L(s) = 1 | − 4·2-s − 4·3-s + 8·4-s + 16·6-s − 4·7-s − 12·8-s + 4·9-s − 4·11-s − 32·12-s + 16·14-s + 15·16-s − 12·17-s − 16·18-s − 8·19-s + 16·21-s + 16·22-s − 12·23-s + 48·24-s + 4·27-s − 32·28-s + 4·29-s − 12·31-s − 16·32-s + 16·33-s + 48·34-s + 32·36-s + 20·37-s + ⋯ |
L(s) = 1 | − 2.82·2-s − 2.30·3-s + 4·4-s + 6.53·6-s − 1.51·7-s − 4.24·8-s + 4/3·9-s − 1.20·11-s − 9.23·12-s + 4.27·14-s + 15/4·16-s − 2.91·17-s − 3.77·18-s − 1.83·19-s + 3.49·21-s + 3.41·22-s − 2.50·23-s + 9.79·24-s + 0.769·27-s − 6.04·28-s + 0.742·29-s − 2.15·31-s − 2.82·32-s + 2.78·33-s + 8.23·34-s + 16/3·36-s + 3.28·37-s + ⋯ |
Λ(s)=(=((58⋅174)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((58⋅174)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
58⋅174
|
Sign: |
1
|
Analytic conductor: |
132.636 |
Root analytic conductor: |
1.84218 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
4
|
Selberg data: |
(8, 58⋅174, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 5 | | 1 |
| 17 | C2 | (1+6T+pT2)2 |
good | 2 | D4×C2 | 1+p2T+p3T2+3p2T3+17T4+3p3T5+p5T6+p5T7+p4T8 |
| 3 | D4×C2 | 1+4T+4pT2+28T3+56T4+28pT5+4p3T6+4p3T7+p4T8 |
| 7 | D4×C2 | 1+4T+12T2+44T3+120T4+44pT5+12p2T6+4p3T7+p4T8 |
| 11 | D4×C2 | 1+4T+12T2+60T3+184T4+60pT5+12p2T6+4p3T7+p4T8 |
| 13 | C22 | (1+24T2+p2T4)2 |
| 19 | D4×C2 | 1+8T+32T2+184T3+1042T4+184pT5+32p2T6+8p3T7+p4T8 |
| 23 | D4×C2 | 1+12T+68T2+316T3+1496T4+316pT5+68p2T6+12p3T7+p4T8 |
| 29 | D4×C2 | 1−4T+22T2−244T3+930T4−244pT5+22p2T6−4p3T7+p4T8 |
| 31 | D4×C2 | 1+12T+108T2+804T3+5112T4+804pT5+108p2T6+12p3T7+p4T8 |
| 37 | D4×C2 | 1−20T+150T2−500T3+1250T4−500pT5+150p2T6−20p3T7+p4T8 |
| 41 | C2×C22 | (1−6T+pT2)2(1+16T+128T2+16pT3+p2T4) |
| 43 | D4×C2 | 1+8T+32T2+376T3+4402T4+376pT5+32p2T6+8p3T7+p4T8 |
| 47 | D4 | (1+16T+150T2+16pT3+p2T4)2 |
| 53 | C22 | (1−2T+2T2−2pT3+p2T4)2 |
| 59 | C22×C22 | (1−20T+200T2−20pT3+p2T4)(1+20T+200T2+20pT3+p2T4) |
| 61 | D4×C2 | 1+50T2−720T3+1250T4−720pT5+50p2T6+p4T8 |
| 67 | D4×C2 | 1−220T2+20566T4−220p2T6+p4T8 |
| 71 | D4×C2 | 1−20T+100T2+20pT3−23400T4+20p2T5+100p2T6−20p3T7+p4T8 |
| 73 | D4×C2 | 1+98T2+672T3+4802T4+672pT5+98p2T6+p4T8 |
| 79 | D4×C2 | 1−4T+12T2+836T3−3400T4+836pT5+12p2T6−4p3T7+p4T8 |
| 83 | D4×C2 | 1+16T+128T2+1264T3+12466T4+1264pT5+128p2T6+16p3T7+p4T8 |
| 89 | D4×C2 | 1−224T2+27874T4−224p2T6+p4T8 |
| 97 | D4×C2 | 1−4T+54T2+1388T3−4894T4+1388pT5+54p2T6−4p3T7+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.461712094088775646650720759822, −8.395170124393985841844533636386, −8.247876836264968698360555225332, −8.043099558011723850337980177806, −7.84276778428535037952558298962, −7.41365566151151161894465217570, −6.83732561576051257122083323241, −6.74139466625076497267501010283, −6.72645989616945193200399518182, −6.51525938650821944907948057307, −6.25003174254374457773934081906, −5.83150170105886121986071238743, −5.78602528569735038141163518109, −5.74969100367221134875452148429, −4.96999559640665771319244717240, −4.95124961730577736204645377171, −4.62157351961607601781014946113, −4.05241045658196203350523733790, −3.99425172762489601557091065438, −3.42004887698769473364810613663, −3.01217169934508413766871457344, −2.39289955090906246927740323385, −2.35485851093939593475873485339, −2.01830063658283705206385857218, −1.33682807989344830247393465810, 0, 0, 0, 0,
1.33682807989344830247393465810, 2.01830063658283705206385857218, 2.35485851093939593475873485339, 2.39289955090906246927740323385, 3.01217169934508413766871457344, 3.42004887698769473364810613663, 3.99425172762489601557091065438, 4.05241045658196203350523733790, 4.62157351961607601781014946113, 4.95124961730577736204645377171, 4.96999559640665771319244717240, 5.74969100367221134875452148429, 5.78602528569735038141163518109, 5.83150170105886121986071238743, 6.25003174254374457773934081906, 6.51525938650821944907948057307, 6.72645989616945193200399518182, 6.74139466625076497267501010283, 6.83732561576051257122083323241, 7.41365566151151161894465217570, 7.84276778428535037952558298962, 8.043099558011723850337980177806, 8.247876836264968698360555225332, 8.395170124393985841844533636386, 8.461712094088775646650720759822