L(s) = 1 | + (−1.22 + 0.707i)2-s + (−0.448 + 2.19i)5-s + (2.59 − 1.5i)7-s − 2.82i·8-s + (−1 − 2.99i)10-s + (2.12 + 3.67i)11-s + (2.59 + 1.5i)13-s + (−2.12 + 3.67i)14-s + (2.00 + 3.46i)16-s + 2.82i·17-s − 19-s + (−5.19 − 3i)22-s + (−6.12 − 3.53i)23-s + (−4.59 − 1.96i)25-s − 4.24·26-s + ⋯ |
L(s) = 1 | + (−0.866 + 0.499i)2-s + (−0.200 + 0.979i)5-s + (0.981 − 0.566i)7-s − 0.999i·8-s + (−0.316 − 0.948i)10-s + (0.639 + 1.10i)11-s + (0.720 + 0.416i)13-s + (−0.566 + 0.981i)14-s + (0.500 + 0.866i)16-s + 0.685i·17-s − 0.229·19-s + (−1.10 − 0.639i)22-s + (−1.27 − 0.737i)23-s + (−0.919 − 0.392i)25-s − 0.832·26-s + ⋯ |
Λ(s)=(=(405s/2ΓC(s)L(s)(−0.476−0.879i)Λ(2−s)
Λ(s)=(=(405s/2ΓC(s+1/2)L(s)(−0.476−0.879i)Λ(1−s)
Degree: |
2 |
Conductor: |
405
= 34⋅5
|
Sign: |
−0.476−0.879i
|
Analytic conductor: |
3.23394 |
Root analytic conductor: |
1.79831 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ405(109,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 405, ( :1/2), −0.476−0.879i)
|
Particular Values
L(1) |
≈ |
0.430296+0.722329i |
L(21) |
≈ |
0.430296+0.722329i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(0.448−2.19i)T |
good | 2 | 1+(1.22−0.707i)T+(1−1.73i)T2 |
| 7 | 1+(−2.59+1.5i)T+(3.5−6.06i)T2 |
| 11 | 1+(−2.12−3.67i)T+(−5.5+9.52i)T2 |
| 13 | 1+(−2.59−1.5i)T+(6.5+11.2i)T2 |
| 17 | 1−2.82iT−17T2 |
| 19 | 1+T+19T2 |
| 23 | 1+(6.12+3.53i)T+(11.5+19.9i)T2 |
| 29 | 1+(−2.12−3.67i)T+(−14.5+25.1i)T2 |
| 31 | 1+(1−1.73i)T+(−15.5−26.8i)T2 |
| 37 | 1−9iT−37T2 |
| 41 | 1+(2.12−3.67i)T+(−20.5−35.5i)T2 |
| 43 | 1+(5.19−3i)T+(21.5−37.2i)T2 |
| 47 | 1+(−2.44+1.41i)T+(23.5−40.7i)T2 |
| 53 | 1+9.89iT−53T2 |
| 59 | 1+(−4.24+7.34i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−6.5−11.2i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−2.59−1.5i)T+(33.5+58.0i)T2 |
| 71 | 1−12.7T+71T2 |
| 73 | 1+9iT−73T2 |
| 79 | 1+(2.5+4.33i)T+(−39.5+68.4i)T2 |
| 83 | 1+(1.22−0.707i)T+(41.5−71.8i)T2 |
| 89 | 1+89T2 |
| 97 | 1+(−2.59+1.5i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.38775438797652661230251385468, −10.38833015051355673899477000273, −9.832849069882315832683557039177, −8.500906199013635890535999946627, −7.991625300352476129432568636045, −6.92426673840184250560182982203, −6.44861066936021542415933671987, −4.51390673864806631627567795241, −3.67148859113993749577723387597, −1.68823999176220550534605275916,
0.801129662420497264970198870229, 2.04446764909690950970508946416, 3.90402059407269633201049804318, 5.25277899724708434073001718399, 5.88914286965259600759547521591, 7.80453292734435524920609826251, 8.482691400341184848801660615222, 8.984296637690214887112137100129, 9.914641389458017228359356276668, 11.13909164091295481024589458278