Properties

Label 42.5.b.a.29.7
Level $42$
Weight $5$
Character 42.29
Analytic conductor $4.342$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [42,5,Mod(29,42)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(42, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("42.29");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 42 = 2 \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 42.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.34153844952\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 44x^{6} + 646x^{4} - 3060x^{2} + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{7}\cdot 3^{3}\cdot 7^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 29.7
Root \(-1.88752 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 42.29
Dual form 42.5.b.a.29.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.82843i q^{2} +(6.59792 - 6.12106i) q^{3} -8.00000 q^{4} -47.9925i q^{5} +(17.3130 + 18.6617i) q^{6} -18.5203 q^{7} -22.6274i q^{8} +(6.06518 - 80.7726i) q^{9} +135.743 q^{10} +123.237i q^{11} +(-52.7834 + 48.9685i) q^{12} +241.627 q^{13} -52.3832i q^{14} +(-293.765 - 316.651i) q^{15} +64.0000 q^{16} +64.4425i q^{17} +(228.459 + 17.1549i) q^{18} +125.357 q^{19} +383.940i q^{20} +(-122.195 + 113.364i) q^{21} -348.566 q^{22} +287.613i q^{23} +(-138.504 - 149.294i) q^{24} -1678.28 q^{25} +683.426i q^{26} +(-454.397 - 570.057i) q^{27} +148.162 q^{28} +94.2775i q^{29} +(895.624 - 830.893i) q^{30} +429.829 q^{31} +181.019i q^{32} +(754.339 + 813.106i) q^{33} -182.271 q^{34} +888.834i q^{35} +(-48.5215 + 646.181i) q^{36} +2118.52 q^{37} +354.563i q^{38} +(1594.24 - 1479.02i) q^{39} -1085.95 q^{40} -1220.23i q^{41} +(-320.641 - 345.620i) q^{42} +976.206 q^{43} -985.893i q^{44} +(-3876.48 - 291.083i) q^{45} -813.493 q^{46} +526.553i q^{47} +(422.267 - 391.748i) q^{48} +343.000 q^{49} -4746.90i q^{50} +(394.457 + 425.187i) q^{51} -1933.02 q^{52} +1567.07i q^{53} +(1612.36 - 1285.23i) q^{54} +5914.43 q^{55} +419.066i q^{56} +(827.096 - 767.318i) q^{57} -266.657 q^{58} +5826.08i q^{59} +(2350.12 + 2533.21i) q^{60} -4955.04 q^{61} +1215.74i q^{62} +(-112.329 + 1495.93i) q^{63} -512.000 q^{64} -11596.3i q^{65} +(-2299.81 + 2133.59i) q^{66} -1321.11 q^{67} -515.540i q^{68} +(1760.50 + 1897.65i) q^{69} -2514.00 q^{70} +3717.89i q^{71} +(-1827.68 - 137.239i) q^{72} +2023.01 q^{73} +5992.07i q^{74} +(-11073.2 + 10272.9i) q^{75} -1002.86 q^{76} -2282.37i q^{77} +(4183.29 + 4509.19i) q^{78} +4711.86 q^{79} -3071.52i q^{80} +(-6487.43 - 979.801i) q^{81} +3451.32 q^{82} -4420.87i q^{83} +(977.562 - 906.909i) q^{84} +3092.76 q^{85} +2761.13i q^{86} +(577.078 + 622.036i) q^{87} +2788.53 q^{88} -8482.72i q^{89} +(823.308 - 10964.3i) q^{90} -4475.00 q^{91} -2300.91i q^{92} +(2835.98 - 2631.01i) q^{93} -1489.32 q^{94} -6016.20i q^{95} +(1108.03 + 1194.35i) q^{96} -16341.1 q^{97} +970.151i q^{98} +(9954.14 + 747.452i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 12 q^{3} - 64 q^{4} - 32 q^{6} + 152 q^{9} + 256 q^{10} - 96 q^{12} - 520 q^{13} - 616 q^{15} + 512 q^{16} + 768 q^{18} + 1336 q^{19} - 196 q^{21} - 1024 q^{22} + 256 q^{24} - 3672 q^{25} + 36 q^{27}+ \cdots + 10976 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/42\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(31\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.82843i 0.707107i
\(3\) 6.59792 6.12106i 0.733103 0.680118i
\(4\) −8.00000 −0.500000
\(5\) 47.9925i 1.91970i −0.280513 0.959850i \(-0.590505\pi\)
0.280513 0.959850i \(-0.409495\pi\)
\(6\) 17.3130 + 18.6617i 0.480916 + 0.518382i
\(7\) −18.5203 −0.377964
\(8\) 22.6274i 0.353553i
\(9\) 6.06518 80.7726i 0.0748788 0.997193i
\(10\) 135.743 1.35743
\(11\) 123.237i 1.01848i 0.860623 + 0.509242i \(0.170074\pi\)
−0.860623 + 0.509242i \(0.829926\pi\)
\(12\) −52.7834 + 48.9685i −0.366551 + 0.340059i
\(13\) 241.627 1.42975 0.714874 0.699253i \(-0.246484\pi\)
0.714874 + 0.699253i \(0.246484\pi\)
\(14\) 52.3832i 0.267261i
\(15\) −293.765 316.651i −1.30562 1.40734i
\(16\) 64.0000 0.250000
\(17\) 64.4425i 0.222984i 0.993765 + 0.111492i \(0.0355630\pi\)
−0.993765 + 0.111492i \(0.964437\pi\)
\(18\) 228.459 + 17.1549i 0.705122 + 0.0529473i
\(19\) 125.357 0.347249 0.173625 0.984812i \(-0.444452\pi\)
0.173625 + 0.984812i \(0.444452\pi\)
\(20\) 383.940i 0.959850i
\(21\) −122.195 + 113.364i −0.277087 + 0.257060i
\(22\) −348.566 −0.720177
\(23\) 287.613i 0.543693i 0.962341 + 0.271846i \(0.0876342\pi\)
−0.962341 + 0.271846i \(0.912366\pi\)
\(24\) −138.504 149.294i −0.240458 0.259191i
\(25\) −1678.28 −2.68525
\(26\) 683.426i 1.01098i
\(27\) −454.397 570.057i −0.623315 0.781971i
\(28\) 148.162 0.188982
\(29\) 94.2775i 0.112102i 0.998428 + 0.0560508i \(0.0178509\pi\)
−0.998428 + 0.0560508i \(0.982149\pi\)
\(30\) 895.624 830.893i 0.995138 0.923215i
\(31\) 429.829 0.447273 0.223637 0.974673i \(-0.428207\pi\)
0.223637 + 0.974673i \(0.428207\pi\)
\(32\) 181.019i 0.176777i
\(33\) 754.339 + 813.106i 0.692690 + 0.746653i
\(34\) −182.271 −0.157674
\(35\) 888.834i 0.725579i
\(36\) −48.5215 + 646.181i −0.0374394 + 0.498596i
\(37\) 2118.52 1.54749 0.773746 0.633496i \(-0.218381\pi\)
0.773746 + 0.633496i \(0.218381\pi\)
\(38\) 354.563i 0.245542i
\(39\) 1594.24 1479.02i 1.04815 0.972398i
\(40\) −1085.95 −0.678717
\(41\) 1220.23i 0.725893i −0.931810 0.362946i \(-0.881771\pi\)
0.931810 0.362946i \(-0.118229\pi\)
\(42\) −320.641 345.620i −0.181769 0.195930i
\(43\) 976.206 0.527964 0.263982 0.964528i \(-0.414964\pi\)
0.263982 + 0.964528i \(0.414964\pi\)
\(44\) 985.893i 0.509242i
\(45\) −3876.48 291.083i −1.91431 0.143745i
\(46\) −813.493 −0.384449
\(47\) 526.553i 0.238367i 0.992872 + 0.119183i \(0.0380277\pi\)
−0.992872 + 0.119183i \(0.961972\pi\)
\(48\) 422.267 391.748i 0.183276 0.170030i
\(49\) 343.000 0.142857
\(50\) 4746.90i 1.89876i
\(51\) 394.457 + 425.187i 0.151656 + 0.163470i
\(52\) −1933.02 −0.714874
\(53\) 1567.07i 0.557875i 0.960309 + 0.278937i \(0.0899822\pi\)
−0.960309 + 0.278937i \(0.910018\pi\)
\(54\) 1612.36 1285.23i 0.552937 0.440750i
\(55\) 5914.43 1.95518
\(56\) 419.066i 0.133631i
\(57\) 827.096 767.318i 0.254569 0.236171i
\(58\) −266.657 −0.0792678
\(59\) 5826.08i 1.67368i 0.547448 + 0.836840i \(0.315599\pi\)
−0.547448 + 0.836840i \(0.684401\pi\)
