Properties

Label 425.2.n.a.399.1
Level $425$
Weight $2$
Character 425.399
Analytic conductor $3.394$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(49,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([4, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.n (of order \(8\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 17)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 399.1
Root \(-0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 425.399
Dual form 425.2.n.a.49.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.70711 - 1.70711i) q^{2} +(-1.00000 - 0.414214i) q^{3} +3.82843i q^{4} +(1.00000 + 2.41421i) q^{6} +(-1.00000 - 2.41421i) q^{7} +(3.12132 - 3.12132i) q^{8} +(-1.29289 - 1.29289i) q^{9} +(-1.00000 - 2.41421i) q^{11} +(1.58579 - 3.82843i) q^{12} +1.41421 q^{13} +(-2.41421 + 5.82843i) q^{14} -3.00000 q^{16} +(-3.00000 + 2.82843i) q^{17} +4.41421i q^{18} +(-0.585786 + 0.585786i) q^{19} +2.82843i q^{21} +(-2.41421 + 5.82843i) q^{22} +(-4.41421 + 1.82843i) q^{23} +(-4.41421 + 1.82843i) q^{24} +(-2.41421 - 2.41421i) q^{26} +(2.00000 + 4.82843i) q^{27} +(9.24264 - 3.82843i) q^{28} +(0.292893 + 0.121320i) q^{29} +(-3.00000 + 7.24264i) q^{31} +(-1.12132 - 1.12132i) q^{32} +2.82843i q^{33} +(9.94975 + 0.292893i) q^{34} +(4.94975 - 4.94975i) q^{36} +(8.53553 + 3.53553i) q^{37} +2.00000 q^{38} +(-1.41421 - 0.585786i) q^{39} +(1.12132 - 0.464466i) q^{41} +(4.82843 - 4.82843i) q^{42} +(-0.585786 + 0.585786i) q^{43} +(9.24264 - 3.82843i) q^{44} +(10.6569 + 4.41421i) q^{46} -5.17157 q^{47} +(3.00000 + 1.24264i) q^{48} +(0.121320 - 0.121320i) q^{49} +(4.17157 - 1.58579i) q^{51} +5.41421i q^{52} +(1.00000 + 1.00000i) q^{53} +(4.82843 - 11.6569i) q^{54} +(-10.6569 - 4.41421i) q^{56} +(0.828427 - 0.343146i) q^{57} +(-0.292893 - 0.707107i) q^{58} +(-4.24264 - 4.24264i) q^{59} +(-3.53553 + 1.46447i) q^{61} +(17.4853 - 7.24264i) q^{62} +(-1.82843 + 4.41421i) q^{63} +9.82843i q^{64} +(4.82843 - 4.82843i) q^{66} +1.17157i q^{67} +(-10.8284 - 11.4853i) q^{68} +5.17157 q^{69} +(-2.07107 + 5.00000i) q^{71} -8.07107 q^{72} +(-4.94975 + 11.9497i) q^{73} +(-8.53553 - 20.6066i) q^{74} +(-2.24264 - 2.24264i) q^{76} +(-4.82843 + 4.82843i) q^{77} +(1.41421 + 3.41421i) q^{78} +(-1.82843 - 4.41421i) q^{79} -0.171573i q^{81} +(-2.70711 - 1.12132i) q^{82} +(-8.24264 - 8.24264i) q^{83} -10.8284 q^{84} +2.00000 q^{86} +(-0.242641 - 0.242641i) q^{87} +(-10.6569 - 4.41421i) q^{88} +6.58579i q^{89} +(-1.41421 - 3.41421i) q^{91} +(-7.00000 - 16.8995i) q^{92} +(6.00000 - 6.00000i) q^{93} +(8.82843 + 8.82843i) q^{94} +(0.656854 + 1.58579i) q^{96} +(-3.94975 + 9.53553i) q^{97} -0.414214 q^{98} +(-1.82843 + 4.41421i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} - 4 q^{3} + 4 q^{6} - 4 q^{7} + 4 q^{8} - 8 q^{9} - 4 q^{11} + 12 q^{12} - 4 q^{14} - 12 q^{16} - 12 q^{17} - 8 q^{19} - 4 q^{22} - 12 q^{23} - 12 q^{24} - 4 q^{26} + 8 q^{27} + 20 q^{28}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.70711 1.70711i −1.20711 1.20711i −0.971960 0.235147i \(-0.924443\pi\)
−0.235147 0.971960i \(-0.575557\pi\)
\(3\) −1.00000 0.414214i −0.577350 0.239146i 0.0748477 0.997195i \(-0.476153\pi\)
−0.652198 + 0.758049i \(0.726153\pi\)
\(4\) 3.82843i 1.91421i
\(5\) 0 0
\(6\) 1.00000 + 2.41421i 0.408248 + 0.985599i
\(7\) −1.00000 2.41421i −0.377964 0.912487i −0.992347 0.123479i \(-0.960595\pi\)
0.614383 0.789008i \(-0.289405\pi\)
\(8\) 3.12132 3.12132i 1.10355 1.10355i
\(9\) −1.29289 1.29289i −0.430964 0.430964i
\(10\) 0 0
\(11\) −1.00000 2.41421i −0.301511 0.727913i −0.999925 0.0122188i \(-0.996111\pi\)
0.698414 0.715694i \(-0.253889\pi\)
\(12\) 1.58579 3.82843i 0.457777 1.10517i
\(13\) 1.41421 0.392232 0.196116 0.980581i \(-0.437167\pi\)
0.196116 + 0.980581i \(0.437167\pi\)
\(14\) −2.41421 + 5.82843i −0.645226 + 1.55771i
\(15\) 0 0
\(16\) −3.00000 −0.750000
\(17\) −3.00000 + 2.82843i −0.727607 + 0.685994i
\(18\) 4.41421i 1.04044i
\(19\) −0.585786 + 0.585786i −0.134389 + 0.134389i −0.771101 0.636713i \(-0.780294\pi\)
0.636713 + 0.771101i \(0.280294\pi\)
\(20\) 0 0
\(21\) 2.82843i 0.617213i
\(22\) −2.41421 + 5.82843i −0.514712 + 1.24262i
\(23\) −4.41421 + 1.82843i −0.920427 + 0.381253i −0.792039 0.610471i \(-0.790980\pi\)
−0.128388 + 0.991724i \(0.540980\pi\)
\(24\) −4.41421 + 1.82843i −0.901048 + 0.373226i
\(25\) 0 0
\(26\) −2.41421 2.41421i −0.473466 0.473466i
\(27\) 2.00000 + 4.82843i 0.384900 + 0.929231i
\(28\) 9.24264 3.82843i 1.74669 0.723505i
\(29\) 0.292893 + 0.121320i 0.0543889 + 0.0225286i 0.409712 0.912215i \(-0.365629\pi\)
−0.355323 + 0.934744i \(0.615629\pi\)
\(30\) 0 0
\(31\) −3.00000 + 7.24264i −0.538816 + 1.30082i 0.386734 + 0.922191i \(0.373603\pi\)
−0.925550 + 0.378625i \(0.876397\pi\)
\(32\) −1.12132 1.12132i −0.198223 0.198223i
\(33\) 2.82843i 0.492366i
\(34\) 9.94975 + 0.292893i 1.70637 + 0.0502308i
\(35\) 0 0
\(36\) 4.94975 4.94975i 0.824958 0.824958i
\(37\) 8.53553 + 3.53553i 1.40323 + 0.581238i 0.950589 0.310453i \(-0.100481\pi\)
0.452644 + 0.891691i \(0.350481\pi\)
\(38\) 2.00000 0.324443
\(39\) −1.41421 0.585786i −0.226455 0.0938009i
\(40\) 0 0
\(41\) 1.12132 0.464466i 0.175121 0.0725374i −0.293400 0.955990i \(-0.594787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 4.82843 4.82843i 0.745042 0.745042i
\(43\) −0.585786 + 0.585786i −0.0893316 + 0.0893316i −0.750360 0.661029i \(-0.770120\pi\)
0.661029 + 0.750360i \(0.270120\pi\)
\(44\) 9.24264 3.82843i 1.39338 0.577157i
\(45\) 0 0
\(46\) 10.6569 + 4.41421i 1.57127 + 0.650840i
\(47\) −5.17157 −0.754351 −0.377176 0.926142i \(-0.623105\pi\)
−0.377176 + 0.926142i \(0.623105\pi\)
\(48\) 3.00000 + 1.24264i 0.433013 + 0.179360i
\(49\) 0.121320 0.121320i 0.0173315 0.0173315i
\(50\) 0 0
\(51\) 4.17157 1.58579i 0.584137 0.222055i
\(52\) 5.41421i 0.750816i
\(53\) 1.00000 + 1.00000i 0.137361 + 0.137361i 0.772444 0.635083i \(-0.219034\pi\)
−0.635083 + 0.772444i \(0.719034\pi\)
\(54\) 4.82843 11.6569i 0.657066 1.58630i
\(55\) 0 0
\(56\) −10.6569 4.41421i −1.42408 0.589874i
\(57\) 0.828427 0.343146i 0.109728 0.0454508i
\(58\) −0.292893 0.707107i −0.0384588 0.0928477i
\(59\) −4.24264 4.24264i −0.552345 0.552345i 0.374772 0.927117i \(-0.377721\pi\)
−0.927117 + 0.374772i \(0.877721\pi\)
\(60\) 0 0
\(61\) −3.53553 + 1.46447i −0.452679 + 0.187506i −0.597361 0.801973i \(-0.703784\pi\)
0.144682 + 0.989478i \(0.453784\pi\)
\(62\) 17.4853 7.24264i 2.22063 0.919816i
\(63\) −1.82843 + 4.41421i −0.230360 + 0.556139i
\(64\) 9.82843i 1.22855i
\(65\) 0 0
\(66\) 4.82843 4.82843i 0.594338 0.594338i
\(67\) 1.17157i 0.143130i 0.997436 + 0.0715652i \(0.0227994\pi\)
−0.997436 + 0.0715652i \(0.977201\pi\)
\(68\) −10.8284 11.4853i −1.31314 1.39279i
\(69\) 5.17157 0.622584
\(70\) 0 0
\(71\) −2.07107 + 5.00000i −0.245791 + 0.593391i −0.997838 0.0657178i \(-0.979066\pi\)
0.752048 + 0.659109i \(0.229066\pi\)
