Properties

Label 405.2.j.f
Level 405405
Weight 22
Character orbit 405.j
Analytic conductor 3.2343.234
Analytic rank 00
Dimension 88
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,2,Mod(109,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.109");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 405=345 405 = 3^{4} \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 405.j (of order 66, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.233941281863.23394128186
Analytic rank: 00
Dimension: 88
Relative dimension: 44 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ24)\Q(\zeta_{24})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x4+1 x^{8} - x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 34 3^{4}
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β6q2β4q5β1q7+(2β6+2β5)q8+(β31)q10+(2β7β6+2β4)q11+(β3β1)q13++(2β62β5)q98+O(q100) q + \beta_{6} q^{2} - \beta_{4} q^{5} - \beta_1 q^{7} + ( - 2 \beta_{6} + 2 \beta_{5}) q^{8} + ( - \beta_{3} - 1) q^{10} + (2 \beta_{7} - \beta_{6} + \cdots - 2 \beta_{4}) q^{11} + (\beta_{3} - \beta_1) q^{13}+ \cdots + (2 \beta_{6} - 2 \beta_{5}) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q8q10+16q168q1916q258q3116q34+8q40+80q46+8q4972q55+52q6164q6436q7020q798q85+72q9116q94+O(q100) 8 q - 8 q^{10} + 16 q^{16} - 8 q^{19} - 16 q^{25} - 8 q^{31} - 16 q^{34} + 8 q^{40} + 80 q^{46} + 8 q^{49} - 72 q^{55} + 52 q^{61} - 64 q^{64} - 36 q^{70} - 20 q^{79} - 8 q^{85} + 72 q^{91} - 16 q^{94}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring

β1\beta_{1}== 3ζ242 3\zeta_{24}^{2} Copy content Toggle raw display
β2\beta_{2}== ζ244 \zeta_{24}^{4} Copy content Toggle raw display
β3\beta_{3}== 3ζ246 3\zeta_{24}^{6} Copy content Toggle raw display
β4\beta_{4}== ζ247+2ζ24 \zeta_{24}^{7} + 2\zeta_{24} Copy content Toggle raw display
β5\beta_{5}== ζ247+ζ24 -\zeta_{24}^{7} + \zeta_{24} Copy content Toggle raw display
β6\beta_{6}== ζ247+ζ245+ζ243 -\zeta_{24}^{7} + \zeta_{24}^{5} + \zeta_{24}^{3} Copy content Toggle raw display
β7\beta_{7}== ζ245+2ζ243+ζ24 -\zeta_{24}^{5} + 2\zeta_{24}^{3} + \zeta_{24} Copy content Toggle raw display
ζ24\zeta_{24}== (β5+β4)/3 ( \beta_{5} + \beta_{4} ) / 3 Copy content Toggle raw display
ζ242\zeta_{24}^{2}== (β1)/3 ( \beta_1 ) / 3 Copy content Toggle raw display
ζ243\zeta_{24}^{3}== (β7+β6β5)/3 ( \beta_{7} + \beta_{6} - \beta_{5} ) / 3 Copy content Toggle raw display
ζ244\zeta_{24}^{4}== β2 \beta_{2} Copy content Toggle raw display
ζ245\zeta_{24}^{5}== (β7+2β6β5+β4)/3 ( -\beta_{7} + 2\beta_{6} - \beta_{5} + \beta_{4} ) / 3 Copy content Toggle raw display
ζ246\zeta_{24}^{6}== (β3)/3 ( \beta_{3} ) / 3 Copy content Toggle raw display
ζ247\zeta_{24}^{7}== (2β5+β4)/3 ( -2\beta_{5} + \beta_{4} ) / 3 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/405Z)×\left(\mathbb{Z}/405\mathbb{Z}\right)^\times.