\(60\) 2350.12 + 2533.21i 0.652811 + 0.703669i
\(61\) −4955.04 −1.33164 −0.665821 0.746112i \(-0.731918\pi\)
−0.665821 + 0.746112i \(0.731918\pi\)
\(62\) 1215.74i 0.316270i
\(63\) −112.329 + 1495.93i −0.0283015 + 0.376903i
\(64\) −512.000 −0.125000
\(65\) 11596.3i 2.74469i
\(66\) −2299.81 + 2133.59i −0.527964 + 0.489806i
\(67\) −1321.11 −0.294300 −0.147150 0.989114i \(-0.547010\pi\)
−0.147150 + 0.989114i \(0.547010\pi\)
\(68\) 515.540i 0.111492i
\(69\) 1760.50 + 1897.65i 0.369775 + 0.398582i
\(70\) −2514.00 −0.513062
\(71\) 3717.89i 0.737531i 0.929522 + 0.368765i \(0.120219\pi\)
−0.929522 + 0.368765i \(0.879781\pi\)
\(72\) −1827.68 137.239i −0.352561 0.0264737i
\(73\) 2023.01 0.379622 0.189811 0.981821i \(-0.439212\pi\)
0.189811 + 0.981821i \(0.439212\pi\)
\(74\) 5992.07i 1.09424i
\(75\) −11073.2 + 10272.9i −1.96856 + 1.82629i
\(76\) −1002.86 −0.173625
\(77\) 2282.37i 0.384951i
\(78\) 4183.29 + 4509.19i 0.687589 + 0.741156i
\(79\) 4711.86 0.754985 0.377493 0.926013i \(-0.376786\pi\)
0.377493 + 0.926013i \(0.376786\pi\)
\(80\) 3071.52i 0.479925i
\(81\) −6487.43 979.801i −0.988786 0.149337i
\(82\) 3451.32 0.513284
\(83\) 4420.87i 0.641729i −0.947125 0.320865i \(-0.896027\pi\)
0.947125 0.320865i \(-0.103973\pi\)
\(84\) 977.562 906.909i 0.138543 0.128530i
\(85\) 3092.76 0.428063
\(86\) 2761.13i 0.373327i
\(87\) 577.078 + 622.036i 0.0762424 + 0.0821820i
\(88\) 2788.53 0.360089
\(89\) 8482.72i 1.07091i −0.844562 0.535457i \(-0.820139\pi\)
0.844562 0.535457i \(-0.179861\pi\)
\(90\) 823.308 10964.3i 0.101643 1.35362i
\(91\) −4475.00 −0.540394
\(92\) 2300.91i 0.271846i
\(93\) 2835.98 2631.01i 0.327897 0.304199i
\(94\) −1489.32 −0.168551
\(95\) 6016.20i 0.666615i
\(96\) 1108.03 + 1194.35i 0.120229 + 0.129595i
\(97\) −16341.1 −1.73675 −0.868375 0.495908i \(-0.834835\pi\)
−0.868375 + 0.495908i \(0.834835\pi\)
\(98\) 970.151i 0.101015i
\(99\) 9954.14 + 747.452i 1.01563 + 0.0762629i
\(100\) 13426.2 1.34262
\(101\) 5191.39i 0.508910i 0.967085 + 0.254455i \(0.0818960\pi\)
−0.967085 + 0.254455i \(0.918104\pi\)
\(102\) −1202.61 + 1115.69i −0.115591 + 0.107237i
\(103\) 9498.09 0.895286 0.447643 0.894212i \(-0.352264\pi\)
0.447643 + 0.894212i \(0.352264\pi\)
\(104\) 5467.41i 0.505492i
\(105\) 5440.61 + 5864.46i 0.493479 + 0.531924i
\(106\) −4432.35 −0.394477
\(107\) 3676.19i 0.321093i −0.987028 0.160546i \(-0.948674\pi\)
0.987028 0.160546i \(-0.0513256\pi\)
\(108\) 3635.17 + 4560.45i 0.311657 + 0.390985i
\(109\) −11597.2 −0.976113 −0.488056 0.872812i \(-0.662294\pi\)
−0.488056 + 0.872812i \(0.662294\pi\)
\(110\) 16728.5i 1.38252i
\(111\) 13977.8 12967.6i 1.13447 1.05248i
\(112\) −1185.30 −0.0944911
\(113\) 1074.40i 0.0841413i −0.999115 0.0420706i \(-0.986605\pi\)
0.999115 0.0420706i \(-0.0133955\pi\)
\(114\) 2170.30 + 2339.38i 0.166998 + 0.180008i
\(115\) 13803.3 1.04373
\(116\) 754.220i 0.0560508i
\(117\) 1465.51 19516.9i 0.107058 1.42573i
\(118\) −16478.6 −1.18347
\(119\) 1193.49i 0.0842802i
\(120\) −7164.99 + 6647.15i −0.497569 + 0.461607i
\(121\) −546.261 −0.0373103
\(122\) 14015.0i 0.941613i
\(123\) −7469.08 8050.96i −0.493693 0.532154i
\(124\) −3438.64 −0.223637
\(125\) 50549.6i 3.23517i
\(126\) −4231.13 317.714i −0.266511 0.0200122i
\(127\) −19449.2 −1.20585 −0.602927 0.797797i \(-0.705999\pi\)
−0.602927 + 0.797797i \(0.705999\pi\)
\(128\) 1448.15i 0.0883883i
\(129\) 6440.93 5975.42i 0.387052 0.359078i
\(130\) 32799.3 1.94079
\(131\) 14919.5i 0.869382i −0.900580 0.434691i \(-0.856858\pi\)
0.900580 0.434691i \(-0.143142\pi\)
\(132\) −6034.71 6504.85i −0.346345 0.373327i
\(133\) −2321.64 −0.131248
\(134\) 3736.67i 0.208102i
\(135\) −27358.5 + 21807.6i −1.50115 + 1.19658i
\(136\) 1458.17 0.0788369
\(137\) 19699.7i 1.04959i 0.851229 + 0.524795i \(0.175858\pi\)
−0.851229 + 0.524795i \(0.824142\pi\)
\(138\) −5367.37 + 4979.44i −0.281840 + 0.261471i
\(139\) 22226.3 1.15037 0.575184 0.818024i \(-0.304930\pi\)
0.575184 + 0.818024i \(0.304930\pi\)
\(140\) 7110.67i 0.362789i
\(141\) 3223.06 + 3474.15i 0.162118 + 0.174747i
\(142\) −10515.8 −0.521513
\(143\) 29777.4i 1.45618i
\(144\) 388.172 5169.45i 0.0187197 0.249298i
\(145\) 4524.61 0.215202
\(146\) 5721.92i 0.268433i
\(147\) 2263.09 2099.52i 0.104729 0.0971597i
\(148\) −16948.1 −0.773746
\(149\) 6791.29i 0.305900i −0.988234 0.152950i \(-0.951123\pi\)
0.988234 0.152950i \(-0.0488774\pi\)
\(150\) −29056.0 31319.7i −1.29138 1.39198i
\(151\) −8470.50 −0.371497 −0.185748 0.982597i \(-0.559471\pi\)
−0.185748 + 0.982597i \(0.559471\pi\)
\(152\) 2836.51i 0.122771i
\(153\) 5205.19 + 390.856i 0.222358 + 0.0166968i
\(154\) 6455.53 0.272201
\(155\) 20628.6i 0.858630i
\(156\) −12753.9 + 11832.1i −0.524076 + 0.486199i
\(157\) −13638.2 −0.553297 −0.276649 0.960971i \(-0.589224\pi\)
−0.276649 + 0.960971i \(0.589224\pi\)
\(158\) 13327.2i 0.533855i
\(159\) 9592.14 + 10339.4i 0.379421 + 0.408980i
\(160\) 8687.57 0.339358
\(161\) 5326.67i 0.205496i
\(162\) 2771.30 18349.2i 0.105597 0.699178i
\(163\) −38643.6 −1.45446 −0.727232 0.686392i \(-0.759193\pi\)
−0.727232 + 0.686392i \(0.759193\pi\)
\(164\) 9761.81i 0.362946i
\(165\) 39023.0 36202.6i 1.43335 1.32976i
\(166\) 12504.1 0.453771
\(167\) 33982.6i 1.21850i 0.792980 + 0.609248i \(0.208529\pi\)
−0.792980 + 0.609248i \(0.791471\pi\)
\(168\) 2565.13 + 2764.96i 0.0908846 + 0.0979650i
\(169\) 29822.8 1.04418
\(170\) 8747.64i 0.302686i
\(171\) 760.313 10125.4i 0.0260016 0.346275i
\(172\) −7809.65 −0.263982
\(173\) 12224.7i 0.408457i 0.978923 + 0.204229i \(0.0654686\pi\)
−0.978923 + 0.204229i \(0.934531\pi\)
\(174\) −1759.38 + 1632.22i −0.0581115 + 0.0539115i
\(175\) 31082.2 1.01493
\(176\) 7887.14i 0.254621i
\(177\) 35661.8 + 38440.0i 1.13830 + 1.22698i
\(178\) 23992.7 0.757251
\(179\) 53278.8i 1.66283i −0.555651 0.831416i \(-0.687531\pi\)
0.555651 0.831416i \(-0.312469\pi\)
\(180\) 31011.8 + 2328.67i 0.957156 + 0.0718724i
\(181\) 19789.7 0.604064 0.302032 0.953298i \(-0.402335\pi\)
0.302032 + 0.953298i \(0.402335\pi\)
\(182\) 12657.2i 0.382116i
\(183\) −32693.0 + 30330.1i −0.976230 + 0.905673i
\(184\) 6507.95 0.192224
\(185\) 101673.i 2.97072i
\(186\) 7441.63 + 8021.37i 0.215101 + 0.231858i
\(187\) −7941.68 −0.227106
\(188\) 4212.42i 0.119183i
\(189\) 8415.54 + 10557.6i 0.235591 + 0.295557i
