Properties

Label 289.2.c.c.38.4
Level $289$
Weight $2$
Character 289.38
Analytic conductor $2.308$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [289,2,Mod(38,289)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(289, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("289.38");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 289 = 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 289.c (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.30767661842\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{16})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 17)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 38.4
Root \(-0.923880 + 0.382683i\) of defining polynomial
Character \(\chi\) \(=\) 289.38
Dual form 289.2.c.c.251.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.41421i q^{2} +(0.765367 - 0.765367i) q^{3} -3.82843 q^{4} +(0.541196 - 0.541196i) q^{5} +(1.84776 + 1.84776i) q^{6} +(1.84776 + 1.84776i) q^{7} -4.41421i q^{8} +1.82843i q^{9} +(1.30656 + 1.30656i) q^{10} +(1.84776 + 1.84776i) q^{11} +(-2.93015 + 2.93015i) q^{12} -1.41421 q^{13} +(-4.46088 + 4.46088i) q^{14} -0.828427i q^{15} +3.00000 q^{16} -4.41421 q^{18} -0.828427i q^{19} +(-2.07193 + 2.07193i) q^{20} +2.82843 q^{21} +(-4.46088 + 4.46088i) q^{22} +(-3.37849 - 3.37849i) q^{23} +(-3.37849 - 3.37849i) q^{24} +4.41421i q^{25} -3.41421i q^{26} +(3.69552 + 3.69552i) q^{27} +(-7.07401 - 7.07401i) q^{28} +(-0.224171 + 0.224171i) q^{29} +2.00000 q^{30} +(5.54328 - 5.54328i) q^{31} -1.58579i q^{32} +2.82843 q^{33} +2.00000 q^{35} -7.00000i q^{36} +(6.53281 - 6.53281i) q^{37} +2.00000 q^{38} +(-1.08239 + 1.08239i) q^{39} +(-2.38896 - 2.38896i) q^{40} +(-0.858221 - 0.858221i) q^{41} +6.82843i q^{42} -0.828427i q^{43} +(-7.07401 - 7.07401i) q^{44} +(0.989538 + 0.989538i) q^{45} +(8.15640 - 8.15640i) q^{46} -5.17157 q^{47} +(2.29610 - 2.29610i) q^{48} -0.171573i q^{49} -10.6569 q^{50} +5.41421 q^{52} +1.41421i q^{53} +(-8.92177 + 8.92177i) q^{54} +2.00000 q^{55} +(8.15640 - 8.15640i) q^{56} +(-0.634051 - 0.634051i) q^{57} +(-0.541196 - 0.541196i) q^{58} -6.00000i q^{59} +3.17157i q^{60} +(-2.70598 - 2.70598i) q^{61} +(13.3827 + 13.3827i) q^{62} +(-3.37849 + 3.37849i) q^{63} +9.82843 q^{64} +(-0.765367 + 0.765367i) q^{65} +6.82843i q^{66} -1.17157 q^{67} -5.17157 q^{69} +4.82843i q^{70} +(-3.82683 + 3.82683i) q^{71} +8.07107 q^{72} +(9.14594 - 9.14594i) q^{73} +(15.7716 + 15.7716i) q^{74} +(3.37849 + 3.37849i) q^{75} +3.17157i q^{76} +6.82843i q^{77} +(-2.61313 - 2.61313i) q^{78} +(-3.37849 - 3.37849i) q^{79} +(1.62359 - 1.62359i) q^{80} +0.171573 q^{81} +(2.07193 - 2.07193i) q^{82} +11.6569i q^{83} -10.8284 q^{84} +2.00000 