\(72\) −8.07107 −0.951184
\(73\) −4.94975 + 11.9497i −0.579324 + 1.39861i 0.314097 + 0.949391i \(0.398298\pi\)
−0.893421 + 0.449221i \(0.851702\pi\)
\(74\) −8.53553 20.6066i −0.992236 2.39547i
\(75\) 0 0
\(76\) −2.24264 2.24264i −0.257249 0.257249i
\(77\) −4.82843 + 4.82843i −0.550250 + 0.550250i
\(78\) 1.41421 + 3.41421i 0.160128 + 0.386584i
\(79\) −1.82843 4.41421i −0.205714 0.496638i 0.787026 0.616920i \(-0.211620\pi\)
−0.992740 + 0.120283i \(0.961620\pi\)
\(80\) 0 0
\(81\) 0.171573i 0.0190637i
\(82\) −2.70711 1.12132i −0.298950 0.123829i
\(83\) −8.24264 8.24264i −0.904747 0.904747i 0.0910949 0.995842i \(-0.470963\pi\)
−0.995842 + 0.0910949i \(0.970963\pi\)
\(84\) −10.8284 −1.18148
\(85\) 0 0
\(86\) 2.00000 0.215666
\(87\) −0.242641 0.242641i −0.0260138 0.0260138i
\(88\) −10.6569 4.41421i −1.13602 0.470557i
\(89\) 6.58579i 0.698092i 0.937106 + 0.349046i \(0.113494\pi\)
−0.937106 + 0.349046i \(0.886506\pi\)
\(90\) 0 0
\(91\) −1.41421 3.41421i −0.148250 0.357907i
\(92\) −7.00000 16.8995i −0.729800 1.76189i
\(93\) 6.00000 6.00000i 0.622171 0.622171i
\(94\) 8.82843 + 8.82843i 0.910583 + 0.910583i
\(95\) 0 0
\(96\) 0.656854 + 1.58579i 0.0670399 + 0.161849i
\(97\) −3.94975 + 9.53553i −0.401036 + 0.968187i 0.586379 + 0.810037i \(0.300553\pi\)
−0.987415 + 0.158150i \(0.949447\pi\)
\(98\) −0.414214 −0.0418419
\(99\) −1.82843 + 4.41421i −0.183764 + 0.443645i
\(100\) 0 0
\(101\) −10.5858 −1.05333 −0.526663 0.850074i \(-0.676557\pi\)
−0.526663 + 0.850074i \(0.676557\pi\)
\(102\) −9.82843 4.41421i −0.973159 0.437072i
\(103\) 12.4853i 1.23021i −0.788445 0.615106i \(-0.789113\pi\)
0.788445 0.615106i \(-0.210887\pi\)
\(104\) 4.41421 4.41421i 0.432849 0.432849i
\(105\) 0 0
\(106\) 3.41421i 0.331618i
\(107\) −0.171573 + 0.414214i −0.0165866 + 0.0400435i −0.931956 0.362572i \(-0.881899\pi\)
0.915369 + 0.402615i \(0.131899\pi\)
\(108\) −18.4853 + 7.65685i −1.77875 + 0.736781i
\(109\) −14.3640 + 5.94975i −1.37582 + 0.569882i −0.943360 0.331772i \(-0.892354\pi\)
−0.432458 + 0.901654i \(0.642354\pi\)
\(110\) 0 0
\(111\) −7.07107 7.07107i −0.671156 0.671156i
\(112\) 3.00000 + 7.24264i 0.283473 + 0.684365i
\(113\) 12.1924 5.05025i 1.14696 0.475088i 0.273449 0.961886i \(-0.411835\pi\)
0.873514 + 0.486799i \(0.161835\pi\)
\(114\) −2.00000 0.828427i −0.187317 0.0775893i
\(115\) 0 0
\(116\) −0.464466 + 1.12132i −0.0431246 + 0.104112i
\(117\) −1.82843 1.82843i −0.169038 0.169038i
\(118\) 14.4853i 1.33348i
\(119\) 9.82843 + 4.41421i 0.900970 + 0.404650i
\(120\) 0 0
\(121\) 2.94975 2.94975i 0.268159 0.268159i
\(122\) 8.53553 + 3.53553i 0.772771 + 0.320092i
\(123\) −1.31371 −0.118453
\(124\) −27.7279 11.4853i −2.49004 1.03141i
\(125\) 0 0
\(126\) 10.6569 4.41421i 0.949388 0.393249i
\(127\) 3.75736 3.75736i 0.333412 0.333412i −0.520469 0.853881i \(-0.674243\pi\)
0.853881 + 0.520469i \(0.174243\pi\)
\(128\) 14.5355 14.5355i 1.28477 1.28477i
\(129\) 0.828427 0.343146i 0.0729389 0.0302123i
\(130\) 0 0
\(131\) −14.0711 5.82843i −1.22939 0.509232i −0.329010 0.944326i \(-0.606715\pi\)
−0.900385 + 0.435094i \(0.856715\pi\)
\(132\) −10.8284 −0.942494
\(133\) 2.00000 + 0.828427i 0.173422 + 0.0718337i
\(134\) 2.00000 2.00000i 0.172774 0.172774i
\(135\) 0 0
\(136\) −0.535534 + 18.1924i −0.0459217 + 1.55998i
\(137\) 16.7279i 1.42916i −0.699552 0.714581i \(-0.746617\pi\)
0.699552 0.714581i \(-0.253383\pi\)
\(138\) −8.82843 8.82843i −0.751526 0.751526i
\(139\) 8.17157 19.7279i 0.693104 1.67330i −0.0453279 0.998972i \(-0.514433\pi\)
0.738432 0.674328i \(-0.235567\pi\)
\(140\) 0 0
\(141\) 5.17157 + 2.14214i 0.435525 + 0.180400i
\(142\) 12.0711 5.00000i 1.01298 0.419591i
\(143\) −1.41421 3.41421i −0.118262 0.285511i
\(144\) 3.87868 + 3.87868i 0.323223 + 0.323223i
\(145\) 0 0
\(146\) 28.8492 11.9497i 2.38758 0.988968i
\(147\) −0.171573 + 0.0710678i −0.0141511 + 0.00586157i
\(148\) −13.5355 + 32.6777i −1.11261 + 2.68609i
\(149\) 16.9706i 1.39028i 0.718873 + 0.695141i \(0.244658\pi\)
−0.718873 + 0.695141i \(0.755342\pi\)
\(150\) 0 0
\(151\) 5.07107 5.07107i 0.412678 0.412678i −0.469993 0.882670i \(-0.655743\pi\)
0.882670 + 0.469993i \(0.155743\pi\)
\(152\) 3.65685i 0.296610i
\(153\) 7.53553 + 0.221825i 0.609212 + 0.0179335i
\(154\) 16.4853 1.32842
\(155\) 0 0
\(156\) 2.24264 5.41421i 0.179555 0.433484i
\(157\) −9.65685 −0.770701 −0.385350 0.922770i \(-0.625919\pi\)
−0.385350 + 0.922770i \(0.625919\pi\)
\(158\) −4.41421 + 10.6569i −0.351176 + 0.847814i
\(159\) −0.585786 1.41421i −0.0464559 0.112154i
\(160\) 0 0
\(161\) 8.82843 + 8.82843i 0.695778 + 0.695778i
\(162\) −0.292893 + 0.292893i −0.0230119 + 0.0230119i
\(163\) 3.24264 + 7.82843i 0.253983 + 0.613170i 0.998518 0.0544134i \(-0.0173289\pi\)
−0.744535 + 0.667583i \(0.767329\pi\)
\(164\) 1.77817 + 4.29289i 0.138852 + 0.335219i
\(165\) 0 0
\(166\) 28.1421i 2.18425i
\(167\) 1.82843 + 0.757359i 0.141488 + 0.0586062i 0.452304 0.891864i \(-0.350602\pi\)
−0.310816 + 0.950470i \(0.600602\pi\)
\(168\) 8.82843 + 8.82843i 0.681128 + 0.681128i
\(169\) −11.0000 −0.846154
\(170\) 0 0
\(171\) 1.51472 0.115833
\(172\) −2.24264 2.24264i −0.171000 0.171000i
\(173\) −2.70711 1.12132i −0.205818 0.0852524i 0.277393 0.960756i \(-0.410530\pi\)
−0.483211 + 0.875504i \(0.660530\pi\)
\(174\) 0.828427i 0.0628029i
\(175\) 0 0
\(176\) 3.00000 + 7.24264i 0.226134 + 0.545935i
\(177\) 2.48528 + 6.00000i 0.186805 + 0.450988i
\(178\) 11.2426 11.2426i 0.842672 0.842672i
\(179\) 4.24264 + 4.24264i 0.317110 + 0.317110i 0.847656 0.530546i \(-0.178013\pi\)
−0.530546 + 0.847656i \(0.678013\pi\)
\(180\) 0 0
\(181\) −4.46447 10.7782i −0.331841 0.801135i −0.998446 0.0557243i \(-0.982253\pi\)
0.666605 0.745411i \(-0.267747\pi\)
\(182\) −3.41421 + 8.24264i −0.253078 + 0.610985i
\(183\) 4.14214 0.306195
\(184\) −8.07107 + 19.4853i −0.595007 + 1.43647i
\(185\) 0 0
\(186\) −20.4853 −1.50205
\(187\) 9.82843 + 4.41421i 0.718726 + 0.322799i
\(188\) 19.7990i 1.44399i
\(189\) 9.65685 9.65685i 0.702433 0.702433i
\(190\) 0 0
\(191\) 20.0000i 1.44715i −0.690246 0.723575i \(-0.742498\pi\)
0.690246 0.723575i \(-0.257502\pi\)
\(192\) 4.07107 9.82843i 0.293804 0.709306i
\(193\) 2.12132 0.878680i 0.152696 0.0632487i −0.305027 0.952344i \(-0.598665\pi\)
0.457722 + 0.889095i \(0.348665\pi\)
\(194\) 23.0208 9.53553i 1.65280 0.684611i
\(195\) 0 0
\(196\) 0.464466 + 0.464466i 0.0331761 + 0.0331761i
\(197\) −1.77817 4.29289i −0.126690 0.305856i 0.847790 0.530332i \(-0.177933\pi\)
−0.974480 + 0.224476i \(0.927933\pi\)
\(198\) 10.6569 4.41421i 0.757350 0.313704i
\(199\) −10.6569 4.41421i −0.755444 0.312915i −0.0284836 0.999594i \(-0.509068\pi\)
−0.726961 + 0.686679i \(0.759068\pi\)
\(200\) 0 0
\(201\) 0.485281 1.17157i 0.0342291 0.0826364i
\(202\) 18.0711 + 18.0711i 1.27148 + 1.27148i
\(203\) 0.828427i 0.0581442i
\(204\) 6.07107 + 15.9706i 0.425060 + 1.11816i
\(205\) 0 0
\(206\) −21.3137 + 21.3137i −1.48500 + 1.48500i