\(190\) 17016.4 0.471368
\(191\) 22349.2i 0.612626i 0.951931 + 0.306313i \(0.0990954\pi\)
−0.951931 + 0.306313i \(0.900905\pi\)
\(192\) −3378.14 + 3133.98i −0.0916378 + 0.0850148i
\(193\) −55747.5 −1.49662 −0.748308 0.663351i \(-0.769134\pi\)
−0.748308 + 0.663351i \(0.769134\pi\)
\(194\) 46219.5i 1.22807i
\(195\) −70981.7 76511.6i −1.86671 2.01214i
\(196\) −2744.00 −0.0714286
\(197\) 3307.33i 0.0852208i −0.999092 0.0426104i \(-0.986433\pi\)
0.999092 0.0426104i \(-0.0135674\pi\)
\(198\) −2114.11 + 28154.6i −0.0539260 + 0.718155i
\(199\) 31962.3 0.807107 0.403554 0.914956i \(-0.367775\pi\)
0.403554 + 0.914956i \(0.367775\pi\)
\(200\) 37975.2i 0.949379i
\(201\) −8716.61 + 8086.62i −0.215752 + 0.200159i
\(202\) −14683.5 −0.359854
\(203\) 1746.04i 0.0423704i
\(204\) −3155.65 3401.49i −0.0758279 0.0817352i
\(205\) −58561.7 −1.39350
\(206\) 26864.7i 0.633063i
\(207\) 23231.3 + 1744.43i 0.542166 + 0.0407110i
\(208\) 15464.2 0.357437
\(209\) 15448.6i 0.353668i
\(210\) −16587.2 + 15388.4i −0.376127 + 0.348942i
\(211\) 8820.58 0.198122 0.0990609 0.995081i \(-0.468416\pi\)
0.0990609 + 0.995081i \(0.468416\pi\)
\(212\) 12536.6i 0.278937i
\(213\) 22757.5 + 24530.4i 0.501608 + 0.540686i
\(214\) 10397.8 0.227047
\(215\) 46850.6i 1.01353i
\(216\) −12898.9 + 10281.8i −0.276468 + 0.220375i
\(217\) −7960.55 −0.169053
\(218\) 32801.8i 0.690216i
\(219\) 13347.6 12382.9i 0.278302 0.258188i
\(220\) −47315.5 −0.977592
\(221\) 15571.1i 0.318812i
\(222\) 36677.8 + 39535.2i 0.744214 + 0.802191i
\(223\) −52110.8 −1.04790 −0.523948 0.851750i \(-0.675541\pi\)
−0.523948 + 0.851750i \(0.675541\pi\)
\(224\) 3352.53i 0.0668153i
\(225\) −10179.1 + 135559.i −0.201068 + 2.67771i
\(226\) 3038.86 0.0594969
\(227\) 60377.1i 1.17171i 0.810415 + 0.585856i \(0.199241\pi\)
−0.810415 + 0.585856i \(0.800759\pi\)
\(228\) −6616.77 + 6138.55i −0.127285 + 0.118085i
\(229\) 3035.47 0.0578835 0.0289418 0.999581i \(-0.490786\pi\)
0.0289418 + 0.999581i \(0.490786\pi\)
\(230\) 39041.6i 0.738026i
\(231\) −13970.6 15058.9i −0.261812 0.282208i
\(232\) 2133.26 0.0396339
\(233\) 34594.5i 0.637228i 0.947885 + 0.318614i \(0.103217\pi\)
−0.947885 + 0.318614i \(0.896783\pi\)
\(234\) 55202.1 + 4145.10i 1.00815 + 0.0757013i
\(235\) 25270.6 0.457593
\(236\) 46608.6i 0.836840i
\(237\) 31088.5 28841.6i 0.553482 0.513479i
\(238\) 3375.70 0.0595951
\(239\) 78309.8i 1.37095i −0.728098 0.685473i \(-0.759595\pi\)
0.728098 0.685473i \(-0.240405\pi\)
\(240\) −18801.0 20265.7i −0.326406 0.351834i
\(241\) 28362.2 0.488322 0.244161 0.969735i \(-0.421487\pi\)
0.244161 + 0.969735i \(0.421487\pi\)
\(242\) 1545.06i 0.0263824i
\(243\) −48801.0 + 33245.3i −0.826449 + 0.563012i
\(244\) 39640.3 0.665821
\(245\) 16461.4i 0.274243i
\(246\) 22771.5 21125.7i 0.376290 0.349094i
\(247\) 30289.7 0.496479
\(248\) 9725.93i 0.158135i
\(249\) −27060.4 29168.6i −0.436452 0.470453i
\(250\) −142976. −2.28761
\(251\) 89655.5i 1.42308i 0.702646 + 0.711540i \(0.252002\pi\)
−0.702646 + 0.711540i \(0.747998\pi\)
\(252\) 898.630 11967.4i 0.0141508 0.188452i
\(253\) −35444.5 −0.553742
\(254\) 55010.7i 0.852667i
\(255\) 20405.8 18931.0i 0.313814 0.291134i
\(256\) 4096.00 0.0625000
\(257\) 12337.1i 0.186787i −0.995629 0.0933933i \(-0.970229\pi\)
0.995629 0.0933933i \(-0.0297714\pi\)
\(258\) 16901.0 + 18217.7i 0.253906 + 0.273687i
\(259\) −39235.5 −0.584897
\(260\) 92770.5i 1.37234i
\(261\) 7615.04 + 571.810i 0.111787 + 0.00839404i
\(262\) 42198.6 0.614746
\(263\) 39803.9i 0.575458i 0.957712 + 0.287729i \(0.0929003\pi\)
−0.957712 + 0.287729i \(0.907100\pi\)
\(264\) 18398.5 17068.7i 0.263982 0.244903i
\(265\) 75207.7 1.07095
\(266\) 6566.60i 0.0928063i
\(267\) −51923.2 55968.3i −0.728349 0.785091i
\(268\) 10568.9 0.147150
\(269\) 38209.6i 0.528042i 0.964517 + 0.264021i \(0.0850488\pi\)
−0.964517 + 0.264021i \(0.914951\pi\)
\(270\) −61681.3 77381.4i −0.846108 1.06147i
\(271\) 134877. 1.83653 0.918267 0.395961i \(-0.129588\pi\)
0.918267 + 0.395961i \(0.129588\pi\)
\(272\) 4124.32i 0.0557461i
\(273\) −29525.7 + 27391.8i −0.396164 + 0.367532i
\(274\) −55719.3 −0.742172
\(275\) 206826.i 2.73488i
\(276\) −14084.0 15181.2i −0.184888 0.199291i
\(277\) 134803. 1.75688 0.878438 0.477856i \(-0.158586\pi\)
0.878438 + 0.477856i \(0.158586\pi\)
\(278\) 62865.4i 0.813434i
\(279\) 2606.99 34718.4i 0.0334913 0.446017i
\(280\) 20112.0 0.256531
\(281\) 3288.42i 0.0416462i −0.999783 0.0208231i \(-0.993371\pi\)
0.999783 0.0208231i \(-0.00662868\pi\)
\(282\) −9826.39 + 9116.20i −0.123565 + 0.114635i
\(283\) −129266. −1.61403 −0.807016 0.590529i \(-0.798919\pi\)
−0.807016 + 0.590529i \(0.798919\pi\)
\(284\) 29743.1i 0.368765i
\(285\) −36825.5 39694.4i −0.453377 0.488697i
\(286\) −84223.1 −1.02967
\(287\) 22598.9i 0.274362i
\(288\) 14621.4 + 1097.92i 0.176280 + 0.0132368i
\(289\) 79368.2 0.950278
\(290\) 12797.5i 0.152171i
\(291\) −107817. + 100025.i −1.27322 + 1.18119i
\(292\) −16184.0 −0.189811
\(293\) 168398.i 1.96157i −0.195104 0.980783i \(-0.562504\pi\)
0.195104 0.980783i \(-0.437496\pi\)
\(294\) 5938.35 + 6400.98i 0.0687023 + 0.0740545i
\(295\) 279608. 3.21296
\(296\) 47936.5i 0.547121i
\(297\) 70251.9 55998.3i 0.796425 0.634836i
\(298\) 19208.7 0.216304
\(299\) 69495.3i 0.777344i
\(300\) 88585.4 82182.9i 0.984282 0.913143i
\(301\) −18079.6 −0.199552
\(302\) 23958.2i 0.262688i
\(303\) 31776.8 + 34252.4i 0.346119 + 0.373083i
\(304\) 8022.85 0.0868123
\(305\) 237805.i 2.55635i
\(306\) −1105.51 + 14722.5i −0.0118064 + 0.157231i
\(307\) −44393.8 −0.471027 −0.235514 0.971871i \(-0.575677\pi\)
−0.235514 + 0.971871i \(0.575677\pi\)
\(308\) 18259.0i 0.192475i
\(309\) 62667.7 58138.4i 0.656336 0.608900i
\(310\) 58346.5 0.607143
\(311\) 146724.i 1.51699i 0.651681 + 0.758493i \(0.274064\pi\)
−0.651681 + 0.758493i \(0.725936\pi\)
\(312\) −33466.3 36073.5i −0.343795 0.370578i
\(313\) −54255.1 −0.553799 −0.276899 0.960899i \(-0.589307\pi\)
−0.276899 + 0.960899i \(0.589307\pi\)
\(314\) 38574.7i 0.391240i
\(315\) 71793.4 + 5390.94i 0.723542 + 0.0543304i
\(316\) −37694.9 −0.377493
\(317\) 130350.i 1.29715i 0.761149 + 0.648577i \(0.224636\pi\)
−0.761149 + 0.648577i \(0.775364\pi\)
\(318\) −29244.3 + 27130.7i −0.289192 + 0.268291i
\(319\) −11618.4 −0.114174