q^{86} +0.343146i q^{87} +(8.15640 - 8.15640i) q^{88} -6.58579 q^{89} +(-2.38896 + 2.38896i) q^{90} +(-2.61313 - 2.61313i) q^{91} +(12.9343 + 12.9343i) q^{92} -8.48528i q^{93} -12.4853i q^{94} +(-0.448342 - 0.448342i) q^{95} +(-1.21371 - 1.21371i) q^{96} +(7.29818 - 7.29818i) q^{97} +0.414214 q^{98} +(-3.37849 + 3.37849i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} + 24 q^{16} - 24 q^{18} + 16 q^{30} + 16 q^{35} + 16 q^{38} - 64 q^{47} - 40 q^{50} + 32 q^{52} + 16 q^{55} + 56 q^{64} - 32 q^{67} - 64 q^{69} + 8 q^{72} + 24 q^{81} - 64 q^{84} + 16 q^{86}+ \cdots - 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/289\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.41421i 1.70711i 0.521005 + 0.853553i \(0.325557\pi\)
−0.521005 + 0.853553i \(0.674443\pi\)
\(3\) 0.765367 0.765367i 0.441885 0.441885i −0.450760 0.892645i \(-0.648847\pi\)
0.892645 + 0.450760i \(0.148847\pi\)
\(4\) −3.82843 −1.91421
\(5\) 0.541196 0.541196i 0.242030 0.242030i −0.575659 0.817690i \(-0.695255\pi\)
0.817690 + 0.575659i \(0.195255\pi\)
\(6\) 1.84776 + 1.84776i 0.754344 + 0.754344i
\(7\) 1.84776 + 1.84776i 0.698387 + 0.698387i 0.964063 0.265675i \(-0.0855949\pi\)
−0.265675 + 0.964063i \(0.585595\pi\)
\(8\) 4.41421i 1.56066i
\(9\) 1.82843i 0.609476i
\(10\) 1.30656 + 1.30656i 0.413171 + 0.413171i
\(11\) 1.84776 + 1.84776i 0.557120 + 0.557120i 0.928486 0.371366i \(-0.121111\pi\)
−0.371366 + 0.928486i \(0.621111\pi\)
\(12\) −2.93015 + 2.93015i −0.845862 + 0.845862i
\(13\) −1.41421 −0.392232 −0.196116 0.980581i \(-0.562833\pi\)
−0.196116 + 0.980581i \(0.562833\pi\)
\(14\) −4.46088 + 4.46088i −1.19222 + 1.19222i
\(15\) 0.828427i 0.213899i
\(16\) 3.00000 0.750000
\(17\) 0 0
\(18\) −4.41421 −1.04044
\(19\) 0.828427i 0.190054i −0.995475 0.0950271i \(-0.969706\pi\)
0.995475 0.0950271i \(-0.0302938\pi\)
\(20\) −2.07193 + 2.07193i −0.463298 + 0.463298i
\(21\) 2.82843 0.617213
\(22\) −4.46088 + 4.46088i −0.951064 + 0.951064i
\(23\) −3.37849 3.37849i −0.704464 0.704464i 0.260901 0.965366i \(-0.415980\pi\)
−0.965366 + 0.260901i \(0.915980\pi\)
\(24\) −3.37849 3.37849i −0.689632 0.689632i
\(25\) 4.41421i 0.882843i
\(26\) 3.41421i 0.669582i
\(27\) 3.69552 + 3.69552i 0.711203 + 0.711203i
\(28\) −7.07401 7.07401i −1.33686 1.33686i
\(29\) −0.224171 + 0.224171i −0.0416275 + 0.0416275i −0.727614 0.685987i \(-0.759371\pi\)
0.685987 + 0.727614i \(0.259371\pi\)
\(30\) 2.00000 0.365148
\(31\) 5.54328 5.54328i 0.995602 0.995602i −0.00438840 0.999990i \(-0.501397\pi\)
0.999990 + 0.00438840i \(0.00139687\pi\)
\(32\) 1.58579i 0.280330i
\(33\) 2.82843 0.492366
\(34\) 0 0
\(35\) 2.00000 0.338062
\(36\) 7.00000i 1.16667i
\(37\) 6.53281 6.53281i 1.07399 1.07399i 0.0769535 0.997035i \(-0.475481\pi\)