\(207\) 8.07107 + 3.34315i 0.560978 + 0.232365i
\(208\) −4.24264 −0.294174
\(209\) 2.00000 + 0.828427i 0.138343 + 0.0573035i
\(210\) 0 0
\(211\) −19.7279 + 8.17157i −1.35813 + 0.562554i −0.938543 0.345163i \(-0.887824\pi\)
−0.419583 + 0.907717i \(0.637824\pi\)
\(212\) −3.82843 + 3.82843i −0.262937 + 0.262937i
\(213\) 4.14214 4.14214i 0.283814 0.283814i
\(214\) 1.00000 0.414214i 0.0683586 0.0283151i
\(215\) 0 0
\(216\) 21.3137 + 8.82843i 1.45021 + 0.600698i
\(217\) 20.4853 1.39063
\(218\) 34.6777 + 14.3640i 2.34867 + 0.972850i
\(219\) 9.89949 9.89949i 0.668946 0.668946i
\(220\) 0 0
\(221\) −4.24264 + 4.00000i −0.285391 + 0.269069i
\(222\) 24.1421i 1.62031i
\(223\) −3.41421 3.41421i −0.228633 0.228633i 0.583489 0.812121i \(-0.301687\pi\)
−0.812121 + 0.583489i \(0.801687\pi\)
\(224\) −1.58579 + 3.82843i −0.105955 + 0.255798i
\(225\) 0 0
\(226\) −29.4350 12.1924i −1.95799 0.811026i
\(227\) −16.0711 + 6.65685i −1.06667 + 0.441831i −0.845816 0.533475i \(-0.820886\pi\)
−0.220858 + 0.975306i \(0.570886\pi\)
\(228\) 1.31371 + 3.17157i 0.0870025 + 0.210043i
\(229\) 12.1421 + 12.1421i 0.802375 + 0.802375i 0.983466 0.181091i \(-0.0579630\pi\)
−0.181091 + 0.983466i \(0.557963\pi\)
\(230\) 0 0
\(231\) 6.82843 2.82843i 0.449278 0.186097i
\(232\) 1.29289 0.535534i 0.0848826 0.0351595i
\(233\) 3.36396 8.12132i 0.220380 0.532045i −0.774561 0.632499i \(-0.782029\pi\)
0.994942 + 0.100453i \(0.0320293\pi\)
\(234\) 6.24264i 0.408094i
\(235\) 0 0
\(236\) 16.2426 16.2426i 1.05731 1.05731i
\(237\) 5.17157i 0.335930i
\(238\) −9.24264 24.3137i −0.599111 1.57602i
\(239\) −14.8284 −0.959171 −0.479586 0.877495i \(-0.659213\pi\)
−0.479586 + 0.877495i \(0.659213\pi\)
\(240\) 0 0
\(241\) −1.36396 + 3.29289i −0.0878605 + 0.212114i −0.961702 0.274097i \(-0.911621\pi\)
0.873842 + 0.486211i \(0.161621\pi\)
\(242\) −10.0711 −0.647393
\(243\) 5.92893 14.3137i 0.380341 0.918225i
\(244\) −5.60660 13.5355i −0.358926 0.866524i
\(245\) 0 0
\(246\) 2.24264 + 2.24264i 0.142986 + 0.142986i
\(247\) −0.828427 + 0.828427i −0.0527116 + 0.0527116i
\(248\) 13.2426 + 31.9706i 0.840909 + 2.03013i
\(249\) 4.82843 + 11.6569i 0.305989 + 0.738723i
\(250\) 0 0
\(251\) 20.4853i 1.29302i 0.762906 + 0.646510i \(0.223772\pi\)
−0.762906 + 0.646510i \(0.776228\pi\)
\(252\) −16.8995 7.00000i −1.06457 0.440959i
\(253\) 8.82843 + 8.82843i 0.555038 + 0.555038i
\(254\) −12.8284 −0.804927
\(255\) 0 0
\(256\) −29.9706 −1.87316
\(257\) −4.34315 4.34315i −0.270918 0.270918i 0.558552 0.829470i \(-0.311357\pi\)
−0.829470 + 0.558552i \(0.811357\pi\)
\(258\) −2.00000 0.828427i −0.124515 0.0515756i
\(259\) 24.1421i 1.50012i
\(260\) 0 0
\(261\) −0.221825 0.535534i −0.0137306 0.0331487i
\(262\) 14.0711 + 33.9706i 0.869313 + 2.09871i
\(263\) −7.41421 + 7.41421i −0.457180 + 0.457180i −0.897729 0.440549i \(-0.854784\pi\)
0.440549 + 0.897729i \(0.354784\pi\)
\(264\) 8.82843 + 8.82843i 0.543352 + 0.543352i
\(265\) 0 0
\(266\) −2.00000 4.82843i −0.122628 0.296050i
\(267\) 2.72792 6.58579i 0.166946 0.403044i
\(268\) −4.48528 −0.273982
\(269\) −10.1213 + 24.4350i −0.617108 + 1.48983i 0.237939 + 0.971280i \(0.423528\pi\)
−0.855047 + 0.518550i \(0.826472\pi\)
\(270\) 0 0
\(271\) 22.1421 1.34504 0.672519 0.740079i \(-0.265212\pi\)
0.672519 + 0.740079i \(0.265212\pi\)
\(272\) 9.00000 8.48528i 0.545705 0.514496i
\(273\) 4.00000i 0.242091i
\(274\) −28.5563 + 28.5563i −1.72515 + 1.72515i
\(275\) 0 0
\(276\) 19.7990i 1.19176i
\(277\) 7.63604 18.4350i 0.458805 1.10765i −0.510077 0.860129i \(-0.670383\pi\)
0.968882 0.247525i \(-0.0796171\pi\)
\(278\) −47.6274 + 19.7279i −2.85650 + 1.18320i
\(279\) 13.2426 5.48528i 0.792816 0.328395i
\(280\) 0 0
\(281\) −1.34315 1.34315i −0.0801254 0.0801254i 0.665908 0.746034i \(-0.268044\pi\)
−0.746034 + 0.665908i \(0.768044\pi\)
\(282\) −5.17157 12.4853i −0.307963 0.743488i
\(283\) −17.2426 + 7.14214i −1.02497 + 0.424556i −0.830894 0.556431i \(-0.812170\pi\)
−0.194075 + 0.980987i \(0.562170\pi\)
\(284\) −19.1421 7.92893i −1.13588 0.470496i
\(285\) 0 0
\(286\) −3.41421 + 8.24264i −0.201887 + 0.487398i
\(287\) −2.24264 2.24264i −0.132379 0.132379i
\(288\) 2.89949i 0.170854i
\(289\) 1.00000 16.9706i 0.0588235 0.998268i
\(290\) 0 0
\(291\) 7.89949 7.89949i 0.463077 0.463077i
\(292\) −45.7487 18.9497i −2.67724 1.10895i
\(293\) 12.3431 0.721094 0.360547 0.932741i \(-0.382590\pi\)
0.360547 + 0.932741i \(0.382590\pi\)
\(294\) 0.414214 + 0.171573i 0.0241574 + 0.0100063i
\(295\) 0 0
\(296\) 37.6777 15.6066i 2.18997 0.907115i
\(297\) 9.65685 9.65685i 0.560348 0.560348i
\(298\) 28.9706 28.9706i 1.67822 1.67822i
\(299\) −6.24264 + 2.58579i −0.361021 + 0.149540i
\(300\) 0 0
\(301\) 2.00000 + 0.828427i 0.115278 + 0.0477497i
\(302\) −17.3137 −0.996292
\(303\) 10.5858 + 4.38478i 0.608138 + 0.251899i
\(304\) 1.75736 1.75736i 0.100791 0.100791i
\(305\) 0 0
\(306\) −12.4853 13.2426i −0.713736 0.757031i
\(307\) 26.1421i 1.49201i −0.665940 0.746005i \(-0.731969\pi\)
0.665940 0.746005i \(-0.268031\pi\)
\(308\) −18.4853 18.4853i −1.05330 1.05330i
\(309\) −5.17157 + 12.4853i −0.294201 + 0.710263i
\(310\) 0 0
\(311\) 23.7279 + 9.82843i 1.34549 + 0.557319i 0.935032 0.354562i \(-0.115370\pi\)
0.410455 + 0.911881i \(0.365370\pi\)
\(312\) −6.24264 + 2.58579i −0.353420 + 0.146391i
\(313\) 3.77817 + 9.12132i 0.213555 + 0.515568i 0.993965 0.109701i \(-0.0349894\pi\)
−0.780410 + 0.625269i \(0.784989\pi\)
\(314\) 16.4853 + 16.4853i 0.930318 + 0.930318i
\(315\) 0 0
\(316\) 16.8995 7.00000i 0.950671 0.393781i
\(317\) −17.7782 + 7.36396i −0.998522 + 0.413601i −0.821255 0.570562i \(-0.806726\pi\)
−0.177267 + 0.984163i \(0.556726\pi\)
\(318\) −1.41421 + 3.41421i −0.0793052 + 0.191460i
\(319\) 0.828427i 0.0463830i
\(320\) 0 0
\(321\) 0.343146 0.343146i 0.0191525 0.0191525i
\(322\) 30.1421i 1.67976i
\(323\) 0.100505 3.41421i 0.00559225 0.189972i
\(324\) 0.656854 0.0364919
\(325\) 0 0
\(326\) 7.82843 18.8995i 0.433576 1.04675i
\(327\) 16.8284 0.930614
\(328\) 2.05025 4.94975i 0.113206 0.273304i
\(329\) 5.17157 + 12.4853i 0.285118 + 0.688336i
\(330\) 0 0
\(331\) −15.4142 15.4142i −0.847242 0.847242i 0.142546 0.989788i \(-0.454471\pi\)
−0.989788 + 0.142546i \(0.954471\pi\)
\(332\) 31.5563 31.5563i 1.73188 1.73188i
\(333\) −6.46447 15.6066i −0.354251 0.855237i
\(334\) −1.82843 4.41421i −0.100047 0.241535i
\(335\) 0 0
\(336\) 8.48528i 0.462910i
\(337\) −5.19239 2.15076i −0.282847 0.117159i 0.236750 0.971571i \(-0.423918\pi\)
−0.519597 + 0.854411i \(0.673918\pi\)
\(338\) 18.7782 + 18.7782i 1.02140 + 1.02140i
\(339\) −14.2843 −0.775815
\(340\) 0 0
\(341\) 20.4853 1.10934
\(342\) −2.58579 2.58579i −0.139823 0.139823i
\(343\) −17.3137 7.17157i −0.934852 0.387229i
\(344\) 3.65685i 0.197164i
\(345\) 0 0
\(346\) 2.70711 + 6.53553i 0.145535 + 0.351352i
\(347\) 6.41421 + 15.4853i 0.344333 + 0.831293i 0.997267 + 0.0738788i \(0.0235378\pi\)