\(320\) 24572.2i 0.239963i
\(321\) −22502.2 24255.2i −0.218381 0.235394i
\(322\) 15066.1 0.145308
\(323\) 8078.32i 0.0774312i
\(324\) 51899.4 + 7838.41i 0.494393 + 0.0746686i
\(325\) −405519. −3.83923
\(326\) 109301.i 1.02846i
\(327\) −76517.4 + 70987.2i −0.715591 + 0.663872i
\(328\) −27610.6 −0.256642
\(329\) 9751.89i 0.0900943i
\(330\) 102396. + 110374.i 0.940280 + 1.01353i
\(331\) −35032.0 −0.319749 −0.159875 0.987137i \(-0.551109\pi\)
−0.159875 + 0.987137i \(0.551109\pi\)
\(332\) 35367.0i 0.320865i
\(333\) 12849.2 171118.i 0.115874 1.54315i
\(334\) −96117.4 −0.861607
\(335\) 63403.6i 0.564968i
\(336\) −7820.50 + 7255.27i −0.0692717 + 0.0642651i
\(337\) −184305. −1.62285 −0.811423 0.584459i \(-0.801307\pi\)
−0.811423 + 0.584459i \(0.801307\pi\)
\(338\) 84351.7i 0.738347i
\(339\) −6576.47 7088.81i −0.0572260 0.0616842i
\(340\) −24742.1 −0.214032
\(341\) 52970.7i 0.455541i
\(342\) 28639.0 + 2150.49i 0.244853 + 0.0183859i
\(343\) −6352.45 −0.0539949
\(344\) 22089.0i 0.186664i
\(345\) 91073.0 84490.8i 0.765159 0.709858i
\(346\) −34576.7 −0.288823
\(347\) 15320.3i 0.127235i −0.997974 0.0636176i \(-0.979736\pi\)
0.997974 0.0636176i \(-0.0202638\pi\)
\(348\) −4616.63 4976.29i −0.0381212 0.0410910i
\(349\) 85296.5 0.700294 0.350147 0.936695i \(-0.386132\pi\)
0.350147 + 0.936695i \(0.386132\pi\)
\(350\) 87913.7i 0.717663i
\(351\) −109795. 137741.i −0.891184 1.11802i
\(352\) −22308.2 −0.180044
\(353\) 120060.i 0.963493i −0.876311 0.481746i \(-0.840003\pi\)
0.876311 0.481746i \(-0.159997\pi\)
\(354\) −108725. + 100867.i −0.867605 + 0.804899i
\(355\) 178431. 1.41584
\(356\) 67861.7i 0.535457i
\(357\) −7305.44 7874.57i −0.0573205 0.0617860i
\(358\) 150695. 1.17580
\(359\) 164672.i 1.27771i −0.769328 0.638854i \(-0.779409\pi\)
0.769328 0.638854i \(-0.220591\pi\)
\(360\) −6586.46 + 87714.7i −0.0508215 + 0.676811i
\(361\) −114607. −0.879418
\(362\) 55973.8i 0.427138i
\(363\) −3604.19 + 3343.70i −0.0273523 + 0.0253754i
\(364\) 35800.0 0.270197
\(365\) 97089.1i 0.728760i
\(366\) −85786.5 92469.7i −0.640408 0.690299i
\(367\) 179523. 1.33287 0.666435 0.745563i \(-0.267819\pi\)
0.666435 + 0.745563i \(0.267819\pi\)
\(368\) 18407.3i 0.135923i
\(369\) −98560.8 7400.89i −0.723855 0.0543540i
\(370\) 287574. 2.10062
\(371\) 29022.6i 0.210857i
\(372\) −22687.9 + 21048.1i −0.163949 + 0.152099i
\(373\) 154860. 1.11307 0.556534 0.830825i \(-0.312131\pi\)
0.556534 + 0.830825i \(0.312131\pi\)
\(374\) 22462.4i 0.160588i
\(375\) 309417. + 333522.i 2.20030 + 2.37171i
\(376\) 11914.5 0.0842755
\(377\) 22780.0i 0.160277i
\(378\) −29861.4 + 23802.7i −0.208991 + 0.166588i
\(379\) −241643. −1.68227 −0.841135 0.540826i \(-0.818112\pi\)
−0.841135 + 0.540826i \(0.818112\pi\)
\(380\) 48129.6i 0.333307i
\(381\) −128324. + 119050.i −0.884014 + 0.820123i
\(382\) −63213.1 −0.433192
\(383\) 95222.8i 0.649147i 0.945860 + 0.324574i \(0.105221\pi\)
−0.945860 + 0.324574i \(0.894779\pi\)
\(384\) −8864.25 9554.81i −0.0601145 0.0647977i
\(385\) −109537. −0.738990
\(386\) 157678.i 1.05827i
\(387\) 5920.87 78850.7i 0.0395333 0.526482i
\(388\) 130729. 0.868375
\(389\) 224301.i 1.48228i −0.671349 0.741142i \(-0.734285\pi\)
0.671349 0.741142i \(-0.265715\pi\)
\(390\) 216407. 200767.i 1.42280 1.31997i
\(391\) −18534.5 −0.121235
\(392\) 7761.20i 0.0505076i
\(393\) −91323.0 98437.5i −0.591283 0.637347i
\(394\) 9354.55 0.0602602
\(395\) 226134.i 1.44935i
\(396\) −79633.1 5979.62i −0.507813 0.0381314i
\(397\) −79675.1 −0.505524 −0.252762 0.967528i \(-0.581339\pi\)
−0.252762 + 0.967528i \(0.581339\pi\)
\(398\) 90402.9i 0.570711i
\(399\) −15318.0 + 14210.9i −0.0962182 + 0.0892641i
\(400\) −107410. −0.671312
\(401\) 87504.0i 0.544176i −0.962272 0.272088i \(-0.912286\pi\)
0.962272 0.272088i \(-0.0877142\pi\)
\(402\) −22872.4 24654.3i −0.141534 0.152560i
\(403\) 103859. 0.639488
\(404\) 41531.1i 0.254455i
\(405\) −47023.1 + 311348.i −0.286683 + 1.89817i
\(406\) 4938.56 0.0299604
\(407\) 261079.i 1.57610i
\(408\) 9620.88 8925.53i 0.0577955 0.0536184i
\(409\) 260159. 1.55522 0.777612 0.628745i \(-0.216431\pi\)
0.777612 + 0.628745i \(0.216431\pi\)
\(410\) 165637.i 0.985351i
\(411\) 120583. + 129977.i 0.713845 + 0.769457i
\(412\) −75984.7 −0.447643
\(413\) 107900.i 0.632591i
\(414\) −4933.99 + 65708.0i −0.0287871 + 0.383369i
\(415\) −212169. −1.23193
\(416\) 43739.2i 0.252746i
\(417\) 146647. 136048.i 0.843338 0.782387i
\(418\) −43695.2 −0.250081
\(419\) 222361.i 1.26658i −0.773916 0.633288i \(-0.781705\pi\)
0.773916 0.633288i \(-0.218295\pi\)
\(420\) −43524.9 46915.7i −0.246740 0.265962i
\(421\) 274759. 1.55020 0.775100 0.631838i \(-0.217699\pi\)
0.775100 + 0.631838i \(0.217699\pi\)
\(422\) 24948.4i 0.140093i
\(423\) 42531.0 + 3193.64i 0.237698 + 0.0178486i
\(424\) 35458.8 0.197239
\(425\) 108153.i 0.598769i
\(426\) −69382.4 + 64367.8i −0.382323 + 0.354690i
\(427\) 91768.6 0.503313
\(428\) 29409.5i 0.160546i
\(429\) 182269. + 196469.i 0.990372 + 1.06753i
\(430\) 132513. 0.716676
\(431\) 79239.0i 0.426564i 0.976991 + 0.213282i \(0.0684154\pi\)
−0.976991 + 0.213282i \(0.931585\pi\)
\(432\) −29081.4 36483.6i −0.155829 0.195493i
\(433\) −56355.8 −0.300582 −0.150291 0.988642i \(-0.548021\pi\)
−0.150291 + 0.988642i \(0.548021\pi\)
\(434\) 22515.8i 0.119539i
\(435\) 29853.1 27695.4i 0.157765 0.146363i
\(436\) 92777.6 0.488056
\(437\) 36054.4i 0.188797i
\(438\) 35024.3 + 37752.8i 0.182566 + 0.196789i
\(439\) −83094.4 −0.431164 −0.215582 0.976486i \(-0.569165\pi\)
−0.215582 + 0.976486i \(0.569165\pi\)
\(440\) 133828.i 0.691262i
\(441\) 2080.36 27705.0i 0.0106970 0.142456i
\(442\) −44041.7 −0.225434
\(443\) 139917.i 0.712955i 0.934304 + 0.356477i \(0.116022\pi\)
−0.934304 + 0.356477i \(0.883978\pi\)
\(444\) −111822. + 103741.i −0.567235 + 0.526238i
\(445\) −407107. −2.05584
\(446\) 147392.i 0.740974i
\(447\) −41569.9 44808.4i −0.208048 0.224256i
\(448\) 9482.37 0.0472456
\(449\) 100269.i 0.497361i 0.968586 + 0.248681i \(0.0799970\pi\)
−0.968586 + 0.248681i \(0.920003\pi\)
\(450\) −383419. 28790.8i −1.89343 0.142177i
\(451\) 150376. 0.739310
\(452\) 8595.20i 0.0420706i
\(453\) −55887.7 + 51848.4i −0.272345 + 0.252662i
\(454\) −170772. −0.828525
\(455\) 214767.i 1.03739i
\(456\) −17362.4 18715.0i −0.0834989 0.0900039i