0.997035 0.0769535i \(-0.0245193\pi\)
\(38\) 2.00000 0.324443
\(39\) −1.08239 + 1.08239i −0.173321 + 0.173321i
\(40\) −2.38896 2.38896i −0.377727 0.377727i
\(41\) −0.858221 0.858221i −0.134032 0.134032i 0.636908 0.770940i \(-0.280213\pi\)
−0.770940 + 0.636908i \(0.780213\pi\)
\(42\) 6.82843i 1.05365i
\(43\) 0.828427i 0.126334i −0.998003 0.0631670i \(-0.979880\pi\)
0.998003 0.0631670i \(-0.0201201\pi\)
\(44\) −7.07401 7.07401i −1.06645 1.06645i
\(45\) 0.989538 + 0.989538i 0.147512 + 0.147512i
\(46\) 8.15640 8.15640i 1.20260 1.20260i
\(47\) −5.17157 −0.754351 −0.377176 0.926142i \(-0.623105\pi\)
−0.377176 + 0.926142i \(0.623105\pi\)
\(48\) 2.29610 2.29610i 0.331414 0.331414i
\(49\) 0.171573i 0.0245104i
\(50\) −10.6569 −1.50711
\(51\) 0 0
\(52\) 5.41421 0.750816
\(53\) 1.41421i 0.194257i 0.995272 + 0.0971286i \(0.0309658\pi\)
−0.995272 + 0.0971286i \(0.969034\pi\)
\(54\) −8.92177 + 8.92177i −1.21410 + 1.21410i
\(55\) 2.00000 0.269680
\(56\) 8.15640 8.15640i 1.08995 1.08995i
\(57\) −0.634051 0.634051i −0.0839821 0.0839821i
\(58\) −0.541196 0.541196i −0.0710625 0.0710625i
\(59\) 6.00000i 0.781133i −0.920575 0.390567i \(-0.872279\pi\)
0.920575 0.390567i \(-0.127721\pi\)
\(60\) 3.17157i 0.409448i
\(61\) −2.70598 2.70598i −0.346465 0.346465i 0.512326 0.858791i \(-0.328784\pi\)
−0.858791 + 0.512326i \(0.828784\pi\)
\(62\) 13.3827 + 13.3827i 1.69960 + 1.69960i
\(63\) −3.37849 + 3.37849i −0.425650 + 0.425650i
\(64\) 9.82843 1.22855
\(65\) −0.765367 + 0.765367i −0.0949321 + 0.0949321i
\(66\) 6.82843i 0.840521i
\(67\) −1.17157 −0.143130 −0.0715652 0.997436i \(-0.522799\pi\)
−0.0715652 + 0.997436i \(0.522799\pi\)
\(68\) 0 0
\(69\) −5.17157 −0.622584
\(70\) 4.82843i 0.577107i
\(71\) −3.82683 + 3.82683i −0.454162 + 0.454162i −0.896733 0.442572i \(-0.854066\pi\)
0.442572 + 0.896733i \(0.354066\pi\)
\(72\) 8.07107 0.951184
\(73\) 9.14594 9.14594i 1.07045 1.07045i 0.0731289 0.997322i \(-0.476702\pi\)
0.997322 0.0731289i \(-0.0232984\pi\)
\(74\) 15.7716 + 15.7716i 1.83341 + 1.83341i
\(75\) 3.37849 + 3.37849i 0.390115 + 0.390115i
\(76\) 3.17157i 0.363804i
\(77\) 6.82843i 0.778171i
\(78\) −2.61313 2.61313i −0.295878 0.295878i
\(79\) −3.37849 3.37849i −0.380110 0.380110i 0.491032 0.871142i \(-0.336620\pi\)
−0.871142 + 0.491032i \(0.836620\pi\)
\(80\) 1.62359 1.62359i 0.181523 0.181523i
\(81\) 0.171573 0.0190637
\(82\) 2.07193 2.07193i 0.228806 0.228806i
\(83\) 11.6569i 1.27951i 0.768581 + 0.639753i \(0.220963\pi\)
−0.768581 + 0.639753i \(0.779037\pi\)
\(84\) −10.8284 −1.18148
\(85\) 0 0
\(86\) 2.00000 0.215666
\(87\) 0.343146i 0.0367891i
\(88\) 8.15640 8.15640i 0.869475 0.869475i