−0.652934 + 0.757415i \(0.726462\pi\)
\(348\) 0.928932 0.928932i 0.0497960 0.0497960i
\(349\) −3.00000 3.00000i −0.160586 0.160586i 0.622240 0.782826i \(-0.286223\pi\)
−0.782826 + 0.622240i \(0.786223\pi\)
\(350\) 0 0
\(351\) 2.82843 + 6.82843i 0.150970 + 0.364474i
\(352\) −1.58579 + 3.82843i −0.0845227 + 0.204056i
\(353\) −14.0000 −0.745145 −0.372572 0.928003i \(-0.621524\pi\)
−0.372572 + 0.928003i \(0.621524\pi\)
\(354\) 6.00000 14.4853i 0.318896 0.769884i
\(355\) 0 0
\(356\) −25.2132 −1.33630
\(357\) −8.00000 8.48528i −0.423405 0.449089i
\(358\) 14.4853i 0.765571i
\(359\) 20.3848 20.3848i 1.07587 1.07587i 0.0789921 0.996875i \(-0.474830\pi\)
0.996875 0.0789921i \(-0.0251702\pi\)
\(360\) 0 0
\(361\) 18.3137i 0.963879i
\(362\) −10.7782 + 26.0208i −0.566488 + 1.36762i
\(363\) −4.17157 + 1.72792i −0.218951 + 0.0906924i
\(364\) 13.0711 5.41421i 0.685110 0.283782i
\(365\) 0 0
\(366\) −7.07107 7.07107i −0.369611 0.369611i
\(367\) −1.68629 4.07107i −0.0880237 0.212508i 0.873737 0.486398i \(-0.161690\pi\)
−0.961761 + 0.273890i \(0.911690\pi\)
\(368\) 13.2426 5.48528i 0.690320 0.285940i
\(369\) −2.05025 0.849242i −0.106732 0.0442098i
\(370\) 0 0
\(371\) 1.41421 3.41421i 0.0734223 0.177257i
\(372\) 22.9706 + 22.9706i 1.19097 + 1.19097i
\(373\) 11.5563i 0.598365i −0.954196 0.299183i \(-0.903286\pi\)
0.954196 0.299183i \(-0.0967140\pi\)
\(374\) −9.24264 24.3137i −0.477926 1.25723i
\(375\) 0 0
\(376\) −16.1421 + 16.1421i −0.832467 + 0.832467i
\(377\) 0.414214 + 0.171573i 0.0213331 + 0.00883645i
\(378\) −32.9706 −1.69582
\(379\) 2.41421 + 1.00000i 0.124010 + 0.0513665i 0.443826 0.896113i \(-0.353621\pi\)
−0.319816 + 0.947480i \(0.603621\pi\)
\(380\) 0 0
\(381\) −5.31371 + 2.20101i −0.272230 + 0.112761i
\(382\) −34.1421 + 34.1421i −1.74686 + 1.74686i
\(383\) −15.8995 + 15.8995i −0.812426 + 0.812426i −0.984997 0.172571i \(-0.944793\pi\)
0.172571 + 0.984997i \(0.444793\pi\)
\(384\) −20.5563 + 8.51472i −1.04901 + 0.434515i
\(385\) 0 0
\(386\) −5.12132 2.12132i −0.260668 0.107972i
\(387\) 1.51472 0.0769975
\(388\) −36.5061 15.1213i −1.85332 0.767669i
\(389\) 8.58579 8.58579i 0.435317 0.435317i −0.455116 0.890432i \(-0.650402\pi\)
0.890432 + 0.455116i \(0.150402\pi\)
\(390\) 0 0
\(391\) 8.07107 17.9706i 0.408171 0.908810i
\(392\) 0.757359i 0.0382524i
\(393\) 11.6569 + 11.6569i 0.588011 + 0.588011i
\(394\) −4.29289 + 10.3640i −0.216273 + 0.522129i
\(395\) 0 0
\(396\) −16.8995 7.00000i −0.849232 0.351763i
\(397\) −16.4350 + 6.80761i −0.824850 + 0.341664i −0.754862 0.655884i \(-0.772296\pi\)
−0.0699884 + 0.997548i \(0.522296\pi\)
\(398\) 10.6569 + 25.7279i 0.534180 + 1.28962i
\(399\) −1.65685 1.65685i −0.0829465 0.0829465i
\(400\) 0 0
\(401\) −0.535534 + 0.221825i −0.0267433 + 0.0110774i −0.396015 0.918244i \(-0.629607\pi\)
0.369272 + 0.929321i \(0.379607\pi\)
\(402\) −2.82843 + 1.17157i −0.141069 + 0.0584327i
\(403\) −4.24264 + 10.2426i −0.211341 + 0.510222i
\(404\) 40.5269i 2.01629i
\(405\) 0 0
\(406\) −1.41421 + 1.41421i −0.0701862 + 0.0701862i
\(407\) 24.1421i 1.19668i
\(408\) 8.07107 17.9706i 0.399577 0.889675i
\(409\) 3.31371 0.163852 0.0819262 0.996638i \(-0.473893\pi\)
0.0819262 + 0.996638i \(0.473893\pi\)
\(410\) 0 0
\(411\) −6.92893 + 16.7279i −0.341779 + 0.825128i
\(412\) 47.7990 2.35489
\(413\) −6.00000 + 14.4853i −0.295241 + 0.712774i
\(414\) −8.07107 19.4853i −0.396671 0.957649i
\(415\) 0 0
\(416\) −1.58579 1.58579i −0.0777496 0.0777496i
\(417\) −16.3431 + 16.3431i −0.800327 + 0.800327i
\(418\) −2.00000 4.82843i −0.0978232 0.236166i
\(419\) 5.10051 + 12.3137i 0.249176 + 0.601564i 0.998135 0.0610528i \(-0.0194458\pi\)
−0.748959 + 0.662617i \(0.769446\pi\)
\(420\) 0 0
\(421\) 14.5858i 0.710868i 0.934701 + 0.355434i \(0.115667\pi\)
−0.934701 + 0.355434i \(0.884333\pi\)
\(422\) 47.6274 + 19.7279i 2.31847 + 0.960340i
\(423\) 6.68629 + 6.68629i 0.325099 + 0.325099i
\(424\) 6.24264 0.303169
\(425\) 0 0
\(426\) −14.1421 −0.685189
\(427\) 7.07107 + 7.07107i 0.342193 + 0.342193i
\(428\) −1.58579 0.656854i −0.0766519 0.0317502i
\(429\) 4.00000i 0.193122i
\(430\) 0 0
\(431\) 2.79899 + 6.75736i 0.134823 + 0.325491i 0.976844 0.213954i \(-0.0686343\pi\)
−0.842021 + 0.539445i \(0.818634\pi\)
\(432\) −6.00000 14.4853i −0.288675 0.696923i
\(433\) 14.7279 14.7279i 0.707779 0.707779i −0.258289 0.966068i \(-0.583159\pi\)
0.966068 + 0.258289i \(0.0831587\pi\)
\(434\) −34.9706 34.9706i −1.67864 1.67864i
\(435\) 0 0
\(436\) −22.7782 54.9914i −1.09088 2.63361i
\(437\) 1.51472 3.65685i 0.0724588 0.174931i
\(438\) −33.7990 −1.61498
\(439\) 4.07107 9.82843i 0.194301 0.469085i −0.796462 0.604689i \(-0.793297\pi\)
0.990763 + 0.135604i \(0.0432974\pi\)
\(440\) 0 0
\(441\) −0.313708 −0.0149385
\(442\) 14.0711 + 0.414214i 0.669292 + 0.0197021i
\(443\) 23.7990i 1.13072i 0.824843 + 0.565362i \(0.191264\pi\)
−0.824843 + 0.565362i \(0.808736\pi\)
\(444\) 27.0711 27.0711i 1.28474 1.28474i
\(445\) 0 0
\(446\) 11.6569i 0.551968i
\(447\) 7.02944 16.9706i 0.332481 0.802680i
\(448\) 23.7279 9.82843i 1.12104 0.464350i
\(449\) −11.1924 + 4.63604i −0.528201 + 0.218788i −0.630815 0.775933i \(-0.717279\pi\)
0.102614 + 0.994721i \(0.467279\pi\)
\(450\) 0 0
\(451\) −2.24264 2.24264i −0.105602 0.105602i
\(452\) 19.3345 + 46.6777i 0.909419 + 2.19553i
\(453\) −7.17157 + 2.97056i −0.336950 + 0.139569i
\(454\) 38.7990 + 16.0711i 1.82093 + 0.754253i
\(455\) 0 0
\(456\) 1.51472 3.65685i 0.0709332 0.171248i
\(457\) 9.31371 + 9.31371i 0.435677 + 0.435677i 0.890554 0.454877i \(-0.150317\pi\)
−0.454877 + 0.890554i \(0.650317\pi\)
\(458\) 41.4558i 1.93710i
\(459\) −19.6569 8.82843i −0.917503 0.412076i
\(460\) 0 0
\(461\) 17.0000 17.0000i 0.791769 0.791769i −0.190013 0.981782i \(-0.560853\pi\)
0.981782 + 0.190013i \(0.0608529\pi\)
\(462\) −16.4853 6.82843i −0.766965 0.317687i
\(463\) −14.6274 −0.679794 −0.339897 0.940463i \(-0.610392\pi\)
−0.339897 + 0.940463i \(0.610392\pi\)
\(464\) −0.878680 0.363961i −0.0407917 0.0168965i
\(465\) 0 0
\(466\) −19.6066 + 8.12132i −0.908258 + 0.376213i
\(467\) −23.0711 + 23.0711i −1.06760 + 1.06760i −0.0700588 + 0.997543i \(0.522319\pi\)
−0.997543 + 0.0700588i \(0.977681\pi\)
\(468\) 7.00000 7.00000i 0.323575 0.323575i
\(469\) 2.82843 1.17157i 0.130605 0.0540982i
\(470\) 0 0
\(471\) 9.65685 + 4.00000i 0.444964 + 0.184310i
\(472\) −26.4853 −1.21908
\(473\) 2.00000 + 0.828427i 0.0919601 + 0.0380911i
\(474\) 8.82843 8.82843i 0.405503 0.405503i
\(475\) 0 0
\(476\) −16.8995 + 37.6274i −0.774587 + 1.72465i
\(477\) 2.58579i 0.118395i
\(478\) 25.3137 + 25.3137i 1.15782 + 1.15782i
\(479\) −1.97056 + 4.75736i −0.0900373 + 0.217369i −0.962483 0.271342i \(-0.912533\pi\)
0.872446 + 0.488711i \(0.162533\pi\)
\(480\) 0 0
\(481\) 12.0711 + 5.00000i 0.550393 + 0.227980i
\(482\) 7.94975 3.29289i 0.362101 0.149987i
\(483\) −5.17157 12.4853i −0.235315 0.568100i
\(484\) 11.2929 + 11.2929i 0.513313 + 0.513313i
