Properties

Label 42.5.b.a
Level $42$
Weight $5$
Character orbit 42.b
Analytic conductor $4.342$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [42,5,Mod(29,42)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(42, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("42.29");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 42 = 2 \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 42.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.34153844952\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 44x^{6} + 646x^{4} - 3060x^{2} + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{7}\cdot 3^{3}\cdot 7^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + ( - \beta_{3} + 2) q^{3} - 8 q^{4} + ( - \beta_{6} - \beta_{3} - 4 \beta_1) q^{5} + (\beta_{4} + \beta_1 - 4) q^{6} - \beta_{2} q^{7} - 8 \beta_1 q^{8} + ( - \beta_{6} + \beta_{5} + \beta_{4} + \cdots + 20) q^{9}+ \cdots + ( - 48 \beta_{7} - 78 \beta_{6} + \cdots + 1388) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 12 q^{3} - 64 q^{4} - 32 q^{6} + 152 q^{9} + 256 q^{10} - 96 q^{12} - 520 q^{13} - 616 q^{15} + 512 q^{16} + 768 q^{18} + 1336 q^{19} - 196 q^{21} - 1024 q^{22} + 256 q^{24} - 3672 q^{25} + 36 q^{27}+ \cdots + 10976 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 44x^{6} + 646x^{4} - 3060x^{2} + 6561 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 14\nu^{7} - 535\nu^{5} + 6452\nu^{3} - 14571\nu ) / 7047 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 7\nu^{6} - 224\nu^{4} + 1225\nu^{2} + 6678 ) / 522 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -56\nu^{7} - 297\nu^{6} + 2140\nu^{5} + 11853\nu^{4} - 25808\nu^{3} - 145935\nu^{2} + 114660\nu + 386127 ) / 28188 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 10\nu^{7} - 54\nu^{6} - 494\nu^{5} + 1728\nu^{4} + 8188\nu^{3} - 18846\nu^{2} - 44748\nu + 51840 ) / 2349 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -112\nu^{7} + 108\nu^{6} + 4280\nu^{5} - 1107\nu^{4} - 42220\nu^{3} - 4590\nu^{2} - 5580\nu - 16767 ) / 14094 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 172\nu^{7} - 351\nu^{6} - 7244\nu^{5} + 22977\nu^{4} + 91348\nu^{3} - 362097\nu^{2} - 262908\nu + 1067499 ) / 28188 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 472 \nu^{7} + 567 \nu^{6} - 22064 \nu^{5} - 25191 \nu^{4} + 308800 \nu^{3} + 352917 \nu^{2} + \cdots - 1101033 ) / 28188 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( 7\beta_{7} - 14\beta_{6} + 7\beta_{5} - 14\beta_{4} + 77\beta_{3} + 9\beta_{2} + 119\beta _1 - 49 ) / 252 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 2\beta_{7} + 2\beta_{6} + 5\beta_{5} - 7\beta_{4} - 14\beta_{3} - 27\beta_{2} - 2\beta _1 + 700 ) / 63 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 73\beta_{7} - 326\beta_{6} + 361\beta_{5} - 56\beta_{4} + 1127\beta_{3} + 171\beta_{2} + 3077\beta _1 - 763 ) / 252 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 38\beta_{7} + 164\beta_{6} + 158\beta_{5} - 196\beta_{4} - 266\beta_{3} - 540\beta_{2} - 38\beta _1 + 10339 ) / 63 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( - 485 \beta_{7} - 6806 \beta_{6} + 7723 \beta_{5} - 434 \beta_{4} + 17129 \beta_{3} + 2709 \beta_{2} + \cdots - 11725 ) / 252 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 866 \beta_{7} + 4898 \beta_{6} + 4181 \beta_{5} - 5047 \beta_{4} - 6062 \beta_{3} - 7857 \beta_{2} + \cdots + 148246 ) / 63 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( - 6413 \beta_{7} - 17774 \beta_{6} + 19435 \beta_{5} - 764 \beta_{4} + 30761 \beta_{3} + 4869 \beta_{2} + \cdots - 21061 ) / 36 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/42\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(31\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
29.1
4.40877 0.707107i
1.88752 0.707107i
−1.88752 0.707107i
−4.40877 0.707107i
4.40877 + 0.707107i
1.88752 + 0.707107i
−1.88752 + 0.707107i
−4.40877 + 0.707107i
2.82843i −8.64042 2.51857i −8.00000 34.6139i −7.12360 + 24.4388i 18.5203 22.6274i 68.3136 + 43.5230i 97.9029
29.2 2.82843i −0.952172 8.94949i −8.00000 10.3985i −25.3130 + 2.69315i −18.5203 22.6274i −79.1867 + 17.0429i −29.4113
29.3 2.82843i 6.59792 + 6.12106i −8.00000 47.9925i 17.3130 18.6617i −18.5203 22.6274i 6.06518 + 80.7726i 135.743
29.4 2.82843i 8.99466 0.309853i −8.00000 26.9531i −0.876398 25.4408i 18.5203 22.6274i 80.8080 5.57406i −76.2349
29.5 2.82843i −8.64042 + 2.51857i −8.00000 34.6139i −7.12360 24.4388i 18.5203 22.6274i 68.3136 43.5230i 97.9029
29.6 2.82843i −0.952172 + 8.94949i −8.00000 10.3985i −25.3130 2.69315i −18.5203 22.6274i −79.1867 17.0429i −29.4113
29.7 2.82843i 6.59792 6.12106i −8.00000 47.9925i 17.3130 + 18.6617i −18.5203 22.6274i 6.06518 80.7726i 135.743
29.8 2.82843i 8.99466 + 0.309853i −8.00000 26.9531i −0.876398 + 25.4408i 18.5203 22.6274i 80.8080 + 5.57406i −76.2349
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 29.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 42.5.b.a 8
3.b odd 2 1 inner 42.5.b.a 8
4.b odd 2 1 336.5.d.a 8
7.b odd 2 1 294.5.b.d 8
12.b even 2 1 336.5.d.a 8
21.c even 2 1 294.5.b.d 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.5.b.a 8 1.a even 1 1 trivial
42.5.b.a 8 3.b odd 2 1 inner
294.5.b.d 8 7.b odd 2 1
294.5.b.d 8 21.c even 2 1
336.5.d.a 8 4.b odd 2 1
336.5.d.a 8 12.b even 2 1

