Properties

Label 405.2.j.f
Level $405$
Weight $2$
Character orbit 405.j
Analytic conductor $3.234$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,2,Mod(109,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.109");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 405.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.23394128186\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{6} q^{2} - \beta_{4} q^{5} - \beta_1 q^{7} + ( - 2 \beta_{6} + 2 \beta_{5}) q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_{6} q^{2} - \beta_{4} q^{5} - \beta_1 q^{7} + ( - 2 \beta_{6} + 2 \beta_{5}) q^{8} + ( - \beta_{3} - 1) q^{10} + (2 \beta_{7} - \beta_{6} + \cdots - 2 \beta_{4}) q^{11}+ \cdots + (2 \beta_{6} - 2 \beta_{5}) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 8 q^{10} + 16 q^{16} - 8 q^{19} - 16 q^{25} - 8 q^{31} - 16 q^{34} + 8 q^{40} + 80 q^{46} + 8 q^{49} - 72 q^{55} + 52 q^{61} - 64 q^{64} - 36 q^{70} - 20 q^{79} - 8 q^{85} + 72 q^{91} - 16 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( 3\zeta_{24}^{2} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \zeta_{24}^{4} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 3\zeta_{24}^{6} \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \zeta_{24}^{7} + 2\zeta_{24} \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( -\zeta_{24}^{7} + \zeta_{24} \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( -\zeta_{24}^{7} + \zeta_{24}^{5} + \zeta_{24}^{3} \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( -\zeta_{24}^{5} + 2\zeta_{24}^{3} + \zeta_{24} \) Copy content Toggle raw display
\(\zeta_{24}\)\(=\) \( ( \beta_{5} + \beta_{4} ) / 3 \) Copy content Toggle raw display
\(\zeta_{24}^{2}\)\(=\) \( ( \beta_1 ) / 3 \) Copy content Toggle raw display
\(\zeta_{24}^{3}\)\(=\) \( ( \beta_{7} + \beta_{6} - \beta_{5} ) / 3 \) Copy content Toggle raw display
\(\zeta_{24}^{4}\)\(=\) \( \beta_{2} \) Copy content Toggle raw display
\(\zeta_{24}^{5}\)\(=\) \( ( -\beta_{7} + 2\beta_{6} - \beta_{5} + \beta_{4} ) / 3 \) Copy content Toggle raw display
\(\zeta_{24}^{6}\)\(=\) \( ( \beta_{3} ) / 3 \) Copy content Toggle raw display
\(\zeta_{24}^{7}\)\(=\) \( ( -2\beta_{5} + \beta_{4} ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(-1\) \(-\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
109.1
−0.258819 0.965926i
−0.965926 + 0.258819i
0.965926 0.258819i
0.258819 + 0.965926i
−0.258819 + 0.965926i
−0.965926 0.258819i
0.965926 + 0.258819i
0.258819 0.965926i
−1.22474 + 0.707107i 0 0 −0.448288 + 2.19067i 0 2.59808 1.50000i 2.82843i 0 −1.00000 3.00000i
109.2 −1.22474 + 0.707107i 0 0 1.67303 1.48356i 0 −2.59808 + 1.50000i 2.82843i 0 −1.00000 + 3.00000i
109.3 1.22474 0.707107i 0 0 −1.67303 + 1.48356i 0 −2.59808 + 1.50000i 2.82843i 0 −1.00000 + 3.00000i
109.4 1.22474 0.707107i 0 0 0.448288 2.19067i 0 2.59808 1.50000i 2.82843i 0 −1.00000 3.00000i
379.1 −1.22474 0.707107i 0 0 −0.448288 2.19067i 0 2.59808 + 1.50000i 2.82843i 0 −1.00000 + 3.00000i
379.2 −1.22474 0.707107i 0 0 1.67303 + 1.48356i 0 −2.59808 1.50000i 2.82843i 0 −1.00000 3.00000i
379.3 1.22474 + 0.707107i 0 0 −1.67303 1.48356i 0 −2.59808 1.50000i 2.82843i 0 −1.00000 3.00000i
