0.427555 + 0.903989i
\(883\) 0 0 −0.903989 0.427555i \(-0.859375\pi\)
0.903989 + 0.427555i \(0.140625\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −0.761681 1.83886i −0.761681 1.83886i
\(887\) −0.0865477 0.0462607i −0.0865477 0.0462607i 0.427555 0.903989i \(-0.359375\pi\)
−0.514103 + 0.857729i \(0.671875\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0.122321 0.0733164i 0.122321 0.0733164i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −0.956940 + 0.290285i −0.956940 + 0.290285i
\(901\) 0.988298 + 0.353619i 0.988298 + 0.353619i
\(902\) 0 0
\(903\) 0 0
\(904\) −1.93773 + 0.0951944i −1.93773 + 0.0951944i
\(905\) 0.594221 + 0.317618i 0.594221 + 0.317618i
\(906\) −1.62958 + 0.674993i −1.62958 + 0.674993i
\(907\) 0 0 −0.595699 0.803208i \(-0.703125\pi\)
0.595699 + 0.803208i \(0.296875\pi\)
\(908\) 1.91158 0.0939097i 1.91158 0.0939097i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 −0.195090 0.980785i \(-0.562500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(912\) 0.0851872 + 0.280825i 0.0851872 + 0.280825i
\(913\) 0 0
\(914\) 0 0
\(915\) 0.0788231 1.60448i 0.0788231 1.60448i
\(916\) 0.0980171 + 0.00481527i 0.0980171 + 0.00481527i
\(917\) 0 0
\(918\) −0.352719 + 1.77324i −0.352719 + 1.77324i
\(919\) −1.90466 0.187593i −1.90466 0.187593i −0.923880 0.382683i \(-0.875000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(920\) −0.823301 + 1.23216i −0.823301 + 1.23216i
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(930\) −0.100782 0.168144i −0.100782 0.168144i
\(931\) 0.235710 + 0.174814i 0.235710 + 0.174814i
\(932\) −0.0191453 + 0.0962497i −0.0191453 + 0.0962497i
\(933\) 0 0
\(934\) −1.28547 + 1.05496i −1.28547 + 1.05496i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 −0.634393 0.773010i \(-0.718750\pi\)
0.634393 + 0.773010i \(0.281250\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0.0713052 + 0.480701i 0.0713052 + 0.480701i
\(941\) 0 0 0.740951 0.671559i \(-0.234375\pi\)
−0.740951 + 0.671559i \(0.765625\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.66074 0.594221i 1.66074 0.594221i 0.671559 0.740951i \(-0.265625\pi\)
0.989177 + 0.146730i \(0.0468750\pi\)
\(948\) −1.94034 0.287822i −1.94034 0.287822i
\(949\) 0 0
\(950\) −0.207508 + 0.207508i −0.207508 + 0.207508i
\(951\) −0.373380 + 0.113263i −0.373380 + 0.113263i
\(952\) 0 0
\(953\) −1.66074 + 0.887682i −1.66074 + 0.887682i −0.671559 + 0.740951i \(0.734375\pi\)
−0.989177 + 0.146730i \(0.953125\pi\)
\(954\) 0.448786 + 0.368309i 0.448786 + 0.368309i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) −0.995185 0.0980171i −0.995185 0.0980171i
\(961\) −0.679933 + 0.679933i −0.679933 + 0.679933i
\(962\) 0 0
\(963\) 0.375652 1.49969i 0.375652 1.49969i
\(964\) 1.98079 0.195090i 1.98079 0.195090i
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 −0.471397 0.881921i \(-0.656250\pi\)
0.471397 + 0.881921i \(0.343750\pi\)
\(968\) 0.903989 + 0.427555i 0.903989 + 0.427555i
\(969\) 0.154017 + 0.507725i 0.154017 + 0.507725i
\(970\) 0 0
\(971\) 0 0 −0.989177 0.146730i \(-0.953125\pi\)
0.989177 + 0.146730i \(0.0468750\pi\)
\(972\) −0.514103 + 0.857729i −0.514103 + 0.857729i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0.686831 1.45218i 0.686831 1.45218i
\(977\) 1.11676 0.746196i 1.11676 0.746196i 0.146730 0.989177i \(-0.453125\pi\)
0.970031 + 0.242980i \(0.0781250\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −0.857729 + 0.514103i −0.857729 + 0.514103i
\(981\) 1.47140 + 0.881921i 1.47140 + 0.881921i
\(982\) 0 0
\(983\) 0.661009 0.542476i 0.661009 0.542476i −0.242980 0.970031i \(-0.578125\pi\)
0.903989 + 0.427555i \(0.140625\pi\)
\(984\) 0 0
\(985\) −1.65493 + 0.162997i −1.65493 + 0.162997i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 1.70711 + 0.707107i 1.70711 + 0.707107i 1.00000 \(0\)
0.707107 + 0.707107i \(0.250000\pi\)
\(992\) −0.0287642 0.193913i −0.0287642 0.193913i
\(993\) 1.73975 0.720627i 1.73975 0.720627i
\(994\) 0 0
\(995\) −1.09911 + 0.163038i −1.09911 + 0.163038i
\(996\) 0.871028 + 0.360791i 0.871028 + 0.360791i
\(997\) 0 0 0.998795 0.0490677i \(-0.0156250\pi\)
−0.998795 + 0.0490677i \(0.984375\pi\)
\(998\) −0.0865477 0.0462607i −0.0865477 0.0462607i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3840.1.dy.a.1709.2 yes 64
3.2 odd 2 inner 3840.1.dy.a.1709.1 64
5.4 even 2 inner 3840.1.dy.a.1709.1 64
15.14 odd 2 CM 3840.1.dy.a.1709.2 yes 64
256.37 even 64 inner 3840.1.dy.a.1829.2 yes 64
768.293 odd 64 inner 3840.1.dy.a.1829.1 yes 64
1280.549 even 64 inner 3840.1.dy.a.1829.1 yes 64
3840.1829 odd 64 inner 3840.1.dy.a.1829.2 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3840.1.dy.a.1709.1 64 3.2 odd 2 inner
3840.1.dy.a.1709.1 64 5.4 even 2 inner
3840.1.dy.a.1709.2 yes 64 1.1 even 1 trivial
3840.1.dy.a.1709.2 yes 64 15.14 odd 2 CM
3840.1.dy.a.1829.1 yes 64 768.293 odd 64 inner
3840.1.dy.a.1829.1 yes 64 1280.549 even 64 inner
3840.1.dy.a.1829.2 yes 64 256.37 even 64 inner
3840.1.dy.a.1829.2 yes 64 3840.1829 odd 64 inner