\(485\) 0 0
\(486\) −34.5563 + 14.3137i −1.56751 + 0.649283i
\(487\) −24.3137 + 10.0711i −1.10176 + 0.456364i −0.858092 0.513495i \(-0.828350\pi\)
−0.243667 + 0.969859i \(0.578350\pi\)
\(488\) −6.46447 + 15.6066i −0.292633 + 0.706478i
\(489\) 9.17157i 0.414753i
\(490\) 0 0
\(491\) 26.2426 26.2426i 1.18431 1.18431i 0.205698 0.978615i \(-0.434053\pi\)
0.978615 0.205698i \(-0.0659466\pi\)
\(492\) 5.02944i 0.226745i
\(493\) −1.22183 + 0.464466i −0.0550282 + 0.0209185i
\(494\) 2.82843 0.127257
\(495\) 0 0
\(496\) 9.00000 21.7279i 0.404112 0.975613i
\(497\) 14.1421 0.634361
\(498\) 11.6569 28.1421i 0.522356 1.26108i
\(499\) 8.21320 + 19.8284i 0.367673 + 0.887642i 0.994131 + 0.108186i \(0.0345043\pi\)
−0.626457 + 0.779456i \(0.715496\pi\)
\(500\) 0 0
\(501\) −1.51472 1.51472i −0.0676726 0.0676726i
\(502\) 34.9706 34.9706i 1.56081 1.56081i
\(503\) 8.17157 + 19.7279i 0.364352 + 0.879625i 0.994653 + 0.103273i \(0.0329317\pi\)
−0.630301 + 0.776351i \(0.717068\pi\)
\(504\) 8.07107 + 19.4853i 0.359514 + 0.867943i
\(505\) 0 0
\(506\) 30.1421i 1.33998i
\(507\) 11.0000 + 4.55635i 0.488527 + 0.202355i
\(508\) 14.3848 + 14.3848i 0.638221 + 0.638221i
\(509\) 36.9706 1.63869 0.819346 0.573300i \(-0.194337\pi\)
0.819346 + 0.573300i \(0.194337\pi\)
\(510\) 0 0
\(511\) 33.7990 1.49518
\(512\) 22.0919 + 22.0919i 0.976333 + 0.976333i
\(513\) −4.00000 1.65685i −0.176604 0.0731519i
\(514\) 14.8284i 0.654054i
\(515\) 0 0
\(516\) 1.31371 + 3.17157i 0.0578328 + 0.139621i
\(517\) 5.17157 + 12.4853i 0.227446 + 0.549102i
\(518\) −41.2132 + 41.2132i −1.81080 + 1.81080i
\(519\) 2.24264 + 2.24264i 0.0984410 + 0.0984410i
\(520\) 0 0
\(521\) 7.12132 + 17.1924i 0.311991 + 0.753212i 0.999631 + 0.0271607i \(0.00864660\pi\)
−0.687640 + 0.726051i \(0.741353\pi\)
\(522\) −0.535534 + 1.29289i −0.0234397 + 0.0565884i
\(523\) 1.17157 0.0512293 0.0256147 0.999672i \(-0.491846\pi\)
0.0256147 + 0.999672i \(0.491846\pi\)
\(524\) 22.3137 53.8701i 0.974779 2.35332i
\(525\) 0 0
\(526\) 25.3137 1.10373
\(527\) −11.4853 30.2132i −0.500307 1.31611i
\(528\) 8.48528i 0.369274i
\(529\) −0.121320 + 0.121320i −0.00527480 + 0.00527480i
\(530\) 0 0
\(531\) 10.9706i 0.476082i
\(532\) −3.17157 + 7.65685i −0.137505 + 0.331967i
\(533\) 1.58579 0.656854i 0.0686880 0.0284515i
\(534\) −15.8995 + 6.58579i −0.688038 + 0.284995i
\(535\) 0 0
\(536\) 3.65685 + 3.65685i 0.157952 + 0.157952i
\(537\) −2.48528 6.00000i −0.107248 0.258919i
\(538\) 58.9914 24.4350i 2.54330 1.05347i
\(539\) −0.414214 0.171573i −0.0178414 0.00739017i
\(540\) 0 0
\(541\) −7.05025 + 17.0208i −0.303114 + 0.731782i 0.696781 + 0.717284i \(0.254615\pi\)
−0.999895 + 0.0144979i \(0.995385\pi\)
\(542\) −37.7990 37.7990i −1.62361 1.62361i
\(543\) 12.6274i 0.541894i
\(544\) 6.53553 + 0.192388i 0.280209 + 0.00824857i
\(545\) 0 0
\(546\) 6.82843 6.82843i 0.292230 0.292230i
\(547\) 7.48528 + 3.10051i 0.320048 + 0.132568i 0.536923 0.843631i \(-0.319587\pi\)
−0.216875 + 0.976199i \(0.569587\pi\)
\(548\) 64.0416 2.73572
\(549\) 6.46447 + 2.67767i 0.275897 + 0.114280i
\(550\) 0 0
\(551\) −0.242641 + 0.100505i −0.0103368 + 0.00428166i
\(552\) 16.1421 16.1421i 0.687055 0.687055i
\(553\) −8.82843 + 8.82843i −0.375423 + 0.375423i
\(554\) −44.5061 + 18.4350i −1.89088 + 0.783229i
\(555\) 0 0
\(556\) 75.5269 + 31.2843i 3.20305 + 1.32675i
\(557\) 19.7574 0.837146 0.418573 0.908183i \(-0.362530\pi\)
0.418573 + 0.908183i \(0.362530\pi\)
\(558\) −31.9706 13.2426i −1.35342 0.560606i
\(559\) −0.828427 + 0.828427i −0.0350387 + 0.0350387i
\(560\) 0 0
\(561\) −8.00000 8.48528i −0.337760 0.358249i
\(562\) 4.58579i 0.193440i
\(563\) −24.5858 24.5858i −1.03617 1.03617i −0.999321 0.0368464i \(-0.988269\pi\)
−0.0368464 0.999321i \(-0.511731\pi\)
\(564\) −8.20101 + 19.7990i −0.345325 + 0.833688i
\(565\) 0 0
\(566\) 41.6274 + 17.2426i 1.74973 + 0.724762i
\(567\) −0.414214 + 0.171573i −0.0173953 + 0.00720538i
\(568\) 9.14214 + 22.0711i 0.383595 + 0.926081i
\(569\) −8.51472 8.51472i −0.356956 0.356956i 0.505734 0.862690i \(-0.331222\pi\)
−0.862690 + 0.505734i \(0.831222\pi\)
\(570\) 0 0
\(571\) −3.92893 + 1.62742i −0.164421 + 0.0681053i −0.463376 0.886162i \(-0.653362\pi\)
0.298955 + 0.954267i \(0.403362\pi\)
\(572\) 13.0711 5.41421i 0.546529 0.226380i
\(573\) −8.28427 + 20.0000i −0.346080 + 0.835512i
\(574\) 7.65685i 0.319591i
\(575\) 0 0
\(576\) 12.7071 12.7071i 0.529463 0.529463i
\(577\) 27.0711i 1.12698i −0.826122 0.563492i \(-0.809458\pi\)
0.826122 0.563492i \(-0.190542\pi\)
\(578\) −30.6777 + 27.2635i −1.27602 + 1.13401i
\(579\) −2.48528 −0.103285
\(580\) 0 0
\(581\) −11.6569 + 28.1421i −0.483608 + 1.16753i
\(582\) −26.9706 −1.11797
\(583\) 1.41421 3.41421i 0.0585707 0.141402i
\(584\) 21.8492 + 52.7487i 0.904128 + 2.18276i
\(585\) 0 0
\(586\) −21.0711 21.0711i −0.870438 0.870438i
\(587\) −32.0416 + 32.0416i −1.32250 + 1.32250i −0.410753 + 0.911747i \(0.634734\pi\)
−0.911747 + 0.410753i \(0.865266\pi\)
\(588\) −0.272078 0.656854i −0.0112203 0.0270882i
\(589\) −2.48528 6.00000i −0.102404 0.247226i
\(590\) 0 0
\(591\) 5.02944i 0.206883i
\(592\) −25.6066 10.6066i −1.05242 0.435929i
\(593\) −9.14214 9.14214i −0.375423 0.375423i 0.494025 0.869448i \(-0.335525\pi\)
−0.869448 + 0.494025i \(0.835525\pi\)
\(594\) −32.9706 −1.35280
\(595\) 0 0
\(596\) −64.9706 −2.66130
\(597\) 8.82843 + 8.82843i 0.361323 + 0.361323i
\(598\) 15.0711 + 6.24264i 0.616302 + 0.255281i
\(599\) 10.6274i 0.434224i −0.976147 0.217112i \(-0.930336\pi\)
0.976147 0.217112i \(-0.0696638\pi\)
\(600\) 0 0
\(601\) −3.22183 7.77817i −0.131421 0.317278i 0.844447 0.535639i \(-0.179929\pi\)
−0.975868 + 0.218360i \(0.929929\pi\)
\(602\) −2.00000 4.82843i −0.0815139 0.196792i
\(603\) 1.51472 1.51472i 0.0616841 0.0616841i
\(604\) 19.4142 + 19.4142i 0.789953 + 0.789953i
\(605\) 0 0
\(606\) −10.5858 25.5563i −0.430018 1.03816i
\(607\) −6.27208 + 15.1421i −0.254576 + 0.614600i −0.998563 0.0535937i \(-0.982932\pi\)
0.743987 + 0.668194i \(0.232932\pi\)
\(608\) 1.31371 0.0532779
\(609\) −0.343146 + 0.828427i −0.0139050 + 0.0335696i
\(610\) 0 0
\(611\) −7.31371 −0.295881
\(612\) −0.849242 + 28.8492i −0.0343286 + 1.16616i
\(613\) 5.31371i 0.214619i −0.994226 0.107309i \(-0.965776\pi\)
0.994226 0.107309i \(-0.0342235\pi\)
\(614\) −44.6274 + 44.6274i −1.80102 + 1.80102i
\(615\) 0 0
\(616\) 30.1421i 1.21446i
\(617\) 1.12132 2.70711i 0.0451427 0.108984i −0.899700 0.436509i \(-0.856215\pi\)
0.944842 + 0.327525i \(0.106215\pi\)
\(618\) 30.1421 12.4853i 1.21249 0.502232i
\(619\) −26.3137 + 10.8995i −1.05764 + 0.438088i −0.842612 0.538521i \(-0.818983\pi\)
−0.215025 + 0.976609i \(0.568983\pi\)
\(620\) 0 0
\(621\) −17.6569 17.6569i −0.708545 0.708545i
\(622\) −23.7279 57.2843i −0.951403 2.29689i
\(623\) 15.8995 6.58579i 0.637000 0.263854i
\(624\) 4.24264 + 1.75736i 0.169842 + 0.0703507i
\(625\) 0 0
\(626\) 9.12132 22.0208i 0.364561 0.880129i
