L(s) = 1 | + 12·3-s − 32·4-s + 148·9-s − 384·12-s − 520·13-s + 640·16-s + 1.33e3·19-s + 664·25-s + 1.21e3·27-s + 4.88e3·31-s − 4.73e3·36-s − 800·37-s − 6.24e3·39-s − 2.81e3·43-s + 7.68e3·48-s + 1.37e3·49-s + 1.66e4·52-s + 1.60e4·57-s + 2.69e3·61-s − 1.02e4·64-s − 6.96e3·67-s + 2.76e4·73-s + 7.96e3·75-s − 4.27e4·76-s − 1.02e3·79-s + 1.37e4·81-s + 5.85e4·93-s + ⋯ |
L(s) = 1 | + 4/3·3-s − 2·4-s + 1.82·9-s − 8/3·12-s − 3.07·13-s + 5/2·16-s + 3.70·19-s + 1.06·25-s + 1.66·27-s + 5.07·31-s − 3.65·36-s − 0.584·37-s − 4.10·39-s − 1.52·43-s + 10/3·48-s + 4/7·49-s + 6.15·52-s + 4.93·57-s + 0.724·61-s − 5/2·64-s − 1.55·67-s + 5.18·73-s + 1.41·75-s − 7.40·76-s − 0.164·79-s + 2.09·81-s + 6.77·93-s + ⋯ |
Λ(s)=(=((28⋅38⋅78)s/2ΓC(s)8L(s)Λ(5−s)
Λ(s)=(=((28⋅38⋅78)s/2ΓC(s+2)8L(s)Λ(1−s)
Particular Values
L(25) |
≈ |
5.507437462 |
L(21) |
≈ |
5.507437462 |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | (1+p3T2)4 |
| 3 | 1−4pT−4T2+68p2T3−662p2T4+68p6T5−4p8T6−4p13T7+p16T8 |
| 7 | (1−p3T2)4 |
good | 5 | 1−664T2+437924T4−88479624T6+4286559494T8−88479624p8T10+437924p16T12−664p24T14+p32T16 |
| 11 | 1−75544T2+2921639132T4−72856032921000T6+1264800259684876358T8−72856032921000p8T10+2921639132p16T12−75544p24T14+p32T16 |
| 13 | (1+20pT+63068T2+7956276T3+1342851002T4+7956276p4T5+63068p8T6+20p13T7+p16T8)2 |
| 17 | 1−71224T2+9382405916T4−1222841841739656T6+85209970415957819462T8−1222841841739656p8T10+9382405916p16T12−71224p24T14+p32T16 |
| 19 | (1−668T+562204T2−226309484T3+108623604730T4−226309484p4T5+562204p8T6−668p12T7+p16T8)2 |
| 23 | 1−954952T2+314690473244T4−8418785376240120T6−14⋯22T8−8418785376240120p8T10+314690473244p16T12−954952p24T14+p32T16 |
| 29 | 1−4654456T2+10061048290844T4−13139168714386018632T6+11⋯42T8−13139168714386018632p8T10+10061048290844p16T12−4654456p24T14+p32T16 |
| 31 | (1−2440T+4750052T2−5895563736T3+6660667523078T4−5895563736p4T5+4750052p8T6−2440p12T7+p16T8)2 |
| 37 | (1+400T+2084716T2+395204848T3+5059454317606T4+395204848p4T5+2084716p8T6+400p12T7+p16T8)2 |
| 41 | 1−19751576T2+177774313337692T4−95⋯12T6+32⋯94T8−95⋯12p8T10+177774313337692p16T12−19751576p24T14+p32T16 |
| 43 | (1+1408T+10046860T2+11972332672T3+48969670597606T4+11972332672p4T5+10046860p8T6+1408p12T7+p16T8)2 |
| 47 | 1−24321800T2+280807668157468T4−20⋯20T6+11⋯66T8−20⋯20p8T10+280807668157468p16T12−24321800p24T14+p32T16 |
| 53 | 1−46463768T2+1024233601864924T4−14⋯96T6+13⋯94T8−14⋯96p8T10+1024233601864924p16T12−46463768p24T14+p32T16 |
| 59 | 1+10637576T2+84111045669860T4+49194962777684533080T6−15⋯78T8+49194962777684533080p8T10+84111045669860p16T12+10637576p24T14+p32T16 |
| 61 | (1−1348T+29646524T2−20047475892T3+480742537431098T4−20047475892p4T5+29646524p8T6−1348p12T7+p16T8)2 |
| 67 | (1+3480T+50068124T2+145959249576T3+1178892510670470T4+145959249576p4T5+50068124p8T6+3480p12T7+p16T8)2 |
| 71 | 1−43758904T2+1149222526263836T4−38⋯08T6+12⋯86T8−38⋯08p8T10+1149222526263836p16T12−43758904p24T14+p32T16 |
| 73 | (1−13824T+129639884T2−924716795904T3+5270348883746598T4−924716795904p4T5+129639884p8T6−13824p12T7+p16T8)2 |
| 79 | (1+512T+115971620T2+58605823488T3+6343534677753926T4+58605823488p4T5+115971620p8T6+512p12T7+p16T8)2 |
| 83 | 1−190162744T2+15994881716551652T4−80⋯60T6+35⋯38T8−80⋯60p8T10+15994881716551652p16T12−190162744p24T14+p32T16 |
| 89 | 1−240564248T2+37258790807545948T4−36⋯72T6+27⋯86T8−36⋯72p8T10+37258790807545948p16T12−240564248p24T14+p32T16 |
| 97 | (1+13704T+113687708T2+121903428792T3−333706776381114T4+121903428792p4T5+113687708p8T6+13704p12T7+p16T8)2 |
show more | |
show less | |
L(s)=p∏ j=1∏16(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.94477191448057933739302706322, −6.94352217699111046347287990663, −6.66671921458207778148184959048, −6.38916709202995514804328157851, −6.24554211601366264253457498554, −5.93125375260446459406446752095, −5.38908138941423016707213879592, −5.22202016127420124349226771956, −5.15900607126687867869351658318, −5.15174021553366816964319172085, −4.68482167815059195726229074543, −4.66688584780610086941732400347, −4.54027947635743140789482835043, −4.20306223735757317565131996215, −3.68580370284497017265600537452, −3.55083575373499602034637554591, −3.48575976348390378866342428201, −2.79383347038542062982775082099, −2.77629435352663285337587270359, −2.68773701569136997878060250287, −2.23491538136301964201733568251, −1.43740858706091604531327737753, −1.19816482167351549059170056366, −0.71359067118230111325631782161, −0.50557307915793631667769541787,
0.50557307915793631667769541787, 0.71359067118230111325631782161, 1.19816482167351549059170056366, 1.43740858706091604531327737753, 2.23491538136301964201733568251, 2.68773701569136997878060250287, 2.77629435352663285337587270359, 2.79383347038542062982775082099, 3.48575976348390378866342428201, 3.55083575373499602034637554591, 3.68580370284497017265600537452, 4.20306223735757317565131996215, 4.54027947635743140789482835043, 4.66688584780610086941732400347, 4.68482167815059195726229074543, 5.15174021553366816964319172085, 5.15900607126687867869351658318, 5.22202016127420124349226771956, 5.38908138941423016707213879592, 5.93125375260446459406446752095, 6.24554211601366264253457498554, 6.38916709202995514804328157851, 6.66671921458207778148184959048, 6.94352217699111046347287990663, 6.94477191448057933739302706322
Plot not available for L-functions of degree greater than 10.