nn 8282 326326
χ(n)\chi(n) 1-1 β2-\beta_{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
109.1
−0.258819 0.965926i
−0.965926 + 0.258819i
0.965926 0.258819i
0.258819 + 0.965926i
−0.258819 + 0.965926i
−0.965926 0.258819i
0.965926 + 0.258819i
0.258819 0.965926i
−1.22474 + 0.707107i 0 0 −0.448288 + 2.19067i 0 2.59808 1.50000i 2.82843i 0 −1.00000 3.00000i
109.2 −1.22474 + 0.707107i 0 0 1.67303 1.48356i 0 −2.59808 + 1.50000i 2.82843i 0 −1.00000 + 3.00000i
109.3 1.22474 0.707107i 0 0 −1.67303 + 1.48356i 0 −2.59808 + 1.50000i 2.82843i 0 −1.00000 + 3.00000i
109.4 1.22474 0.707107i 0 0 0.448288 2.19067i 0 2.59808 1.50000i 2.82843i 0 −1.00000 3.00000i
379.1 −1.22474 0.707107i 0 0 −0.448288 2.19067i 0 2.59808 + 1.50000i 2.82843i 0 −1.00000 + 3.00000i
379.2 −1.22474 0.707107i 0 0 1.67303 + 1.48356i 0 −2.59808 1.50000i 2.82843i 0 −1.00000 3.00000i
379.3 1.22474 + 0.707107i 0 0 −1.67303 1.48356i 0 −2.59808 1.50000i 2.82843i 0 −1.00000 3.00000i
379.4 1.22474 + 0.707107i 0 0 0.448288 + 2.19067i 0 2.59808 + 1.50000i 2.82843i 0 −1.00000 + 3.00000i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 109.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.b even 2 1 inner
9.c even 3 1 inner
9.d odd 6 1 inner
15.d odd 2 1 inner
45.h odd 6 1 inner
45.j even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 405.2.j.f 8
3.b odd 2 1 inner 405.2.j.f 8
5.b even 2 1 inner 405.2.j.f 8
9.c even 3 1 135.2.b.b 4
9.c even 3 1 inner 405.2.j.f 8
9.d odd 6 1 135.2.b.b 4
9.d odd 6 1 inner 405.2.j.f 8
15.d odd 2 1 inner 405.2.j.f 8
36.f odd 6 1 2160.2.f.k 4
36.h even 6 1 2160.2.f.k 4
45.h odd 6 1 135.2.b.b 4
45.h odd 6 1 inner 405.2.j.f 8
45.j even 6 1 135.2.b.b 4
45.j even 6 1 inner 405.2.j.f 8
45.k odd 12 1 675.2.a.l 2
45.k odd 12 1 675.2.a.m 2
45.l even 12 1 675.2.a.l 2
45.l even 12 1 675.2.a.m 2
180.n even 6 1 2160.2.f.k 4
180.p odd 6 1 2160.2.f.k 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
135.2.b.b 4 9.c even 3 1
135.2.b.b 4 9.d odd 6 1
135.2.b.b 4 45.h odd 6 1
135.2.b.b 4 45.j even 6 1
405.2.j.f 8 1.a even 1 1 trivial
405.2.j.f 8 3.b odd 2 1 inner
405.2.j.f 8 5.b even 2 1 inner
405.2.j.f 8 9.c even 3 1 inner
405.2.j.f 8 9.d odd 6 1 inner
405.2.j.f 8 15.d odd 2 1 inner
405.2.j.f 8 45.h odd 6 1 inner
405.2.j.f 8 45.j even 6 1 inner
675.2.a.l 2 45.k odd 12 1
675.2.a.l 2 45.l even 12 1
675.2.a.m 2 45.k odd 12 1
675.2.a.m 2 45.l even 12 1
2160.2.f.k 4 36.f odd 6 1
2160.2.f.k 4 36.h even 6 1
2160.2.f.k 4 180.n even 6 1
2160.2.f.k 4 180.p odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(405,[χ])S_{2}^{\mathrm{new}}(405, [\chi]):

T242T22+4 T_{2}^{4} - 2T_{2}^{2} + 4 Copy content Toggle raw display
T749T72+81 T_{7}^{4} - 9T_{7}^{2} + 81 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T42T2+4)2 (T^{4} - 2 T^{2} + 4)^{2} Copy content Toggle raw display
33 T8 T^{8} Copy content Toggle raw display
55 T8+8T6++625 T^{8} + 8 T^{6} + \cdots + 625 Copy content Toggle raw display
77 (T49T2+81)2 (T^{4} - 9 T^{2} + 81)^{2} Copy content Toggle raw display
1111 (T4+18T2+324)2 (T^{4} + 18 T^{2} + 324)^{2} Copy content Toggle raw display
1313 (T49T2+81)2 (T^{4} - 9 T^{2} + 81)^{2} Copy content Toggle raw display
1717 (T2+8)4 (T^{2} + 8)^{4} Copy content Toggle raw display
1919 (T+1)8 (T + 1)^{8} Copy content Toggle raw display
2323 (T450T2+2500)2 (T^{4} - 50 T^{2} + 2500)^{2} Copy content Toggle raw display
2929 (T4+18T2+324)2 (T^{4} + 18 T^{2} + 324)^{2} Copy content Toggle raw display
3131 (T2+2T+4)4 (T^{2} + 2 T + 4)^{4} Copy content Toggle raw display
3737 (T2+81)4 (T^{2} + 81)^{4} Copy content Toggle raw display
4141 (T4+18T2+324)2 (T^{4} + 18 T^{2} + 324)^{2} Copy content Toggle raw display
4343 (T436T2+1296)2 (T^{4} - 36 T^{2} + 1296)^{2} Copy content Toggle raw display
4747 (T48T2+64)2 (T^{4} - 8 T^{2} + 64)^{2} Copy content Toggle raw display
5353 (T2+98)4 (T^{2} + 98)^{4} Copy content Toggle raw display
5959 (T4+72T2+5184)2 (T^{4} + 72 T^{2} + 5184)^{2} Copy content Toggle raw display
6161 (T213T+169)4 (T^{2} - 13 T + 169)^{4} Copy content Toggle raw display
6767 (T49T2+81)2 (T^{4} - 9 T^{2} + 81)^{2} Copy content Toggle raw display
7171 (T2162)4 (T^{2} - 162)^{4} Copy content Toggle raw display
7373 (T2+81)4 (T^{2} + 81)^{4} Copy content Toggle raw display
7979 (T2+5T+25)4 (T^{2} + 5 T + 25)^{4} Copy content Toggle raw display
8383 (T42T2+4)2 (T^{4} - 2 T^{2} + 4)^{2} Copy content Toggle raw display
8989 T8 T^{8} Copy content Toggle raw display
9797 (T49T2+81)2 (T^{4} - 9 T^{2} + 81)^{2} Copy content Toggle raw display
show more
show less