L(s) = 1 | + (−1.22 − 0.707i)2-s + (−0.448 − 2.19i)5-s + (2.59 + 1.5i)7-s + 2.82i·8-s + (−1 + 2.99i)10-s + (2.12 − 3.67i)11-s + (2.59 − 1.5i)13-s + (−2.12 − 3.67i)14-s + (2.00 − 3.46i)16-s − 2.82i·17-s − 19-s + (−5.19 + 3i)22-s + (−6.12 + 3.53i)23-s + (−4.59 + 1.96i)25-s − 4.24·26-s + ⋯ |
L(s) = 1 | + (−0.866 − 0.499i)2-s + (−0.200 − 0.979i)5-s + (0.981 + 0.566i)7-s + 0.999i·8-s + (−0.316 + 0.948i)10-s + (0.639 − 1.10i)11-s + (0.720 − 0.416i)13-s + (−0.566 − 0.981i)14-s + (0.500 − 0.866i)16-s − 0.685i·17-s − 0.229·19-s + (−1.10 + 0.639i)22-s + (−1.27 + 0.737i)23-s + (−0.919 + 0.392i)25-s − 0.832·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.476 + 0.879i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.476 + 0.879i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.430296 - 0.722329i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.430296 - 0.722329i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (0.448 + 2.19i)T \) |
good | 2 | \( 1 + (1.22 + 0.707i)T + (1 + 1.73i)T^{2} \) |
| 7 | \( 1 + (-2.59 - 1.5i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.12 + 3.67i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.59 + 1.5i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 2.82iT - 17T^{2} \) |
| 19 | \( 1 + T + 19T^{2} \) |
| 23 | \( 1 + (6.12 - 3.53i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.12 + 3.67i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (1 + 1.73i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 9iT - 37T^{2} \) |
| 41 | \( 1 + (2.12 + 3.67i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (5.19 + 3i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-2.44 - 1.41i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 9.89iT - 53T^{2} \) |
| 59 | \( 1 + (-4.24 - 7.34i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.5 + 11.2i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.59 + 1.5i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 12.7T + 71T^{2} \) |
| 73 | \( 1 - 9iT - 73T^{2} \) |
| 79 | \( 1 + (2.5 - 4.33i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (1.22 + 0.707i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 89T^{2} \) |
| 97 | \( 1 + (-2.59 - 1.5i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.13909164091295481024589458278, −9.914641389458017228359356276668, −8.984296637690214887112137100129, −8.482691400341184848801660615222, −7.80453292734435524920609826251, −5.88914286965259600759547521591, −5.25277899724708434073001718399, −3.90402059407269633201049804318, −2.04446764909690950970508946416, −0.801129662420497264970198870229,
1.68823999176220550534605275916, 3.67148859113993749577723387597, 4.51390673864806631627567795241, 6.44861066936021542415933671987, 6.92426673840184250560182982203, 7.991625300352476129432568636045, 8.500906199013635890535999946627, 9.832849069882315832683557039177, 10.38833015051355673899477000273, 11.38775438797652661230251385468