\(627\) −1.65685 1.65685i −0.0661684 0.0661684i
\(628\) 36.9706i 1.47529i
\(629\) −35.6066 + 13.5355i −1.41973 + 0.539697i
\(630\) 0 0
\(631\) −20.7279 + 20.7279i −0.825166 + 0.825166i −0.986844 0.161678i \(-0.948309\pi\)
0.161678 + 0.986844i \(0.448309\pi\)
\(632\) −19.4853 8.07107i −0.775083 0.321050i
\(633\) 23.1127 0.918647
\(634\) 42.9203 + 17.7782i 1.70458 + 0.706062i
\(635\) 0 0
\(636\) 5.41421 2.24264i 0.214688 0.0889265i
\(637\) 0.171573 0.171573i 0.00679796 0.00679796i
\(638\) −1.41421 + 1.41421i −0.0559893 + 0.0559893i
\(639\) 9.14214 3.78680i 0.361657 0.149803i
\(640\) 0 0
\(641\) −38.2635 15.8492i −1.51132 0.626007i −0.535487 0.844544i \(-0.679872\pi\)
−0.975829 + 0.218536i \(0.929872\pi\)
\(642\) −1.17157 −0.0462383
\(643\) −26.6569 11.0416i −1.05124 0.435439i −0.210908 0.977506i \(-0.567642\pi\)
−0.840336 + 0.542066i \(0.817642\pi\)
\(644\) −33.7990 + 33.7990i −1.33187 + 1.33187i
\(645\) 0 0
\(646\) −6.00000 + 5.65685i −0.236067 + 0.222566i
\(647\) 2.82843i 0.111197i −0.998453 0.0555985i \(-0.982293\pi\)
0.998453 0.0555985i \(-0.0177067\pi\)
\(648\) −0.535534 0.535534i −0.0210378 0.0210378i
\(649\) −6.00000 + 14.4853i −0.235521 + 0.568597i
\(650\) 0 0
\(651\) −20.4853 8.48528i −0.802881 0.332564i
\(652\) −29.9706 + 12.4142i −1.17374 + 0.486178i
\(653\) −3.63604 8.77817i −0.142289 0.343517i 0.836629 0.547770i \(-0.184523\pi\)
−0.978918 + 0.204254i \(0.934523\pi\)
\(654\) −28.7279 28.7279i −1.12335 1.12335i
\(655\) 0 0
\(656\) −3.36396 + 1.39340i −0.131341 + 0.0544031i
\(657\) 21.8492 9.05025i 0.852420 0.353084i
\(658\) 12.4853 30.1421i 0.486727 1.17506i
\(659\) 8.48528i 0.330540i 0.986248 + 0.165270i \(0.0528495\pi\)
−0.986248 + 0.165270i \(0.947151\pi\)
\(660\) 0 0
\(661\) 0.857864 0.857864i 0.0333671 0.0333671i −0.690226 0.723593i \(-0.742489\pi\)
0.723593 + 0.690226i \(0.242489\pi\)
\(662\) 52.6274i 2.04542i
\(663\) 5.89949 2.24264i 0.229117 0.0870969i
\(664\) −51.4558 −1.99687
\(665\) 0 0
\(666\) −15.6066 + 37.6777i −0.604744 + 1.45998i
\(667\) −1.51472 −0.0586501
\(668\) −2.89949 + 7.00000i −0.112185 + 0.270838i
\(669\) 2.00000 + 4.82843i 0.0773245 + 0.186678i
\(670\) 0 0
\(671\) 7.07107 + 7.07107i 0.272976 + 0.272976i
\(672\) 3.17157 3.17157i 0.122346 0.122346i
\(673\) −1.70711 4.12132i −0.0658041 0.158865i 0.887556 0.460699i \(-0.152401\pi\)
−0.953361 + 0.301834i \(0.902401\pi\)
\(674\) 5.19239 + 12.5355i 0.200003 + 0.482851i
\(675\) 0 0
\(676\) 42.1127i 1.61972i
\(677\) −35.1924 14.5772i −1.35255 0.560246i −0.415551 0.909570i \(-0.636411\pi\)
−0.937002 + 0.349324i \(0.886411\pi\)
\(678\) 24.3848 + 24.3848i 0.936492 + 0.936492i
\(679\) 26.9706 1.03504
\(680\) 0 0
\(681\) 18.8284 0.721507
\(682\) −34.9706 34.9706i −1.33909 1.33909i
\(683\) 21.9706 + 9.10051i 0.840680 + 0.348221i 0.761122 0.648609i \(-0.224649\pi\)
0.0795585 + 0.996830i \(0.474649\pi\)
\(684\) 5.79899i 0.221730i
\(685\) 0 0
\(686\) 17.3137 + 41.7990i 0.661040 + 1.59589i
\(687\) −7.11270 17.1716i −0.271366 0.655136i
\(688\) 1.75736 1.75736i 0.0669987 0.0669987i
\(689\) 1.41421 + 1.41421i 0.0538772 + 0.0538772i
\(690\) 0 0
\(691\) −7.62742 18.4142i −0.290161 0.700510i 0.709832 0.704371i \(-0.248771\pi\)
−0.999993 + 0.00386139i \(0.998771\pi\)
\(692\) 4.29289 10.3640i 0.163191 0.393979i
\(693\) 12.4853 0.474277
\(694\) 15.4853 37.3848i 0.587813 1.41911i
\(695\) 0 0
\(696\) −1.51472 −0.0574153
\(697\) −2.05025 + 4.56497i −0.0776589 + 0.172911i
\(698\) 10.2426i 0.387690i
\(699\) −6.72792 + 6.72792i −0.254473 + 0.254473i
\(700\) 0 0
\(701\) 37.6985i 1.42385i −0.702254 0.711926i \(-0.747823\pi\)
0.702254 0.711926i \(-0.252177\pi\)
\(702\) 6.82843 16.4853i 0.257722 0.622197i
\(703\) −7.07107 + 2.92893i −0.266690 + 0.110467i
\(704\) 23.7279 9.82843i 0.894280 0.370423i
\(705\) 0 0
\(706\) 23.8995 + 23.8995i 0.899469 + 0.899469i
\(707\) 10.5858 + 25.5563i 0.398119 + 0.961145i
\(708\) −22.9706 + 9.51472i −0.863287 + 0.357585i
\(709\) −22.4350 9.29289i −0.842565 0.349002i −0.0807007 0.996738i \(-0.525716\pi\)
−0.761864 + 0.647736i \(0.775716\pi\)
\(710\) 0 0
\(711\) −3.34315 + 8.07107i −0.125378 + 0.302689i
\(712\) 20.5563 + 20.5563i 0.770382 + 0.770382i
\(713\) 37.4558i 1.40273i
\(714\) −0.828427 + 28.1421i −0.0310031 + 1.05319i
\(715\) 0 0
\(716\) −16.2426 + 16.2426i −0.607016 + 0.607016i
\(717\) 14.8284 + 6.14214i 0.553778 + 0.229382i
\(718\) −69.5980 −2.59737
\(719\) 31.3848 + 13.0000i 1.17045 + 0.484818i 0.881343 0.472477i \(-0.156640\pi\)
0.289112 + 0.957295i \(0.406640\pi\)
\(720\) 0 0
\(721\) −30.1421 + 12.4853i −1.12255 + 0.464976i
\(722\) 31.2635 31.2635i 1.16351 1.16351i
\(723\) 2.72792 2.72792i 0.101453 0.101453i
\(724\) 41.2635 17.0919i 1.53354 0.635215i
\(725\) 0 0
\(726\) 10.0711 + 4.17157i 0.373772 + 0.154822i
\(727\) 43.1127 1.59896 0.799481 0.600692i \(-0.205108\pi\)
0.799481 + 0.600692i \(0.205108\pi\)
\(728\) −15.0711 6.24264i −0.558571 0.231368i
\(729\) −12.2218 + 12.2218i −0.452660 + 0.452660i
\(730\) 0 0
\(731\) 0.100505 3.41421i 0.00371731 0.126279i
\(732\) 15.8579i 0.586124i
\(733\) 25.4853 + 25.4853i 0.941320 + 0.941320i 0.998371 0.0570509i \(-0.0181697\pi\)
−0.0570509 + 0.998371i \(0.518170\pi\)
\(734\) −4.07107 + 9.82843i −0.150266 + 0.362774i
\(735\) 0 0
\(736\) 7.00000 + 2.89949i 0.258023 + 0.106877i
\(737\) 2.82843 1.17157i 0.104186 0.0431554i
\(738\) 2.05025 + 4.94975i 0.0754708 + 0.182203i
\(739\) −15.7574 15.7574i −0.579644 0.579644i 0.355161 0.934805i \(-0.384426\pi\)
−0.934805 + 0.355161i \(0.884426\pi\)
\(740\) 0 0
\(741\) 1.17157 0.485281i 0.0430388 0.0178273i
\(742\) −8.24264 + 3.41421i −0.302597 + 0.125340i
\(743\) 19.5269 47.1421i 0.716373 1.72948i 0.0329473 0.999457i \(-0.489511\pi\)
0.683426 0.730020i \(-0.260489\pi\)
\(744\) 37.4558i 1.37320i
\(745\) 0 0
\(746\) −19.7279 + 19.7279i −0.722291 + 0.722291i
\(747\) 21.3137i 0.779828i
\(748\) −16.8995 + 37.6274i −0.617907 + 1.37579i
\(749\) 1.17157 0.0428083
\(750\) 0 0
\(751\) 18.2132 43.9706i 0.664609 1.60451i −0.125889 0.992044i \(-0.540178\pi\)
0.790498 0.612464i \(-0.209822\pi\)
\(752\) 15.5147 0.565764
\(753\) 8.48528 20.4853i 0.309221 0.746525i
\(754\) −0.414214 1.00000i −0.0150848 0.0364179i
\(755\) 0 0
\(756\) 36.9706 + 36.9706i 1.34461 + 1.34461i
\(757\) 1.79899 1.79899i 0.0653854 0.0653854i −0.673658 0.739043i \(-0.735278\pi\)
0.739043 + 0.673658i \(0.235278\pi\)
\(758\) −2.41421 5.82843i −0.0876882 0.211698i
\(759\) −5.17157 12.4853i −0.187716 0.453187i
\(760\) 0 0
\(761\) 37.6985i 1.36657i 0.730152 + 0.683285i \(0.239449\pi\)
−0.730152 + 0.683285i \(0.760551\pi\)
\(762\) 12.8284 + 5.31371i 0.464725 + 0.192495i
\(763\) 28.7279 + 28.7279i 1.04002 + 1.04002i
\(764\) 76.5685 2.77015
\(765\) 0 0
\(766\) 54.2843 1.96137
\(767\) −6.00000 6.00000i −0.216647 0.216647i
\(768\) 29.9706 + 12.4142i 1.08147 + 0.447959i
\(769\) 12.7279i 0.458981i 0.973311 + 0.229490i \(0.0737059\pi\)
