L(s) = 1 | + (−1.22 − 0.707i)2-s + (−0.448 − 2.19i)5-s + (2.59 + 1.5i)7-s + 2.82i·8-s + (−1 + 2.99i)10-s + (2.12 − 3.67i)11-s + (2.59 − 1.5i)13-s + (−2.12 − 3.67i)14-s + (2.00 − 3.46i)16-s − 2.82i·17-s − 19-s + (−5.19 + 3i)22-s + (−6.12 + 3.53i)23-s + (−4.59 + 1.96i)25-s − 4.24·26-s + ⋯ |
L(s) = 1 | + (−0.866 − 0.499i)2-s + (−0.200 − 0.979i)5-s + (0.981 + 0.566i)7-s + 0.999i·8-s + (−0.316 + 0.948i)10-s + (0.639 − 1.10i)11-s + (0.720 − 0.416i)13-s + (−0.566 − 0.981i)14-s + (0.500 − 0.866i)16-s − 0.685i·17-s − 0.229·19-s + (−1.10 + 0.639i)22-s + (−1.27 + 0.737i)23-s + (−0.919 + 0.392i)25-s − 0.832·26-s + ⋯ |
Λ(s)=(=(405s/2ΓC(s)L(s)(−0.476+0.879i)Λ(2−s)
Λ(s)=(=(405s/2ΓC(s+1/2)L(s)(−0.476+0.879i)Λ(1−s)
Degree: |
2 |
Conductor: |
405
= 34⋅5
|
Sign: |
−0.476+0.879i
|
Analytic conductor: |
3.23394 |
Root analytic conductor: |
1.79831 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ405(379,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 405, ( :1/2), −0.476+0.879i)
|
Particular Values
L(1) |
≈ |
0.430296−0.722329i |
L(21) |
≈ |
0.430296−0.722329i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(0.448+2.19i)T |
good | 2 | 1+(1.22+0.707i)T+(1+1.73i)T2 |
| 7 | 1+(−2.59−1.5i)T+(3.5+6.06i)T2 |
| 11 | 1+(−2.12+3.67i)T+(−5.5−9.52i)T2 |
| 13 | 1+(−2.59+1.5i)T+(6.5−11.2i)T2 |
| 17 | 1+2.82iT−17T2 |
| 19 | 1+T+19T2 |
| 23 | 1+(6.12−3.53i)T+(11.5−19.9i)T2 |
| 29 | 1+(−2.12+3.67i)T+(−14.5−25.1i)T2 |
| 31 | 1+(1+1.73i)T+(−15.5+26.8i)T2 |
| 37 | 1+9iT−37T2 |
| 41 | 1+(2.12+3.67i)T+(−20.5+35.5i)T2 |
| 43 | 1+(5.19+3i)T+(21.5+37.2i)T2 |
| 47 | 1+(−2.44−1.41i)T+(23.5+40.7i)T2 |
| 53 | 1−9.89iT−53T2 |
| 59 | 1+(−4.24−7.34i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−6.5+11.2i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−2.59+1.5i)T+(33.5−58.0i)T2 |
| 71 | 1−12.7T+71T2 |
| 73 | 1−9iT−73T2 |
| 79 | 1+(2.5−4.33i)T+(−39.5−68.4i)T2 |
| 83 | 1+(1.22+0.707i)T+(41.5+71.8i)T2 |
| 89 | 1+89T2 |
| 97 | 1+(−2.59−1.5i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.13909164091295481024589458278, −9.914641389458017228359356276668, −8.984296637690214887112137100129, −8.482691400341184848801660615222, −7.80453292734435524920609826251, −5.88914286965259600759547521591, −5.25277899724708434073001718399, −3.90402059407269633201049804318, −2.04446764909690950970508946416, −0.801129662420497264970198870229,
1.68823999176220550534605275916, 3.67148859113993749577723387597, 4.51390673864806631627567795241, 6.44861066936021542415933671987, 6.92426673840184250560182982203, 7.991625300352476129432568636045, 8.500906199013635890535999946627, 9.832849069882315832683557039177, 10.38833015051355673899477000273, 11.38775438797652661230251385468