\(457\) −82991.3 −0.397375 −0.198687 0.980063i \(-0.563668\pi\)
−0.198687 + 0.980063i \(0.563668\pi\)
\(458\) 8585.60i 0.0409298i
\(459\) 36735.9 29282.5i 0.174367 0.138990i
\(460\) −110426. −0.521863
\(461\) 321734.i 1.51389i −0.653478 0.756946i \(-0.726691\pi\)
0.653478 0.756946i \(-0.273309\pi\)
\(462\) 42593.1 39514.7i 0.199552 0.185129i
\(463\) −102874. −0.479894 −0.239947 0.970786i \(-0.577130\pi\)
−0.239947 + 0.970786i \(0.577130\pi\)
\(464\) 6033.76i 0.0280254i
\(465\) −126269. 136106.i −0.583970 0.629464i
\(466\) −97847.9 −0.450588
\(467\) 87221.5i 0.399935i −0.979803 0.199968i \(-0.935916\pi\)
0.979803 0.199968i \(-0.0640837\pi\)
\(468\) −11724.1 + 156135.i −0.0535289 + 0.712867i
\(469\) 24467.4 0.111235
\(470\) 71476.0i 0.323567i
\(471\) −89984.0 + 83480.4i −0.405624 + 0.376308i
\(472\) 131829. 0.591735
\(473\) 120304.i 0.537723i
\(474\) 81576.4 + 87931.6i 0.363085 + 0.391371i
\(475\) −210384. −0.932451
\(476\) 9547.93i 0.0421401i
\(477\) 126576. + 9504.57i 0.556309 + 0.0417730i
\(478\) 221494. 0.969406
\(479\) 131399.i 0.572691i 0.958126 + 0.286345i \(0.0924405\pi\)
−0.958126 + 0.286345i \(0.907559\pi\)
\(480\) 57319.9 53177.2i 0.248784 0.230804i
\(481\) 511892. 2.21252
\(482\) 80220.5i 0.345296i
\(483\) −32604.9 35145.0i −0.139762 0.150650i
\(484\) 4370.09 0.0186552
\(485\) 784249.i 3.33404i
\(486\) −94031.9 138030.i −0.398110 0.584387i
\(487\) −115823. −0.488355 −0.244178 0.969731i \(-0.578518\pi\)
−0.244178 + 0.969731i \(0.578518\pi\)
\(488\) 112120.i 0.470806i
\(489\) −254968. + 236540.i −1.06627 + 0.989207i
\(490\) 46560.0 0.193919
\(491\) 455525.i 1.88951i 0.327775 + 0.944756i \(0.393701\pi\)
−0.327775 + 0.944756i \(0.606299\pi\)
\(492\) 59752.6 + 64407.6i 0.246846 + 0.266077i
\(493\) −6075.48 −0.0249969
\(494\) 85672.2i 0.351064i
\(495\) 35872.1 477724.i 0.146402 1.94970i
\(496\) 27509.1 0.111818
\(497\) 68856.3i 0.278760i
\(498\) 82501.2 76538.5i 0.332661 0.308618i
\(499\) −353733. −1.42061 −0.710305 0.703894i \(-0.751443\pi\)
−0.710305 + 0.703894i \(0.751443\pi\)
\(500\) 404397.i 1.61759i
\(501\) 208010. + 224215.i 0.828721 + 0.893282i
\(502\) −253584. −1.00627
\(503\) 424746.i 1.67878i −0.543530 0.839390i \(-0.682912\pi\)
0.543530 0.839390i \(-0.317088\pi\)
\(504\) 33849.0 + 2541.71i 0.133255 + 0.0100061i
\(505\) 249148. 0.976954
\(506\) 100252.i 0.391555i
\(507\) 196769. 182548.i 0.765492 0.710166i
\(508\) 155594. 0.602927
\(509\) 49005.7i 0.189152i 0.995518 + 0.0945760i \(0.0301495\pi\)
−0.995518 + 0.0945760i \(0.969850\pi\)
\(510\) 53544.8 + 57716.3i 0.205863 + 0.221900i
\(511\) −37466.6 −0.143484
\(512\) 11585.2i 0.0441942i
\(513\) −56961.8 71460.6i −0.216446 0.271539i
\(514\) 34894.5 0.132078
\(515\) 455837.i 1.71868i
\(516\) −51527.4 + 47803.3i −0.193526 + 0.179539i
\(517\) −64890.6 −0.242773
\(518\) 110975.i 0.413584i
\(519\) 74828.2 + 80657.7i 0.277799 + 0.299441i
\(520\) −262395. −0.970394
\(521\) 158536.i 0.584054i −0.956410 0.292027i \(-0.905670\pi\)
0.956410 0.292027i \(-0.0943298\pi\)
\(522\) −1617.32 + 21538.6i −0.00593548 + 0.0790453i
\(523\) 137079. 0.501151 0.250575 0.968097i \(-0.419380\pi\)
0.250575 + 0.968097i \(0.419380\pi\)
\(524\) 119356.i 0.434691i
\(525\) 205078. 190256.i 0.744047 0.690272i
\(526\) −112582. −0.406910
\(527\) 27699.3i 0.0997349i
\(528\) 48277.7 + 52038.8i 0.173172 + 0.186663i
\(529\) 197120. 0.704398
\(530\) 212719.i 0.757278i
\(531\) 470588. + 35336.2i 1.66898 + 0.125323i
\(532\) 18573.2 0.0656240
\(533\) 294840.i 1.03784i
\(534\) 158302. 146861.i 0.555143 0.515020i
\(535\) −176430. −0.616402
\(536\) 29893.4i 0.104051i
\(537\) −326123. 351529.i −1.13092 1.21903i
\(538\) −108073. −0.373382
\(539\) 42270.2i 0.145498i
\(540\) 218868. 174461.i 0.750575 0.598289i
\(541\) −171295. −0.585263 −0.292632 0.956225i \(-0.594531\pi\)
−0.292632 + 0.956225i \(0.594531\pi\)
\(542\) 381490.i 1.29863i
\(543\) 130571. 121134.i 0.442841 0.410835i
\(544\) −11665.3 −0.0394185
\(545\) 556578.i 1.87384i
\(546\) −77475.7 83511.4i −0.259884 0.280130i
\(547\) −131375. −0.439075 −0.219537 0.975604i \(-0.570455\pi\)
−0.219537 + 0.975604i \(0.570455\pi\)
\(548\) 157598.i 0.524795i
\(549\) −30053.2 + 400231.i −0.0997117 + 1.32790i
\(550\) 584991. 1.93386
\(551\) 11818.3i 0.0389272i
\(552\) 42938.9 39835.6i 0.140920 0.130735i
\(553\) −87264.9 −0.285358
\(554\) 381281.i 1.24230i
\(555\) −622346. 670830.i −2.02044 2.17784i
\(556\) −177810. −0.575184
\(557\) 256492.i 0.826729i −0.910566 0.413365i \(-0.864353\pi\)
0.910566 0.413365i \(-0.135647\pi\)
\(558\) 98198.6 + 7373.69i 0.315382 + 0.0236819i
\(559\) 235878. 0.754856
\(560\) 56885.4i 0.181395i
\(561\) −52398.6 + 48611.5i −0.166492 + 0.154459i
\(562\) 9301.07 0.0294483
\(563\) 167229.i 0.527587i −0.964579 0.263794i \(-0.915026\pi\)
0.964579 0.263794i \(-0.0849738\pi\)
\(564\) −25784.5 27793.2i −0.0810589 0.0873737i
\(565\) −51563.2 −0.161526
\(566\) 365620.i 1.14129i
\(567\) 120149. + 18146.2i 0.373726 + 0.0564441i
\(568\) 84126.3 0.260757
\(569\) 227471.i 0.702591i 0.936265 + 0.351295i \(0.114259\pi\)
−0.936265 + 0.351295i \(0.885741\pi\)
\(570\) 112273. 104158.i 0.345561 0.320586i
\(571\) 162502. 0.498409 0.249205 0.968451i \(-0.419831\pi\)
0.249205 + 0.968451i \(0.419831\pi\)
\(572\) 238219.i 0.728088i
\(573\) 136801. + 147458.i 0.416658 + 0.449118i
\(574\) −63919.3 −0.194003
\(575\) 482696.i 1.45995i
\(576\) −3105.37 + 41355.6i −0.00935985 + 0.124649i
\(577\) 159511. 0.479113 0.239557 0.970882i \(-0.422998\pi\)
0.239557 + 0.970882i \(0.422998\pi\)
\(578\) 224487.i 0.671948i
\(579\) −367817. + 341234.i −1.09717 + 1.01788i
\(580\) −36196.9 −0.107601
\(581\) 81875.7i 0.242551i
\(582\) −282913. 304953.i −0.835231 0.900299i
\(583\) −193120. −0.568187
\(584\) 45775.4i 0.134217i
\(585\) −936664. 70333.7i −2.73698 0.205519i
\(586\) 476303. 1.38704
\(587\) 207293.i 0.601601i 0.953687 + 0.300801i \(0.0972539\pi\)
−0.953687 + 0.300801i \(0.902746\pi\)
\(588\) −18104.7 + 16796.2i −0.0523645 + 0.0485799i
\(589\) 53882.1 0.155315
\(590\) 790851.i 2.27191i
\(591\) −20244.4 21821.5i −0.0579602 0.0624756i
\(592\) 135585. 0.386873
\(593\) 373791.i 1.06297i −0.847069 0.531483i \(-0.821635\pi\)
0.847069 0.531483i \(-0.178365\pi\)
\(594\) 158387. + 198702.i 0.448897 + 0.563158i
\(595\) −57278.7 −0.161793