Hecke kernels

This newform subspace is the entire newspace \(S_{5}^{\mathrm{new}}(42, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 8)^{4} \) Copy content Toggle raw display
$3$ \( T^{8} - 12 T^{7} + \cdots + 43046721 \) Copy content Toggle raw display
$5$ \( T^{8} + \cdots + 216772185744 \) Copy content Toggle raw display
$7$ \( (T^{2} - 343)^{4} \) Copy content Toggle raw display
$11$ \( T^{8} + \cdots + 17\!\cdots\!16 \) Copy content Toggle raw display
$13$ \( (T^{4} + 260 T^{3} + \cdots - 628257852)^{2} \) Copy content Toggle raw display
$17$ \( T^{8} + \cdots + 26\!\cdots\!56 \) Copy content Toggle raw display
$19$ \( (T^{4} - 668 T^{3} + \cdots - 3943244156)^{2} \) Copy content Toggle raw display
$23$ \( T^{8} + \cdots + 55\!\cdots\!04 \) Copy content Toggle raw display
$29$ \( T^{8} + \cdots + 24\!\cdots\!76 \) Copy content Toggle raw display
$31$ \( (T^{4} - 2440 T^{3} + \cdots - 407095948224)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} + \cdots + 4270226378896)^{2} \) Copy content Toggle raw display
$41$ \( T^{8} + \cdots + 10\!\cdots\!64 \) Copy content Toggle raw display
$43$ \( (T^{4} + \cdots + 3649641123088)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} + \cdots + 71\!\cdots\!64 \) Copy content Toggle raw display
$53$ \( T^{8} + \cdots + 21\!\cdots\!36 \) Copy content Toggle raw display
$59$ \( T^{8} + \cdots + 91\!\cdots\!96 \) Copy content Toggle raw display
$61$ \( (T^{4} + \cdots + 43195048412292)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} + \cdots - 26829784150256)^{2} \) Copy content Toggle raw display
$71$ \( T^{8} + \cdots + 16\!\cdots\!96 \) Copy content Toggle raw display
$73$ \( (T^{4} + \cdots - 479820270553328)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} + \cdots + 343544312164608)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} + \cdots + 36\!\cdots\!76 \) Copy content Toggle raw display
$89$ \( T^{8} + \cdots + 17\!\cdots\!64 \) Copy content Toggle raw display
$97$ \( (T^{4} + \cdots - 47\!\cdots\!88)^{2} \) Copy content Toggle raw display
show more
show less