379.4 1.22474 + 0.707107i 0 0 0.448288 + 2.19067i 0 2.59808 + 1.50000i 2.82843i 0 −1.00000 + 3.00000i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 109.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.b even 2 1 inner
9.c even 3 1 inner
9.d odd 6 1 inner
15.d odd 2 1 inner
45.h odd 6 1 inner
45.j even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 405.2.j.f 8
3.b odd 2 1 inner 405.2.j.f 8
5.b even 2 1 inner 405.2.j.f 8
9.c even 3 1 135.2.b.b 4
9.c even 3 1 inner 405.2.j.f 8
9.d odd 6 1 135.2.b.b 4
9.d odd 6 1 inner 405.2.j.f 8
15.d odd 2 1 inner 405.2.j.f 8
36.f odd 6 1 2160.2.f.k 4
36.h even 6 1 2160.2.f.k 4
45.h odd 6 1 135.2.b.b 4
45.h odd 6 1 inner 405.2.j.f 8
45.j even 6 1 135.2.b.b 4
45.j even 6 1 inner 405.2.j.f 8
45.k odd 12 1 675.2.a.l 2
45.k odd 12 1 675.2.a.m 2
45.l even 12 1 675.2.a.l 2
45.l even 12 1 675.2.a.m 2
180.n even 6 1 2160.2.f.k 4
180.p odd 6 1 2160.2.f.k 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
135.2.b.b 4 9.c even 3 1
135.2.b.b 4 9.d odd 6 1
135.2.b.b 4 45.h odd 6 1
135.2.b.b 4 45.j even 6 1
405.2.j.f 8 1.a even 1 1 trivial
405.2.j.f 8 3.b odd 2 1 inner
405.2.j.f 8 5.b even 2 1 inner
405.2.j.f 8 9.c even 3 1 inner
405.2.j.f 8 9.d odd 6 1 inner
405.2.j.f 8 15.d odd 2 1 inner
405.2.j.f 8 45.h odd 6 1 inner
405.2.j.f 8 45.j even 6 1 inner
675.2.a.l 2 45.k odd 12 1
675.2.a.l 2 45.l even 12 1
675.2.a.m 2 45.k odd 12 1
675.2.a.m 2 45.l even 12 1
2160.2.f.k 4 36.f odd 6 1
2160.2.f.k 4 36.h even 6 1
2160.2.f.k 4 180.n even 6 1
2160.2.f.k 4 180.p odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(405, [\chi])\):

\( T_{2}^{4} - 2T_{2}^{2} + 4 \) Copy content Toggle raw display
\( T_{7}^{4} - 9T_{7}^{2} + 81 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} - 2 T^{2} + 4)^{2} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} + 8 T^{6} + \cdots + 625 \) Copy content Toggle raw display
$7$ \( (T^{4} - 9 T^{2} + 81)^{2} \) Copy content Toggle raw display
$11$ \( (T^{4} + 18 T^{2} + 324)^{2} \) Copy content Toggle raw display
$13$ \( (T^{4} - 9 T^{2} + 81)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 8)^{4} \) Copy content Toggle raw display
$19$ \( (T + 1)^{8} \) Copy content Toggle raw display
$23$ \( (T^{4} - 50 T^{2} + 2500)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} + 18 T^{2} + 324)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 2 T + 4)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} + 81)^{4} \) Copy content Toggle raw display
$41$ \( (T^{4} + 18 T^{2} + 324)^{2} \) Copy content Toggle raw display
$43$ \( (T^{4} - 36 T^{2} + 1296)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} - 8 T^{2} + 64)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 98)^{4} \) Copy content Toggle raw display
$59$ \( (T^{4} + 72 T^{2} + 5184)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} - 13 T + 169)^{4} \) Copy content Toggle raw display
$67$ \( (T^{4} - 9 T^{2} + 81)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 162)^{4} \) Copy content Toggle raw display
$73$ \( (T^{2} + 81)^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} + 5 T + 25)^{4} \) Copy content Toggle raw display
$83$ \( (T^{4} - 2 T^{2} + 4)^{2} \) Copy content Toggle raw display
$89$ \( T^{8} \) Copy content Toggle raw display
$97$ \( (T^{4} - 9 T^{2} + 81)^{2} \) Copy content Toggle raw display
show more
show less