\(596\) 54330.3i 0.152950i
\(597\) 210884. 195643.i 0.591692 0.548928i
\(598\) −196562. −0.549665
\(599\) 153142.i 0.426815i 0.976963 + 0.213408i \(0.0684563\pi\)
−0.976963 + 0.213408i \(0.931544\pi\)
\(600\) 232448. + 250557.i 0.645690 + 0.695992i
\(601\) 352527. 0.975987 0.487993 0.872847i \(-0.337729\pi\)
0.487993 + 0.872847i \(0.337729\pi\)
\(602\) 51136.8i 0.141104i
\(603\) −8012.79 + 106710.i −0.0220368 + 0.293474i
\(604\) 67764.0 0.185748
\(605\) 26216.4i 0.0716247i
\(606\) −96880.4 + 89878.4i −0.263810 + 0.244743i
\(607\) 179592. 0.487427 0.243714 0.969847i \(-0.421634\pi\)
0.243714 + 0.969847i \(0.421634\pi\)
\(608\) 22692.0i 0.0613856i
\(609\) −10687.6 11520.3i −0.0288169 0.0310619i
\(610\) −672613. −1.80761
\(611\) 127230.i 0.340805i
\(612\) −41641.5 3126.84i −0.111179 0.00834840i
\(613\) 235777. 0.627452 0.313726 0.949513i \(-0.398423\pi\)
0.313726 + 0.949513i \(0.398423\pi\)
\(614\) 125565.i 0.333067i
\(615\) −386386. + 358460.i −1.02158 + 0.947742i
\(616\) −51644.2 −0.136101
\(617\) 477167.i 1.25343i 0.779248 + 0.626716i \(0.215601\pi\)
−0.779248 + 0.626716i \(0.784399\pi\)
\(618\) 164440. + 177251.i 0.430557 + 0.464100i
\(619\) 51174.4 0.133559 0.0667793 0.997768i \(-0.478728\pi\)
0.0667793 + 0.997768i \(0.478728\pi\)
\(620\) 165029.i 0.429315i
\(621\) 163956. 130691.i 0.425152 0.338892i
\(622\) −414999. −1.07267
\(623\) 157102.i 0.404768i
\(624\) 102031. 94657.1i 0.262038 0.243099i
\(625\) 1.37708e6 3.52532
\(626\) 153457.i 0.391595i
\(627\) 94561.7 + 101929.i 0.240536 + 0.259275i
\(628\) 109106. 0.276649
\(629\) 136522.i 0.345067i
\(630\) −15247.9 + 203062.i −0.0384174 + 0.511621i
\(631\) −570880. −1.43379 −0.716896 0.697180i \(-0.754438\pi\)
−0.716896 + 0.697180i \(0.754438\pi\)
\(632\) 106617.i 0.266928i
\(633\) 58197.5 53991.3i 0.145244 0.134746i
\(634\) −368685. −0.917226
\(635\) 933416.i 2.31488i
\(636\) −76737.1 82715.3i −0.189710 0.204490i
\(637\) 82878.2 0.204250
\(638\) 32861.9i 0.0807331i
\(639\) 300304. + 22549.7i 0.735460 + 0.0552254i
\(640\) −69500.6 −0.169679
\(641\) 570798.i 1.38921i −0.719394 0.694603i \(-0.755580\pi\)
0.719394 0.694603i \(-0.244420\pi\)
\(642\) 68604.1 63645.8i 0.166449 0.154419i
\(643\) −708381. −1.71335 −0.856673 0.515860i \(-0.827473\pi\)
−0.856673 + 0.515860i \(0.827473\pi\)
\(644\) 42613.4i 0.102748i
\(645\) −286775. 309116.i −0.689322 0.743024i
\(646\) −22848.9 −0.0547521
\(647\) 61606.2i 0.147169i −0.997289 0.0735844i \(-0.976556\pi\)
0.997289 0.0735844i \(-0.0234438\pi\)
\(648\) −22170.4 + 146794.i −0.0527987 + 0.349589i
\(649\) −717986. −1.70462
\(650\) 1.14698e6i 2.71475i
\(651\) −52523.1 + 48727.0i −0.123933 + 0.114976i
\(652\) 309149. 0.727232
\(653\) 524113.i 1.22913i −0.788865 0.614567i \(-0.789331\pi\)
0.788865 0.614567i \(-0.210669\pi\)
\(654\) −200782. 216424.i −0.469428 0.505999i
\(655\) −716023. −1.66895
\(656\) 78094.4i 0.181473i
\(657\) 12269.9 163403.i 0.0284256 0.378556i
\(658\) 27582.5 0.0637063
\(659\) 234214.i 0.539313i −0.962957 0.269657i \(-0.913090\pi\)
0.962957 0.269657i \(-0.0869102\pi\)
\(660\) −312184. + 289621.i −0.716676 + 0.664878i
\(661\) −227410. −0.520484 −0.260242 0.965543i \(-0.583802\pi\)
−0.260242 + 0.965543i \(0.583802\pi\)
\(662\) 99085.6i 0.226097i
\(663\) 95311.6 + 102737.i 0.216830 + 0.233722i
\(664\) −100033. −0.226885
\(665\) 111422.i 0.251957i
\(666\) 483995. + 36343.0i 1.09117 + 0.0819355i
\(667\) −27115.5 −0.0609488
\(668\) 271861.i 0.609248i
\(669\) −343823. + 318973.i −0.768215 + 0.712693i
\(670\) −179332. −0.399493
\(671\) 610642.i 1.35626i
\(672\) −20521.0 22119.7i −0.0454423 0.0489825i
\(673\) 203616. 0.449553 0.224776 0.974410i \(-0.427835\pi\)
0.224776 + 0.974410i \(0.427835\pi\)
\(674\) 521293.i 1.14753i
\(675\) 762605. + 956716.i 1.67376 + 2.09979i
\(676\) −238583. −0.522090
\(677\) 494274.i 1.07843i 0.842169 + 0.539213i \(0.181278\pi\)
−0.842169 + 0.539213i \(0.818722\pi\)
\(678\) 20050.2 18601.1i 0.0436173 0.0404649i
\(679\) 302641. 0.656430
\(680\) 69981.1i 0.151343i
\(681\) 369572. + 398364.i 0.796902 + 0.858985i
\(682\) −149824. −0.322116
\(683\) 43360.8i 0.0929514i 0.998919 + 0.0464757i \(0.0147990\pi\)
−0.998919 + 0.0464757i \(0.985201\pi\)
\(684\) −6082.51 + 81003.3i −0.0130008 + 0.173137i
\(685\) 945440. 2.01490
\(686\) 17967.4i 0.0381802i
\(687\) 20027.8 18580.3i 0.0424345 0.0393676i
\(688\) 62477.2 0.131991
\(689\) 378647.i 0.797621i
\(690\) 238976. + 257593.i 0.501945 + 0.541049i
\(691\) 429593. 0.899708 0.449854 0.893102i \(-0.351476\pi\)
0.449854 + 0.893102i \(0.351476\pi\)
\(692\) 97797.7i 0.204229i
\(693\) −184353. 13843.0i −0.383870 0.0288247i
\(694\) 43332.2 0.0899689
\(695\) 1.06669e6i 2.20836i
\(696\) 14075.1 13057.8i 0.0290557 0.0269557i
\(697\) 78634.4 0.161863
\(698\) 241255.i 0.495182i
\(699\) 211755. + 228252.i 0.433390 + 0.467153i
\(700\) −248658. −0.507464
\(701\) 281406.i 0.572660i 0.958131 + 0.286330i \(0.0924354\pi\)
−0.958131 + 0.286330i \(0.907565\pi\)
\(702\) 389591. 310546.i 0.790561 0.630162i
\(703\) 265571. 0.537365
\(704\) 63097.1i 0.127311i
\(705\) 166733. 154683.i 0.335463 0.311217i
\(706\) 339581. 0.681292
\(707\) 96145.9i 0.192350i
\(708\) −285294. 307520.i −0.569150 0.613489i
\(709\) −273533. −0.544148 −0.272074 0.962276i \(-0.587709\pi\)
−0.272074 + 0.962276i \(0.587709\pi\)
\(710\) 504679.i 1.00115i
\(711\) 28578.3 380589.i 0.0565324 0.752866i
\(712\) −191942. −0.378626
\(713\) 123625.i 0.243179i
\(714\) 22272.6 20662.9i 0.0436893 0.0405317i
\(715\) 1.42909e6 2.79542
\(716\) 426230.i 0.831416i
\(717\) −479339. 516682.i −0.932405 1.00504i
\(718\) 465763. 0.903475
\(719\) 886466.i 1.71476i −0.514681 0.857381i \(-0.672090\pi\)
0.514681 0.857381i \(-0.327910\pi\)
\(720\) −248095. 18629.3i −0.478578 0.0359362i
\(721\) −175907. −0.338386
\(722\) 324156.i 0.621842i
\(723\) 187132. 173607.i 0.357990 0.332117i
\(724\) −158318. −0.302032
\(725\) 158224.i 0.301021i
\(726\) −9457.40 10194.2i −0.0179431 0.0193410i
\(727\) 541251. 1.02407 0.512036 0.858964i \(-0.328892\pi\)
0.512036 + 0.858964i \(0.328892\pi\)
\(728\) 101258.i 0.191058i
\(729\) −118489. + 518064.i −0.222957 + 0.974828i
\(730\) 274609. 0.515311
\(731\) 62909.1i 0.117728i
\(732\) 261544. 242641.i 0.488115 0.452837i
