Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [42,5,Mod(29,42)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(42, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0]))
N = Newforms(chi, 5, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("42.29");
S:= CuspForms(chi, 5);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 42.b (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
29.1 |
|
− | 2.82843i | −8.64042 | − | 2.51857i | −8.00000 | 34.6139i | −7.12360 | + | 24.4388i | 18.5203 | 22.6274i | 68.3136 | + | 43.5230i | 97.9029 | |||||||||||||||||||||||||||||||||||
29.2 | − | 2.82843i | −0.952172 | − | 8.94949i | −8.00000 | − | 10.3985i | −25.3130 | + | 2.69315i | −18.5203 | 22.6274i | −79.1867 | + | 17.0429i | −29.4113 | |||||||||||||||||||||||||||||||||||
29.3 | − | 2.82843i | 6.59792 | + | 6.12106i | −8.00000 | 47.9925i | 17.3130 | − | 18.6617i | −18.5203 | 22.6274i | 6.06518 | + | 80.7726i | 135.743 | ||||||||||||||||||||||||||||||||||||
29.4 | − | 2.82843i | 8.99466 | − | 0.309853i | −8.00000 | − | 26.9531i | −0.876398 | − | 25.4408i | 18.5203 | 22.6274i | 80.8080 | − | 5.57406i | −76.2349 | |||||||||||||||||||||||||||||||||||
29.5 | 2.82843i | −8.64042 | + | 2.51857i | −8.00000 | − | 34.6139i | −7.12360 | − | 24.4388i | 18.5203 | − | 22.6274i | 68.3136 | − | 43.5230i | 97.9029 | |||||||||||||||||||||||||||||||||||
29.6 | 2.82843i | −0.952172 | + | 8.94949i | −8.00000 | 10.3985i | −25.3130 | − | 2.69315i | −18.5203 | − | 22.6274i | −79.1867 | − | 17.0429i | −29.4113 | ||||||||||||||||||||||||||||||||||||
29.7 | 2.82843i | 6.59792 | − | 6.12106i | −8.00000 | − | 47.9925i | 17.3130 | + | 18.6617i | −18.5203 | − | 22.6274i | 6.06518 | − | 80.7726i | 135.743 | |||||||||||||||||||||||||||||||||||
29.8 | 2.82843i | 8.99466 | + | 0.309853i | −8.00000 | 26.9531i | −0.876398 | + | 25.4408i | 18.5203 | − | 22.6274i | 80.8080 | + | 5.57406i | −76.2349 | ||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 42.5.b.a | ✓ | 8 |
3.b | odd | 2 | 1 | inner | 42.5.b.a | ✓ | 8 |
4.b | odd | 2 | 1 | 336.5.d.a | 8 | ||
7.b | odd | 2 | 1 | 294.5.b.d | 8 | ||
12.b | even | 2 | 1 | 336.5.d.a | 8 | ||
21.c | even | 2 | 1 | 294.5.b.d | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
42.5.b.a | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
42.5.b.a | ✓ | 8 | 3.b | odd | 2 | 1 | inner |
294.5.b.d | 8 | 7.b | odd | 2 | 1 | ||
294.5.b.d | 8 | 21.c | even | 2 | 1 | ||
336.5.d.a | 8 | 4.b | odd | 2 | 1 | ||
336.5.d.a | 8 | 12.b | even | 2 | 1 |
Hecke kernels
This newform subspace is the entire newspace .