\(89\) −6.58579 −0.698092 −0.349046 0.937106i \(-0.613494\pi\)
−0.349046 + 0.937106i \(0.613494\pi\)
\(90\) −2.38896 + 2.38896i −0.251818 + 0.251818i
\(91\) −2.61313 2.61313i −0.273930 0.273930i
\(92\) 12.9343 + 12.9343i 1.34850 + 1.34850i
\(93\) 8.48528i 0.879883i
\(94\) 12.4853i 1.28776i
\(95\) −0.448342 0.448342i −0.0459989 0.0459989i
\(96\) −1.21371 1.21371i −0.123874 0.123874i
\(97\) 7.29818 7.29818i 0.741018 0.741018i −0.231756 0.972774i \(-0.574447\pi\)
0.972774 + 0.231756i \(0.0744471\pi\)
\(98\) 0.414214 0.0418419
\(99\) −3.37849 + 3.37849i −0.339551 + 0.339551i
\(100\) 16.8995i 1.68995i
\(101\) 10.5858 1.05333 0.526663 0.850074i \(-0.323443\pi\)
0.526663 + 0.850074i \(0.323443\pi\)
\(102\) 0 0
\(103\) 12.4853 1.23021 0.615106 0.788445i \(-0.289113\pi\)
0.615106 + 0.788445i \(0.289113\pi\)
\(104\) 6.24264i 0.612141i
\(105\) 1.53073 1.53073i 0.149384 0.149384i
\(106\) −3.41421 −0.331618
\(107\) −0.317025 + 0.317025i −0.0306480 + 0.0306480i −0.722265 0.691617i \(-0.756899\pi\)
0.691617 + 0.722265i \(0.256899\pi\)
\(108\) −14.1480 14.1480i −1.36139 1.36139i
\(109\) −10.9937 10.9937i −1.05301 1.05301i −0.998514 0.0544912i \(-0.982646\pi\)
−0.0544912 0.998514i \(-0.517354\pi\)
\(110\) 4.82843i 0.460372i
\(111\) 10.0000i 0.949158i
\(112\) 5.54328 + 5.54328i 0.523790 + 0.523790i
\(113\) −9.33165 9.33165i −0.877848 0.877848i 0.115464 0.993312i \(-0.463165\pi\)
−0.993312 + 0.115464i \(0.963165\pi\)
\(114\) 1.53073 1.53073i 0.143366 0.143366i
\(115\) −3.65685 −0.341003
\(116\) 0.858221 0.858221i 0.0796839 0.0796839i
\(117\) 2.58579i 0.239056i
\(118\) 14.4853 1.33348
\(119\) 0 0
\(120\) −3.65685 −0.333824
\(121\) 4.17157i 0.379234i
\(122\) 6.53281 6.53281i 0.591453 0.591453i
\(123\) −1.31371 −0.118453
\(124\) −21.2220 + 21.2220i −1.90579 + 1.90579i
\(125\) 5.09494 + 5.09494i 0.455705 + 0.455705i
\(126\) −8.15640 8.15640i −0.726630 0.726630i
\(127\) 5.31371i 0.471515i 0.971812 + 0.235758i \(0.0757572\pi\)
−0.971812 + 0.235758i \(0.924243\pi\)
\(128\) 20.5563i 1.81694i
\(129\) −0.634051 0.634051i −0.0558250 0.0558250i
\(130\) −1.84776 1.84776i −0.162059 0.162059i
\(131\) −10.7695 + 10.7695i −0.940938 + 0.940938i −0.998351 0.0574124i \(-0.981715\pi\)
0.0574124 + 0.998351i \(0.481715\pi\)
\(132\) −10.8284 −0.942494
\(133\) 1.53073 1.53073i 0.132731 0.132731i
\(134\) 2.82843i 0.244339i
\(135\) 4.00000 0.344265
\(136\) 0 0
\(137\) −16.7279 −1.42916 −0.714581 0.699552i \(-0.753383\pi\)
−0.714581 + 0.699552i \(0.753383\pi\)
\(138\) 12.4853i 1.06282i
\(139\) −15.0991 + 15.0991i −1.28069 + 1.28069i −0.340413 + 0.940276i \(0.610567\pi\)
−0.940276 + 0.340413i \(0.889433\pi\)
\(140\) −7.65685 −0.647122
\(141\) −3.95815 + 3.95815i −0.333336 + 0.333336i