\(733\) −698311. −1.29969 −0.649846 0.760066i \(-0.725167\pi\)
−0.649846 + 0.760066i \(0.725167\pi\)
\(734\) 507768.i 0.942482i
\(735\) −100761. 108611.i −0.186518 0.201048i
\(736\) −52063.6 −0.0961122
\(737\) 162810.i 0.299740i
\(738\) 20932.9 278772.i 0.0384341 0.511843i
\(739\) −584503. −1.07028 −0.535140 0.844763i \(-0.679741\pi\)
−0.535140 + 0.844763i \(0.679741\pi\)
\(740\) 813383.i 1.48536i
\(741\) 199849. 185405.i 0.363970 0.337665i
\(742\) 82088.2 0.149098
\(743\) 1.06823e6i 1.93503i −0.252822 0.967513i \(-0.581359\pi\)
0.252822 0.967513i \(-0.418641\pi\)
\(744\) −59533.0 64170.9i −0.107550 0.115929i
\(745\) −325931. −0.587237
\(746\) 438011.i 0.787059i
\(747\) −357085. 26813.4i −0.639928 0.0480519i
\(748\) 63533.4 0.113553
\(749\) 68084.0i 0.121362i
\(750\) −943344. + 875164.i −1.67706 + 1.55585i
\(751\) −526620. −0.933722 −0.466861 0.884331i \(-0.654615\pi\)
−0.466861 + 0.884331i \(0.654615\pi\)
\(752\) 33699.4i 0.0595917i
\(753\) 548787. + 591540.i 0.967862 + 1.04326i
\(754\) −64431.7 −0.113333
\(755\) 406520.i 0.713162i
\(756\) −67324.3 84460.8i −0.117795 0.147779i
\(757\) −412218. −0.719342 −0.359671 0.933079i \(-0.617111\pi\)
−0.359671 + 0.933079i \(0.617111\pi\)
\(758\) 683469.i 1.18954i
\(759\) −233860. + 216958.i −0.405950 + 0.376610i
\(760\) −136131. −0.235684
\(761\) 51994.6i 0.0897819i 0.998992 + 0.0448909i \(0.0142940\pi\)
−0.998992 + 0.0448909i \(0.985706\pi\)
\(762\) −336724. 362956.i −0.579914 0.625092i
\(763\) 214783. 0.368936
\(764\) 178794.i 0.306313i
\(765\) 18758.1 249810.i 0.0320529 0.426862i
\(766\) −269331. −0.459017
\(767\) 1.40774e6i 2.39294i
\(768\) 27025.1 25071.9i 0.0458189 0.0425074i
\(769\) 260902. 0.441189 0.220595 0.975366i \(-0.429200\pi\)
0.220595 + 0.975366i \(0.429200\pi\)
\(770\) 309817.i 0.522545i
\(771\) −75516.0 81399.0i −0.127037 0.136934i
\(772\) 445980. 0.748308
\(773\) 323742.i 0.541801i −0.962607 0.270900i \(-0.912679\pi\)
0.962607 0.270900i \(-0.0873214\pi\)
\(774\) 223023. + 16746.7i 0.372279 + 0.0279543i
\(775\) −721375. −1.20104
\(776\) 369756.i 0.614034i
\(777\) −258873. + 240163.i −0.428789 + 0.397799i
\(778\) 634418. 1.04813
\(779\) 152964.i 0.252066i
\(780\) 567854. + 612093.i 0.933356 + 1.00607i
\(781\) −458181. −0.751164
\(782\) 52423.6i 0.0857261i
\(783\) 53743.5 42839.4i 0.0876602 0.0698746i
\(784\) 21952.0 0.0357143
\(785\) 654533.i 1.06217i
\(786\) 278423. 258301.i 0.450672 0.418100i
\(787\) −642009. −1.03655 −0.518277 0.855213i \(-0.673426\pi\)
−0.518277 + 0.855213i \(0.673426\pi\)
\(788\) 26458.7i 0.0426104i
\(789\) 243642. + 262623.i 0.391380 + 0.421870i
\(790\) 639604. 1.02484
\(791\) 19898.2i 0.0318024i
\(792\) 16912.9 225237.i 0.0269630 0.359078i
\(793\) −1.19727e6 −1.90391
\(794\) 225355.i 0.357459i
\(795\) 496214. 460351.i 0.785118 0.728374i
\(796\) −255698. −0.403554
\(797\) 26635.0i 0.0419311i −0.999780 0.0209656i \(-0.993326\pi\)
0.999780 0.0209656i \(-0.00667404\pi\)
\(798\) −40194.6 43325.9i −0.0631192 0.0680365i
\(799\) −33932.4 −0.0531521
\(800\) 303801.i 0.474690i
\(801\) −685171. 51449.2i −1.06791 0.0801888i
\(802\) 247499. 0.384790
\(803\) 249308.i 0.386639i
\(804\) 69732.8 64693.0i 0.107876 0.100079i
\(805\) −255640. −0.394492
\(806\) 293757.i 0.452186i
\(807\) 233883. + 252104.i 0.359131 + 0.387109i
\(808\) 117468. 0.179927
\(809\) 904872.i 1.38258i −0.722578 0.691290i \(-0.757043\pi\)
0.722578 0.691290i \(-0.242957\pi\)
\(810\) −880625. 133001.i −1.34221 0.202715i
\(811\) −528283. −0.803203 −0.401601 0.915815i \(-0.631546\pi\)
−0.401601 + 0.915815i \(0.631546\pi\)
\(812\) 13968.3i 0.0211852i
\(813\) 889908. 825590.i 1.34637 1.24906i
\(814\) −738442. −1.11447
\(815\) 1.85460e6i 2.79213i
\(816\) 25245.2 + 27211.9i 0.0379139 + 0.0408676i
\(817\) 122374. 0.183335
\(818\) 735842.i 1.09971i
\(819\) −27141.7 + 361458.i −0.0404641 + 0.538877i
\(820\) 468494. 0.696748
\(821\) 277365.i 0.411495i 0.978605 + 0.205748i \(0.0659626\pi\)
−0.978605 + 0.205748i \(0.934037\pi\)
\(822\) −367632. + 341061.i −0.544088 + 0.504764i
\(823\) 554443. 0.818572 0.409286 0.912406i \(-0.365778\pi\)
0.409286 + 0.912406i \(0.365778\pi\)
\(824\) 214917.i 0.316531i
\(825\) −1.26599e6 1.36462e6i −1.86004 2.00495i
\(826\) 305189. 0.447310
\(827\) 844426.i 1.23467i 0.786701 + 0.617335i \(0.211787\pi\)
−0.786701 + 0.617335i \(0.788213\pi\)
\(828\) −185850. 13955.4i −0.271083 0.0203555i
\(829\) 74784.2 0.108818 0.0544090 0.998519i \(-0.482673\pi\)
0.0544090 + 0.998519i \(0.482673\pi\)
\(830\) 600104.i 0.871104i
\(831\) 889422. 825140.i 1.28797 1.19488i
\(832\) −123713. −0.178719
\(833\) 22103.8i 0.0318549i
\(834\) 384803. + 414781.i 0.553231 + 0.596330i
\(835\) 1.63091e6 2.33915
\(836\) 123589.i 0.176834i
\(837\) −195313. 245027.i −0.278792 0.349755i
\(838\) 628933. 0.895605
\(839\) 463620.i 0.658625i −0.944221 0.329313i \(-0.893183\pi\)
0.944221 0.329313i \(-0.106817\pi\)
\(840\) 132698. 123107.i 0.188063 0.174471i
\(841\) 698393. 0.987433
\(842\) 777136.i 1.09616i
\(843\) −20128.7 21696.8i −0.0283243 0.0305309i
\(844\) −70564.6 −0.0990609
\(845\) 1.43127e6i 2.00451i
\(846\) −9032.97 + 120296.i −0.0126209 + 0.168078i
\(847\) 10116.9 0.0141020
\(848\) 100293.i 0.139469i
\(849\) −852889. + 791247.i −1.18325 + 1.09773i
\(850\) 305902. 0.423394
\(851\) 609314.i 0.841360i
\(852\) −182060. 196243.i −0.250804 0.270343i
\(853\) 301646. 0.414572 0.207286 0.978280i \(-0.433537\pi\)
0.207286 + 0.978280i \(0.433537\pi\)
\(854\) 259561.i 0.355896i
\(855\) −485944. 36489.3i −0.664743 0.0499153i
\(856\) −83182.7 −0.113523
\(857\) 656980.i 0.894520i −0.894404 0.447260i \(-0.852400\pi\)
0.894404 0.447260i \(-0.147600\pi\)
\(858\) −555697. + 515535.i −0.754855 + 0.700299i
\(859\) −104640. −0.141812 −0.0709060 0.997483i \(-0.522589\pi\)
−0.0709060 + 0.997483i \(0.522589\pi\)
\(860\) 374805.i 0.506767i
\(861\) 138329. + 149106.i 0.186598 + 0.201135i
\(862\) −224122. −0.301627
\(863\) 1.12056e6i 1.50457i 0.658839 + 0.752284i \(0.271048\pi\)
−0.658839 + 0.752284i \(0.728952\pi\)
\(864\) 103191. 82254.6i 0.138234 0.110188i
\(865\) 586695. 0.784115
\(866\) 159398.i 0.212543i
\(867\) 523665. 485818.i 0.696651 0.646301i
\(868\) 63684.4 0.0845267
\(869\) 580674.i 0.768941i
\(870\) 78334.5 + 84437.2i 0.103494 + 0.111557i