−0.973311 + 0.229490i \(0.926294\pi\)
\(770\) 0 0
\(771\) 2.54416 + 6.14214i 0.0916255 + 0.221204i
\(772\) 3.36396 + 8.12132i 0.121072 + 0.292293i
\(773\) −0.585786 + 0.585786i −0.0210693 + 0.0210693i −0.717563 0.696494i \(-0.754742\pi\)
0.696494 + 0.717563i \(0.254742\pi\)
\(774\) −2.58579 2.58579i −0.0929442 0.0929442i
\(775\) 0 0
\(776\) 17.4350 + 42.0919i 0.625881 + 1.51101i
\(777\) −10.0000 + 24.1421i −0.358748 + 0.866094i
\(778\) −29.3137 −1.05095
\(779\) −0.384776 + 0.928932i −0.0137860 + 0.0332824i
\(780\) 0 0
\(781\) 14.1421 0.506045
\(782\) −44.4558 + 16.8995i −1.58974 + 0.604325i
\(783\) 1.65685i 0.0592111i
\(784\) −0.363961 + 0.363961i −0.0129986 + 0.0129986i
\(785\) 0 0
\(786\) 39.7990i 1.41958i
\(787\) 7.87006 19.0000i 0.280537 0.677277i −0.719311 0.694688i \(-0.755542\pi\)
0.999848 + 0.0174112i \(0.00554243\pi\)
\(788\) 16.4350 6.80761i 0.585474 0.242511i
\(789\) 10.4853 4.34315i 0.373286 0.154620i
\(790\) 0 0
\(791\) −24.3848 24.3848i −0.867023 0.867023i
\(792\) 8.07107 + 19.4853i 0.286793 + 0.692379i
\(793\) −5.00000 + 2.07107i −0.177555 + 0.0735458i
\(794\) 39.6777 + 16.4350i 1.40811 + 0.583257i
\(795\) 0 0
\(796\) 16.8995 40.7990i 0.598987 1.44608i
\(797\) −17.8284 17.8284i −0.631515 0.631515i 0.316933 0.948448i \(-0.397347\pi\)
−0.948448 + 0.316933i \(0.897347\pi\)
\(798\) 5.65685i 0.200250i
\(799\) 15.5147 14.6274i 0.548871 0.517481i
\(800\) 0 0
\(801\) 8.51472 8.51472i 0.300853 0.300853i
\(802\) 1.29289 + 0.535534i 0.0456536 + 0.0189104i
\(803\) 33.7990 1.19274
\(804\) 4.48528 + 1.85786i 0.158184 + 0.0655218i
\(805\) 0 0
\(806\) 24.7279 10.2426i 0.871004 0.360782i
\(807\) 20.2426 20.2426i 0.712575 0.712575i
\(808\) −33.0416 + 33.0416i −1.16240 + 1.16240i
\(809\) 32.6066 13.5061i 1.14639 0.474849i 0.273067 0.961995i \(-0.411962\pi\)
0.873321 + 0.487146i \(0.161962\pi\)
\(810\) 0 0
\(811\) −50.9411 21.1005i −1.78878 0.740939i −0.990304 0.138919i \(-0.955637\pi\)
−0.798481 0.602020i \(-0.794363\pi\)
\(812\) 3.17157 0.111300
\(813\) −22.1421 9.17157i −0.776559 0.321661i
\(814\) −41.2132 + 41.2132i −1.44452 + 1.44452i
\(815\) 0 0
\(816\) −12.5147 + 4.75736i −0.438103 + 0.166541i
\(817\) 0.686292i 0.0240103i
\(818\) −5.65685 5.65685i −0.197787 0.197787i
\(819\) −2.58579 + 6.24264i −0.0903547 + 0.218136i
\(820\) 0 0
\(821\) 35.5061 + 14.7071i 1.23917 + 0.513282i 0.903456 0.428682i \(-0.141022\pi\)
0.335716 + 0.941963i \(0.391022\pi\)
\(822\) 40.3848 16.7279i 1.40858 0.583453i
\(823\) −3.72792 9.00000i −0.129947 0.313720i 0.845492 0.533987i \(-0.179307\pi\)
−0.975440 + 0.220267i \(0.929307\pi\)
\(824\) −38.9706 38.9706i −1.35760 1.35760i
\(825\) 0 0
\(826\) 34.9706 14.4853i 1.21678 0.504007i
\(827\) 43.2843 17.9289i 1.50514 0.623450i 0.530593 0.847627i \(-0.321969\pi\)
0.974549 + 0.224177i \(0.0719693\pi\)
\(828\) −12.7990 + 30.8995i −0.444796 + 1.07383i
\(829\) 53.9411i 1.87345i −0.350062 0.936726i \(-0.613840\pi\)
0.350062 0.936726i \(-0.386160\pi\)
\(830\) 0 0
\(831\) −15.2721 + 15.2721i −0.529783 + 0.529783i
\(832\) 13.8995i 0.481878i
\(833\) −0.0208153 + 0.707107i −0.000721207 + 0.0244998i
\(834\) 55.7990 1.93216
\(835\) 0 0
\(836\) −3.17157 + 7.65685i −0.109691 + 0.264818i
\(837\) −40.9706 −1.41615
\(838\) 12.3137 29.7279i 0.425370 1.02693i
\(839\) 6.41421 + 15.4853i 0.221443 + 0.534611i 0.995086 0.0990102i \(-0.0315677\pi\)
−0.773643 + 0.633622i \(0.781568\pi\)
\(840\) 0 0
\(841\) −20.4350 20.4350i −0.704656 0.704656i
\(842\) 24.8995 24.8995i 0.858093 0.858093i
\(843\) 0.786797 + 1.89949i 0.0270987 + 0.0654221i
\(844\) −31.2843 75.5269i −1.07685 2.59974i
\(845\) 0 0
\(846\) 22.8284i 0.784857i
\(847\) −10.0711 4.17157i −0.346046 0.143337i
\(848\) −3.00000 3.00000i −0.103020 0.103020i
\(849\) 20.2010 0.693297
\(850\) 0 0
\(851\) −44.1421 −1.51317
\(852\) 15.8579 + 15.8579i 0.543281 + 0.543281i
\(853\) 17.7071 + 7.33452i 0.606280 + 0.251129i 0.664637 0.747166i \(-0.268586\pi\)
−0.0583572 + 0.998296i \(0.518586\pi\)
\(854\) 24.1421i 0.826127i
\(855\) 0 0
\(856\) 0.757359 + 1.82843i 0.0258860 + 0.0624944i
\(857\) −3.53553 8.53553i −0.120772 0.291568i 0.851919 0.523673i \(-0.175439\pi\)
−0.972691 + 0.232105i \(0.925439\pi\)
\(858\) 6.82843 6.82843i 0.233119 0.233119i
\(859\) −24.7279 24.7279i −0.843706 0.843706i 0.145633 0.989339i \(-0.453478\pi\)
−0.989339 + 0.145633i \(0.953478\pi\)
\(860\) 0 0
\(861\) 1.31371 + 3.17157i 0.0447711 + 0.108087i
\(862\) 6.75736 16.3137i 0.230157 0.555647i
\(863\) −10.6274 −0.361761 −0.180881 0.983505i \(-0.557895\pi\)
−0.180881 + 0.983505i \(0.557895\pi\)
\(864\) 3.17157 7.65685i 0.107899 0.260491i
\(865\) 0 0
\(866\) −50.2843 −1.70873
\(867\) −8.02944 + 16.5563i −0.272694 + 0.562283i
\(868\) 78.4264i 2.66197i
\(869\) −8.82843 + 8.82843i −0.299484 + 0.299484i
\(870\) 0 0
\(871\) 1.65685i 0.0561404i
\(872\) −26.2635 + 63.4056i −0.889393 + 2.14718i
\(873\) 17.4350 7.22183i 0.590086 0.244422i
\(874\) −8.82843 + 3.65685i −0.298626 + 0.123695i
\(875\) 0 0
\(876\) 37.8995 + 37.8995i 1.28051 + 1.28051i
\(877\) 19.2218 + 46.4056i 0.649075 + 1.56701i 0.814105 + 0.580717i \(0.197228\pi\)
−0.165031 + 0.986288i \(0.552772\pi\)
\(878\) −23.7279 + 9.82843i −0.800779 + 0.331693i
\(879\) −12.3431 5.11270i −0.416324 0.172447i
\(880\) 0 0
\(881\) 12.8787 31.0919i 0.433894 1.04751i −0.544127 0.839003i \(-0.683139\pi\)
0.978020 0.208509i \(-0.0668611\pi\)
\(882\) 0.535534 + 0.535534i 0.0180324 + 0.0180324i
\(883\) 8.00000i 0.269221i −0.990899 0.134611i \(-0.957022\pi\)
0.990899 0.134611i \(-0.0429784\pi\)
\(884\) −15.3137 16.2426i −0.515056 0.546299i
\(885\) 0 0
\(886\) 40.6274 40.6274i 1.36490 1.36490i
\(887\) 40.6985 + 16.8579i 1.36652 + 0.566032i 0.940843 0.338843i \(-0.110035\pi\)
0.425678 + 0.904875i \(0.360035\pi\)
\(888\) −44.1421 −1.48131
\(889\) −12.8284 5.31371i −0.430252 0.178216i
\(890\) 0 0
\(891\) −0.414214 + 0.171573i −0.0138767 + 0.00574791i
\(892\) 13.0711 13.0711i 0.437652 0.437652i
\(893\) 3.02944 3.02944i 0.101376 0.101376i
\(894\) −40.9706 + 16.9706i −1.37026 + 0.567581i
\(895\) 0 0
\(896\) −49.6274 20.5563i −1.65794 0.686739i
\(897\) 7.31371 0.244198
\(898\) 27.0208 + 11.1924i 0.901696 + 0.373495i
\(899\) −1.75736 + 1.75736i −0.0586112 + 0.0586112i
\(900\) 0 0
\(901\) −5.82843 0.171573i −0.194173 0.00571592i
\(902\) 7.65685i 0.254945i
\(903\) −1.65685 1.65685i −0.0551367 0.0551367i
\(904\) 22.2929 53.8198i 0.741451 1.79002i
\(905\) 0 0
\(906\) 17.3137 + 7.17157i 0.575209 + 0.238260i
\(907\) −12.4142 + 5.14214i −0.412207 + 0.170742i −0.579143 0.815226i \(-0.696613\pi\)
0.166936 + 0.985968i \(0.446613\pi\)
\(908\) −25.4853 61.5269i −0.845759 2.04184i
\(909\) 13.6863 + 13.6863i 0.453946 + 0.453946i
\(910\) 0 0
\(911\) 5.24264 2.17157i 0.173696 0.0719474i −0.294141 0.955762i \(-0.595033\pi\)
0.467837 + 0.883815i \(0.345033\pi\)
\(912\) −2.48528 + 1.02944i −0.0822959 + 0.0340881i