\(142\) −9.23880 9.23880i −0.775302 0.775302i
\(143\) −2.61313 2.61313i −0.218521 0.218521i
\(144\) 5.48528i 0.457107i
\(145\) 0.242641i 0.0201502i
\(146\) 22.0803 + 22.0803i 1.82737 + 1.82737i
\(147\) −0.131316 0.131316i −0.0108308 0.0108308i
\(148\) −25.0104 + 25.0104i −2.05584 + 2.05584i
\(149\) 16.9706 1.39028 0.695141 0.718873i \(-0.255342\pi\)
0.695141 + 0.718873i \(0.255342\pi\)
\(150\) −8.15640 + 8.15640i −0.665968 + 0.665968i
\(151\) 7.17157i 0.583614i 0.956477 + 0.291807i \(0.0942566\pi\)
−0.956477 + 0.291807i \(0.905743\pi\)
\(152\) −3.65685 −0.296610
\(153\) 0 0
\(154\) −16.4853 −1.32842
\(155\) 6.00000i 0.481932i
\(156\) 4.14386 4.14386i 0.331774 0.331774i
\(157\) 9.65685 0.770701 0.385350 0.922770i \(-0.374081\pi\)
0.385350 + 0.922770i \(0.374081\pi\)
\(158\) 8.15640 8.15640i 0.648889 0.648889i
\(159\) 1.08239 + 1.08239i 0.0858393 + 0.0858393i
\(160\) −0.858221 0.858221i −0.0678484 0.0678484i
\(161\) 12.4853i 0.983978i
\(162\) 0.414214i 0.0325437i
\(163\) −5.99162 5.99162i −0.469300 0.469300i 0.432388 0.901688i \(-0.357671\pi\)
−0.901688 + 0.432388i \(0.857671\pi\)
\(164\) 3.28564 + 3.28564i 0.256565 + 0.256565i
\(165\) 1.53073 1.53073i 0.119167 0.119167i
\(166\) −28.1421 −2.18425
\(167\) −1.39942 + 1.39942i −0.108290 + 0.108290i −0.759176 0.650886i \(-0.774398\pi\)
0.650886 + 0.759176i \(0.274398\pi\)
\(168\) 12.4853i 0.963260i
\(169\) −11.0000 −0.846154
\(170\) 0 0
\(171\) 1.51472 0.115833
\(172\) 3.17157i 0.241830i
\(173\) 2.07193 2.07193i 0.157526 0.157526i −0.623944 0.781469i \(-0.714470\pi\)
0.781469 + 0.623944i \(0.214470\pi\)
\(174\) −0.828427 −0.0628029
\(175\) −8.15640 + 8.15640i −0.616566 + 0.616566i
\(176\) 5.54328 + 5.54328i 0.417840 + 0.417840i
\(177\) −4.59220 4.59220i −0.345171 0.345171i
\(178\) 15.8995i 1.19172i
\(179\) 6.00000i 0.448461i −0.974536 0.224231i \(-0.928013\pi\)
0.974536 0.224231i \(-0.0719869\pi\)
\(180\) −3.78837 3.78837i −0.282369 0.282369i
\(181\) 8.24926 + 8.24926i 0.613162 + 0.613162i 0.943769 0.330606i \(-0.107253\pi\)
−0.330606 + 0.943769i \(0.607253\pi\)
\(182\) 6.30864 6.30864i 0.467628 0.467628i
\(183\) −4.14214 −0.306195
\(184\) −14.9134 + 14.9134i −1.09943 + 1.09943i
\(185\) 7.07107i 0.519875i
\(186\) 20.4853 1.50205
\(187\) 0 0
\(188\) 19.7990 1.44399
\(189\) 13.6569i 0.993390i
\(190\) 1.08239 1.08239i 0.0785250 0.0785250i
\(191\) −20.0000 −1.44715 −0.723575 0.690246i \(-0.757502\pi\)
−0.723575 + 0.690246i \(0.757502\pi\)
\(192\) 7.52235 7.52235i 0.542879 0.542879i
\(193\) 1.62359 + 1.62359i 0.116868 + 0.116868i 0.763122 0.646254i \(-0.223665\pi\)
−0.646254 + 0.763122i \(0.723665\pi\)
\(194\) 17.6194 + 17.6194i 1.26500 + 1.26500i
\(195\) 1.17157i 0.0838981i