\(871\) −319217. −0.420775
\(872\) 262415.i 0.345108i
\(873\) −99111.6 + 1.31991e6i −0.130046 + 1.73187i
\(874\) −101977. −0.133500
\(875\) 936192.i 1.22278i
\(876\) −106781. + 99063.6i −0.139151 + 0.129094i
\(877\) −20694.4 −0.0269062 −0.0134531 0.999910i \(-0.504282\pi\)
−0.0134531 + 0.999910i \(0.504282\pi\)
\(878\) 235027.i 0.304879i
\(879\) −1.03078e6 1.11108e6i −1.33410 1.43803i
\(880\) 378524. 0.488796
\(881\) 711224.i 0.916336i −0.888866 0.458168i \(-0.848506\pi\)
0.888866 0.458168i \(-0.151494\pi\)
\(882\) 78361.6 + 5884.14i 0.100732 + 0.00756390i
\(883\) 260420. 0.334004 0.167002 0.985957i \(-0.446591\pi\)
0.167002 + 0.985957i \(0.446591\pi\)
\(884\) 124569.i 0.159406i
\(885\) 1.84483e6 1.71150e6i 2.35543 2.18519i
\(886\) −395744. −0.504135
\(887\) 649369.i 0.825362i 0.910876 + 0.412681i \(0.135408\pi\)
−0.910876 + 0.412681i \(0.864592\pi\)
\(888\) −293423. 316282.i −0.372107 0.401096i
\(889\) 360204. 0.455770
\(890\) 1.15147e6i 1.45370i
\(891\) 120747. 799488.i 0.152098 1.00706i
\(892\) 416886. 0.523948
\(893\) 66007.1i 0.0827728i
\(894\) 126737. 117577.i 0.158573 0.147112i
\(895\) −2.55698e6 −3.19214
\(896\) 26820.2i 0.0334077i
\(897\) 425385. + 458525.i 0.528685 + 0.569873i
\(898\) −283602. −0.351688
\(899\) 40523.2i 0.0501401i
\(900\) 81432.6 1.08447e6i 0.100534 1.33886i
\(901\) −100986. −0.124397
\(902\) 425329.i 0.522771i
\(903\) −119288. + 110666.i −0.146292 + 0.135719i
\(904\) −24310.9 −0.0297484
\(905\) 949759.i 1.15962i
\(906\) −146650. 158074.i −0.178659 0.192577i
\(907\) 1.11128e6 1.35086 0.675429 0.737425i \(-0.263958\pi\)
0.675429 + 0.737425i \(0.263958\pi\)
\(908\) 483017.i 0.585856i
\(909\) 419322. + 31486.7i 0.507481 + 0.0381066i
\(910\) −607452. −0.733549
\(911\) 125363.i 0.151054i 0.997144 + 0.0755272i \(0.0240640\pi\)
−0.997144 + 0.0755272i \(0.975936\pi\)
\(912\) 52934.1 49108.4i 0.0636424 0.0590426i
\(913\) 544813. 0.653591
\(914\) 234735.i 0.280986i
\(915\) 1.45562e6 + 1.56902e6i 1.73862 + 1.87407i
\(916\) −24283.8 −0.0289418
\(917\) 276313.i 0.328596i
\(918\) 82823.3 + 103905.i 0.0982804 + 0.123296i
\(919\) 748471. 0.886225 0.443113 0.896466i \(-0.353874\pi\)
0.443113 + 0.896466i \(0.353874\pi\)
\(920\) 312333.i 0.369013i
\(921\) −292907. + 271738.i −0.345311 + 0.320354i
\(922\) 910000. 1.07048
\(923\) 898345.i 1.05448i
\(924\) 111764. + 120471.i 0.130906 + 0.141104i
\(925\) −3.55547e6 −4.15540
\(926\) 290973.i 0.339336i
\(927\) 57607.6 767185.i 0.0670379 0.892773i
\(928\) −17066.0 −0.0198170
\(929\) 132284.i 0.153276i −0.997059 0.0766381i \(-0.975581\pi\)
0.997059 0.0766381i \(-0.0244186\pi\)
\(930\) 384966. 357142.i 0.445098 0.412929i
\(931\) 42997.5 0.0496071
\(932\) 276756.i 0.318614i
\(933\) 898109. + 968076.i 1.03173 + 1.11211i
\(934\) 246700. 0.282797
\(935\) 381141.i 0.435976i
\(936\) −441617. 33160.8i −0.504073 0.0378507i
\(937\) 318721. 0.363020 0.181510 0.983389i \(-0.441901\pi\)
0.181510 + 0.983389i \(0.441901\pi\)
\(938\) 69204.2i 0.0786550i
\(939\) −357971. + 332099.i −0.405991 + 0.376649i
\(940\) −202165. −0.228797
\(941\) 897526.i 1.01360i −0.862063 0.506802i \(-0.830828\pi\)
0.862063 0.506802i \(-0.169172\pi\)
\(942\) −236118. 254513.i −0.266090 0.286819i
\(943\) 350953. 0.394663
\(944\) 372869.i 0.418420i
\(945\) 506686. 403883.i 0.567381 0.452264i
\(946\) −340272. −0.380228
\(947\) 416790.i 0.464748i 0.972626 + 0.232374i \(0.0746494\pi\)
−0.972626 + 0.232374i \(0.925351\pi\)
\(948\) −248708. + 230733.i −0.276741 + 0.256740i
\(949\) 488814. 0.542764
\(950\) 595057.i 0.659343i
\(951\) 797879. + 860037.i 0.882218 + 0.950947i
\(952\) −27005.6 −0.0297975
\(953\) 1.57654e6i 1.73587i −0.496676 0.867936i \(-0.665446\pi\)
0.496676 0.867936i \(-0.334554\pi\)
\(954\) −26883.0 + 358012.i −0.0295380 + 0.393370i
\(955\) 1.07259e6 1.17606
\(956\) 626479.i 0.685473i
\(957\) −76657.6 + 71117.2i −0.0837011 + 0.0776517i
\(958\) −371652. −0.404954
\(959\) 364844.i 0.396707i
\(960\) 150408. + 162125.i 0.163203 + 0.175917i
\(961\) −738768. −0.799947
\(962\) 1.44785e6i 1.56449i
\(963\) −296935. 22296.8i −0.320191 0.0240430i
\(964\) −226898. −0.244161
\(965\) 2.67546e6i 2.87305i
\(966\) 99405.0 92220.6i 0.106526 0.0988266i
\(967\) −449565. −0.480772 −0.240386 0.970677i \(-0.577274\pi\)
−0.240386 + 0.970677i \(0.577274\pi\)
\(968\) 12360.5i 0.0131912i
\(969\) 49447.9 + 53300.1i 0.0526624 + 0.0567650i
\(970\) −2.21819e6 −2.35752
\(971\) 397697.i 0.421807i −0.977507 0.210904i \(-0.932359\pi\)
0.977507 0.210904i \(-0.0676407\pi\)
\(972\) 390408. 265962.i 0.413224 0.281506i
\(973\) −411636. −0.434799
\(974\) 327596.i 0.345319i
\(975\) −2.67558e6 + 2.48221e6i −2.81455 + 2.61113i
\(976\) −317122. −0.332910
\(977\) 1.19821e6i 1.25529i 0.778499 + 0.627646i \(0.215982\pi\)
−0.778499 + 0.627646i \(0.784018\pi\)
\(978\) −669036. 721158.i −0.699475 0.753967i
\(979\) 1.04538e6 1.09071
\(980\) 131691.i 0.137121i
\(981\) −70339.1 + 936736.i −0.0730901 + 0.973372i
\(982\) −1.28842e6 −1.33609
\(983\) 1.59614e6i 1.65183i −0.563798 0.825913i \(-0.690660\pi\)
0.563798 0.825913i \(-0.309340\pi\)
\(984\) −182172. + 169006.i −0.188145 + 0.174547i
\(985\) −158727. −0.163598
\(986\) 17184.0i 0.0176755i
\(987\) −59691.9 64342.2i −0.0612747 0.0660483i
\(988\) −242318. −0.248240
\(989\) 280770.i 0.287050i
\(990\) 1.35121e6 + 101462.i 1.37864 + 0.103522i
\(991\) 1.43265e6 1.45879 0.729396 0.684092i \(-0.239801\pi\)
0.729396 + 0.684092i \(0.239801\pi\)
\(992\) 77807.4i 0.0790675i
\(993\) −231139. + 214433.i −0.234409 + 0.217467i
\(994\) 194755. 0.197113
\(995\) 1.53395e6i 1.54940i
\(996\) 216483. + 233349.i 0.218226 + 0.235227i
\(997\) −397969. −0.400368 −0.200184 0.979758i \(-0.564154\pi\)
−0.200184 + 0.979758i \(0.564154\pi\)
\(998\) 1.00051e6i 1.00452i
\(999\) −962646. 1.20767e6i −0.964575 1.21009i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 42.5.b.a.29.7 yes 8
3.2 odd 2 inner 42.5.b.a.29.3 8
4.3 odd 2 336.5.d.a.113.4 8
7.6 odd 2 294.5.b.d.197.6 8
12.11 even 2 336.5.d.a.113.3 8
21.20 even 2 294.5.b.d.197.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.5.b.a.29.3 8 3.2 odd 2 inner
42.5.b.a.29.7 yes 8 1.1 even 1 trivial
294.5.b.d.197.2 8 21.20 even 2
294.5.b.d.197.6 8 7.6 odd 2
336.5.d.a.113.3 8 12.11 even 2
336.5.d.a.113.4 8 4.3 odd 2