\(913\) −11.6569 + 28.1421i −0.385786 + 0.931369i
\(914\) 31.7990i 1.05182i
\(915\) 0 0
\(916\) −46.4853 + 46.4853i −1.53592 + 1.53592i
\(917\) 39.7990i 1.31428i
\(918\) 18.4853 + 48.6274i 0.610105 + 1.60494i
\(919\) −19.3137 −0.637100 −0.318550 0.947906i \(-0.603196\pi\)
−0.318550 + 0.947906i \(0.603196\pi\)
\(920\) 0 0
\(921\) −10.8284 + 26.1421i −0.356809 + 0.861413i
\(922\) −58.0416 −1.91150
\(923\) −2.92893 + 7.07107i −0.0964070 + 0.232747i
\(924\) 10.8284 + 26.1421i 0.356229 + 0.860013i
\(925\) 0 0
\(926\) 24.9706 + 24.9706i 0.820584 + 0.820584i
\(927\) −16.1421 + 16.1421i −0.530177 + 0.530177i
\(928\) −0.192388 0.464466i −0.00631545 0.0152468i
\(929\) −6.63604 16.0208i −0.217721 0.525626i 0.776850 0.629686i \(-0.216817\pi\)
−0.994571 + 0.104060i \(0.966817\pi\)
\(930\) 0 0
\(931\) 0.142136i 0.00465831i
\(932\) 31.0919 + 12.8787i 1.01845 + 0.421855i
\(933\) −19.6569 19.6569i −0.643537 0.643537i
\(934\) 78.7696 2.57742
\(935\) 0 0
\(936\) −11.4142 −0.373085
\(937\) 19.4853 + 19.4853i 0.636556 + 0.636556i 0.949704 0.313148i \(-0.101384\pi\)
−0.313148 + 0.949704i \(0.601384\pi\)
\(938\) −6.82843 2.82843i −0.222956 0.0923514i
\(939\) 10.6863i 0.348734i
\(940\) 0 0
\(941\) −15.2635 36.8492i −0.497574 1.20125i −0.950786 0.309848i \(-0.899722\pi\)
0.453212 0.891403i \(-0.350278\pi\)
\(942\) −9.65685 23.3137i −0.314637 0.759602i
\(943\) −4.10051 + 4.10051i −0.133531 + 0.133531i
\(944\) 12.7279 + 12.7279i 0.414259 + 0.414259i
\(945\) 0 0
\(946\) −2.00000 4.82843i −0.0650256 0.156986i
\(947\) −11.7279 + 28.3137i −0.381106 + 0.920072i 0.610646 + 0.791904i \(0.290910\pi\)
−0.991752 + 0.128168i \(0.959090\pi\)
\(948\) −19.7990 −0.643041
\(949\) −7.00000 + 16.8995i −0.227230 + 0.548581i
\(950\) 0 0
\(951\) 20.8284 0.675408
\(952\) 44.4558 16.8995i 1.44082 0.547716i
\(953\) 49.6985i 1.60989i −0.593348 0.804946i \(-0.702194\pi\)
0.593348 0.804946i \(-0.297806\pi\)
\(954\) −4.41421 + 4.41421i −0.142915 + 0.142915i
\(955\) 0 0
\(956\) 56.7696i 1.83606i
\(957\) −0.343146 + 0.828427i −0.0110923 + 0.0267792i
\(958\) 11.4853 4.75736i 0.371073 0.153703i
\(959\) −40.3848 + 16.7279i −1.30409 + 0.540173i
\(960\) 0 0
\(961\) −21.5355 21.5355i −0.694695 0.694695i
\(962\) −12.0711 29.1421i −0.389187 0.939580i
\(963\) 0.757359 0.313708i 0.0244056 0.0101091i
\(964\) −12.6066 5.22183i −0.406031 0.168184i
\(965\) 0 0
\(966\) −12.4853 + 30.1421i −0.401707 + 0.969807i
\(967\) −30.8701 30.8701i −0.992714 0.992714i 0.00725952 0.999974i \(-0.497689\pi\)
−0.999974 + 0.00725952i \(0.997689\pi\)
\(968\) 18.4142i 0.591855i
\(969\) −1.51472 + 3.37258i −0.0486598 + 0.108343i
\(970\) 0 0
\(971\) −36.5858 + 36.5858i −1.17409 + 1.17409i −0.192869 + 0.981224i \(0.561779\pi\)
−0.981224 + 0.192869i \(0.938221\pi\)
\(972\) 54.7990 + 22.6985i 1.75768 + 0.728054i
\(973\) −55.7990 −1.78883
\(974\) 58.6985 + 24.3137i 1.88082 + 0.779061i
\(975\) 0 0
\(976\) 10.6066 4.39340i 0.339509 0.140629i
\(977\) 27.1421 27.1421i 0.868354 0.868354i −0.123936 0.992290i \(-0.539552\pi\)
0.992290 + 0.123936i \(0.0395519\pi\)
\(978\) −15.6569 + 15.6569i −0.500651 + 0.500651i
\(979\) 15.8995 6.58579i 0.508150 0.210483i
\(980\) 0 0
\(981\) 26.2635 + 10.8787i 0.838528 + 0.347330i
\(982\) −89.5980 −2.85919
\(983\) −9.00000 3.72792i −0.287055 0.118902i 0.234510 0.972114i \(-0.424652\pi\)
−0.521565 + 0.853212i \(0.674652\pi\)
\(984\) −4.10051 + 4.10051i −0.130719 + 0.130719i
\(985\) 0 0
\(986\) 2.87868 + 1.29289i 0.0916758 + 0.0411741i
\(987\) 14.6274i 0.465596i
\(988\) −3.17157 3.17157i −0.100901 0.100901i
\(989\) 1.51472 3.65685i 0.0481653 0.116281i
\(990\) 0 0
\(991\) 37.7279 + 15.6274i 1.19847 + 0.496421i 0.890503 0.454977i \(-0.150352\pi\)
0.307964 + 0.951398i \(0.400352\pi\)
\(992\) 11.4853 4.75736i 0.364658 0.151046i
\(993\) 9.02944 + 21.7990i 0.286541 + 0.691770i
\(994\) −24.1421 24.1421i −0.765742 0.765742i
\(995\) 0 0
\(996\) −44.6274 + 18.4853i −1.41407 + 0.585729i
\(997\) 6.94975 2.87868i 0.220101 0.0911687i −0.269908 0.962886i \(-0.586993\pi\)
0.490009 + 0.871717i \(0.336993\pi\)
\(998\) 19.8284 47.8701i 0.627658 1.51530i
\(999\) 48.2843i 1.52765i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.n.a.399.1 4
5.2 odd 4 425.2.m.a.76.1 4
5.3 odd 4 17.2.d.a.8.1 4
5.4 even 2 425.2.n.b.399.1 4
15.8 even 4 153.2.l.c.127.1 4
17.15 even 8 425.2.n.b.49.1 4
20.3 even 4 272.2.v.d.161.1 4
35.3 even 12 833.2.v.a.569.1 8
35.13 even 4 833.2.l.a.246.1 4
35.18 odd 12 833.2.v.b.569.1 8
35.23 odd 12 833.2.v.b.263.1 8
35.33 even 12 833.2.v.a.263.1 8
85.3 even 16 289.2.c.c.38.4 8
85.7 even 16 7225.2.a.u.1.2 4
85.8 odd 8 289.2.d.b.155.1 4
85.13 odd 4 289.2.d.c.179.1 4
85.23 even 16 289.2.b.b.288.1 4
85.27 even 16 7225.2.a.u.1.1 4
85.28 even 16 289.2.b.b.288.2 4
85.32 odd 8 425.2.m.a.151.1 4
85.33 odd 4 289.2.d.a.110.1 4
85.38 odd 4 289.2.d.b.179.1 4
85.43 odd 8 289.2.d.c.155.1 4
85.48 even 16 289.2.c.c.38.3 8
85.49 even 8 inner 425.2.n.a.49.1 4
85.53 odd 8 289.2.d.a.134.1 4
85.58 even 16 289.2.a.f.1.3 4
85.63 even 16 289.2.c.c.251.1 8
85.73 even 16 289.2.c.c.251.2 8
85.78 even 16 289.2.a.f.1.4 4
85.83 odd 8 17.2.d.a.15.1 yes 4
255.83 even 8 153.2.l.c.100.1 4
255.143 odd 16 2601.2.a.bb.1.1 4
255.248 odd 16 2601.2.a.bb.1.2 4
340.83 even 8 272.2.v.d.49.1 4
340.143 odd 16 4624.2.a.bp.1.3 4
340.163 odd 16 4624.2.a.bp.1.2 4
595.83 even 8 833.2.l.a.491.1 4
595.338 odd 24 833.2.v.b.508.1 8
595.423 even 24 833.2.v.a.814.1 8
595.508 odd 24 833.2.v.b.814.1 8
595.593 even 24 833.2.v.a.508.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.2.d.a.8.1 4 5.3 odd 4
17.2.d.a.15.1 yes 4 85.83 odd 8
153.2.l.c.100.1 4 255.83 even 8
153.2.l.c.127.1 4 15.8 even 4
272.2.v.d.49.1 4 340.83 even 8
272.2.v.d.161.1 4 20.3 even 4
289.2.a.f.1.3 4 85.58 even 16
289.2.a.f.1.4 4 85.78 even 16
289.2.b.b.288.1 4 85.23 even 16
289.2.b.b.288.2 4 85.28 even 16
289.2.c.c.38.3 8 85.48 even 16
289.2.c.c.38.4 8 85.3 even 16
289.2.c.c.251.1 8 85.63 even 16
289.2.c.c.251.2 8 85.73 even 16
289.2.d.a.110.1 4 85.33 odd 4
289.2.d.a.134.1 4 85.53 odd 8
289.2.d.b.155.1 4 85.8 odd 8
289.2.d.b.179.1 4 85.38 odd 4
289.2.d.c.155.1 4 85.43 odd 8
289.2.d.c.179.1 4 85.13 odd 4
425.2.m.a.76.1 4 5.2 odd 4
425.2.m.a.151.1 4 85.32 odd 8
425.2.n.a.49.1 4 85.49 even 8 inner
425.2.n.a.399.1 4 1.1 even 1 trivial
425.2.n.b.49.1 4 17.15 even 8
425.2.n.b.399.1 4 5.4 even 2
833.2.l.a.246.1 4 35.13 even 4
833.2.l.a.491.1 4 595.83 even 8
833.2.v.a.263.1 8 35.33 even 12
833.2.v.a.508.1 8 595.593 even 24
833.2.v.a.569.1 8 35.3 even 12
833.2.v.a.814.1 8 595.423 even 24
833.2.v.b.263.1 8 35.23 odd 12
833.2.v.b.508.1 8 595.338 odd 24
833.2.v.b.569.1 8 35.18 odd 12
833.2.v.b.814.1 8 595.508 odd 24
2601.2.a.bb.1.1 4 255.143 odd 16
2601.2.a.bb.1.2 4 255.248 odd 16
4624.2.a.bp.1.2 4 340.163 odd 16
4624.2.a.bp.1.3 4 340.143 odd 16
7225.2.a.u.1.1 4 85.27 even 16
7225.2.a.u.1.2 4 85.7 even 16