Properties

Label 135.2.b.b
Level 135135
Weight 22
Character orbit 135.b
Analytic conductor 1.0781.078
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [135,2,Mod(109,135)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(135, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("135.109");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 135=335 135 = 3^{3} \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 135.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.077980427291.07798042729
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ8)\Q(\zeta_{8})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+1 x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 32 3^{2}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β2q2+β3q5β1q7+2β2q8+(β11)q10+(2β3+β2)q11+β1q13+(2β3β2)q144q162β2q17+2β2q98+O(q100) q + \beta_{2} q^{2} + \beta_{3} q^{5} - \beta_1 q^{7} + 2 \beta_{2} q^{8} + (\beta_1 - 1) q^{10} + ( - 2 \beta_{3} + \beta_{2}) q^{11} + \beta_1 q^{13} + (2 \beta_{3} - \beta_{2}) q^{14} - 4 q^{16} - 2 \beta_{2} q^{17}+ \cdots - 2 \beta_{2} q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q1016q164q19+16q25+8q31+16q348q40+40q468q4936q5552q6132q64+36q70+20q79+8q85+36q91+16q94+O(q100) 4 q - 4 q^{10} - 16 q^{16} - 4 q^{19} + 16 q^{25} + 8 q^{31} + 16 q^{34} - 8 q^{40} + 40 q^{46} - 8 q^{49} - 36 q^{55} - 52 q^{61} - 32 q^{64} + 36 q^{70} + 20 q^{79} + 8 q^{85} + 36 q^{91} + 16 q^{94}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring

β1\beta_{1}== 3ζ82 3\zeta_{8}^{2} Copy content Toggle raw display
β2\beta_{2}== ζ83+ζ8 \zeta_{8}^{3} + \zeta_{8} Copy content Toggle raw display
β3\beta_{3}== ζ83+2ζ8 -\zeta_{8}^{3} + 2\zeta_{8} Copy content Toggle raw display
ζ8\zeta_{8}== (β3+β2)/3 ( \beta_{3} + \beta_{2} ) / 3 Copy content Toggle raw display
ζ82\zeta_{8}^{2}== (β1)/3 ( \beta_1 ) / 3 Copy content Toggle raw display
ζ83\zeta_{8}^{3}== (β3+2β2)/3 ( -\beta_{3} + 2\beta_{2} ) / 3 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/135Z)×\left(\mathbb{Z}/135\mathbb{Z}\right)^\times.

nn 5656 8282
χ(n)\chi(n) 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
109.1
−0.707107 0.707107i
0.707107 0.707107i
−0.707107 + 0.707107i
0.707107 + 0.707107i
1.41421i 0 0 −2.12132 0.707107i 0 3.00000i 2.82843i 0 −1.00000 + 3.00000i
109.2 1.41421i 0 0 2.12132 0.707107i 0 3.00000i 2.82843i 0 −1.00000 3.00000i
109.3 1.41421i 0 0 −2.12132 + 0.707107i 0 3.00000i 2.82843i 0 −1.00000 3.00000i
109.4 1.41421i 0 0 2.12132 + 0.707107i 0 3.00000i 2.82843i 0 −1.00000 + 3.00000i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.b even 2 1 inner
15.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 135.2.b.b 4
3.b odd 2 1 inner 135.2.b.b 4
4.b odd 2 1 2160.2.f.k 4
5.b even 2 1 inner 135.2.b.b 4
5.c odd 4 1 675.2.a.l 2
5.c odd 4 1 675.2.a.m 2
9.c even 3 2 405.2.j.f 8
9.d odd 6 2 405.2.j.f 8
12.b even 2 1 2160.2.f.k 4
15.d odd 2 1 inner 135.2.b.b 4
15.e even 4 1 675.2.a.l 2
15.e even 4 1 675.2.a.m 2
20.d odd 2 1 2160.2.f.k 4
45.h odd 6 2 405.2.j.f 8
45.j even 6 2 405.2.j.f 8
60.h even 2 1 2160.2.f.k 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
135.2.b.b 4 1.a even 1 1 trivial
135.2.b.b 4 3.b odd 2 1 inner
135.2.b.b 4 5.b even 2 1 inner
135.2.b.b 4 15.d odd 2 1 inner
405.2.j.f 8 9.c even 3 2
405.2.j.f 8 9.d odd 6 2
405.2.j.f 8 45.h odd 6 2
405.2.j.f 8 45.j even 6 2
675.2.a.l 2 5.c odd 4 1
675.2.a.l 2 15.e even 4 1
675.2.a.m 2 5.c odd 4 1
675.2.a.m 2 15.e even 4 1
2160.2.f.k 4 4.b odd 2 1
2160.2.f.k 4 12.b even 2 1
2160.2.f.k 4 20.d odd 2 1
2160.2.f.k 4 60.h even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T22+2 T_{2}^{2} + 2 acting on S2new(135,[χ])S_{2}^{\mathrm{new}}(135, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+2)2 (T^{2} + 2)^{2} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T48T2+25 T^{4} - 8T^{2} + 25 Copy content Toggle raw display
77 (T2+9)2 (T^{2} + 9)^{2} Copy content Toggle raw display
1111 (T218)2 (T^{2} - 18)^{2} Copy content Toggle raw display
1313 (T2+9)2 (T^{2} + 9)^{2} Copy content Toggle raw display
1717 (T2+8)2 (T^{2} + 8)^{2} Copy content Toggle raw display
1919 (T+1)4 (T + 1)^{4} Copy content Toggle raw display
2323 (T2+50)2 (T^{2} + 50)^{2} Copy content Toggle raw display
2929 (T218)2 (T^{2} - 18)^{2} Copy content Toggle raw display
3131 (T2)4 (T - 2)^{4} Copy content Toggle raw display
3737 (T2+81)2 (T^{2} + 81)^{2} Copy content Toggle raw display
4141 (T218)2 (T^{2} - 18)^{2} Copy content Toggle raw display
4343 (T2+36)2 (T^{2} + 36)^{2} Copy content Toggle raw display
4747 (T2+8)2 (T^{2} + 8)^{2} Copy content Toggle raw display
5353 (T2+98)2 (T^{2} + 98)^{2} Copy content Toggle raw display
5959 (T272)2 (T^{2} - 72)^{2} Copy content Toggle raw display
6161 (T+13)4 (T + 13)^{4} Copy content Toggle raw display
6767 (T2+9)2 (T^{2} + 9)^{2} Copy content Toggle raw display
7171 (T2162)2 (T^{2} - 162)^{2} Copy content Toggle raw display
7373 (T2+81)2 (T^{2} + 81)^{2} Copy content Toggle raw display
7979 (T5)4 (T - 5)^{4} Copy content Toggle raw display
8383 (T2+2)2 (T^{2} + 2)^{2} Copy content Toggle raw display
8989 T4 T^{4} Copy content Toggle raw display
9797 (T2+9)2 (T^{2} + 9)^{2} Copy content Toggle raw display
show more
show less