\(196\) 0.656854i 0.0469182i
\(197\) −3.28564 3.28564i −0.234092 0.234092i 0.580306 0.814398i \(-0.302933\pi\)
−0.814398 + 0.580306i \(0.802933\pi\)
\(198\) −8.15640 8.15640i −0.579650 0.579650i
\(199\) 8.15640 8.15640i 0.578192 0.578192i −0.356213 0.934405i \(-0.615932\pi\)
0.934405 + 0.356213i \(0.115932\pi\)
\(200\) 19.4853 1.37782
\(201\) −0.896683 + 0.896683i −0.0632471 + 0.0632471i
\(202\) 25.5563i 1.79814i
\(203\) −0.828427 −0.0581442
\(204\) 0 0
\(205\) −0.928932 −0.0648794
\(206\) 30.1421i 2.10010i
\(207\) 6.17733 6.17733i 0.429354 0.429354i
\(208\) −4.24264 −0.294174
\(209\) 1.53073 1.53073i 0.105883 0.105883i
\(210\) 3.69552 + 3.69552i 0.255015 + 0.255015i
\(211\) 15.0991 + 15.0991i 1.03946 + 1.03946i 0.999189 + 0.0402762i \(0.0128238\pi\)
0.0402762 + 0.999189i \(0.487176\pi\)
\(212\) 5.41421i 0.371850i
\(213\) 5.85786i 0.401374i
\(214\) −0.765367 0.765367i −0.0523194 0.0523194i
\(215\) −0.448342 0.448342i −0.0305766 0.0305766i
\(216\) 16.3128 16.3128i 1.10995 1.10995i
\(217\) 20.4853 1.39063
\(218\) 26.5411 26.5411i 1.79759 1.79759i
\(219\) 14.0000i 0.946032i
\(220\) −7.65685 −0.516225
\(221\) 0 0
\(222\) 24.1421 1.62031
\(223\) 4.82843i 0.323335i −0.986845 0.161668i \(-0.948313\pi\)
0.986845 0.161668i \(-0.0516873\pi\)
\(224\) 2.93015 2.93015i 0.195779 0.195779i
\(225\) −8.07107 −0.538071
\(226\) 22.5286 22.5286i 1.49858 1.49858i
\(227\) 12.3003 + 12.3003i 0.816397 + 0.816397i 0.985584 0.169187i \(-0.0541141\pi\)
−0.169187 + 0.985584i \(0.554114\pi\)
\(228\) 2.42742 + 2.42742i 0.160760 + 0.160760i
\(229\) 17.1716i 1.13473i 0.823467 + 0.567365i \(0.192037\pi\)
−0.823467 + 0.567365i \(0.807963\pi\)
\(230\) 8.82843i 0.582129i
\(231\) 5.22625 + 5.22625i 0.343862 + 0.343862i
\(232\) 0.989538 + 0.989538i 0.0649663 + 0.0649663i
\(233\) 6.21579 6.21579i 0.407210 0.407210i −0.473555 0.880764i \(-0.657029\pi\)
0.880764 + 0.473555i \(0.157029\pi\)
\(234\) 6.24264 0.408094
\(235\) −2.79884 + 2.79884i −0.182576 + 0.182576i
\(236\) 22.9706i 1.49526i
\(237\) −5.17157 −0.335930
\(238\) 0 0
\(239\) 14.8284 0.959171 0.479586 0.877495i \(-0.340787\pi\)
0.479586 + 0.877495i \(0.340787\pi\)
\(240\) 2.48528i 0.160424i
\(241\) −2.52027 + 2.52027i −0.162345 + 0.162345i −0.783605 0.621260i \(-0.786621\pi\)
0.621260 + 0.783605i \(0.286621\pi\)
\(242\) 10.0711 0.647393
\(243\) −10.9552 + 10.9552i −0.702779 + 0.702779i
\(244\) 10.3596 + 10.3596i 0.663209 + 0.663209i
\(245\) −0.0928546 0.0928546i −0.00593226 0.00593226i
\(246\) 3.17157i 0.202212i
\(247\) 1.17157i 0.0745454i
\(248\) −24.4692 24.4692i −1.55380 1.55380i
\(249\) 8.92177 + 8.92177i 0.565394 + 0.565394i
\(250\) −12.3003 + 12.3003i −0.777937 + 0.777937i
\(251\) −20.4853 −1.29302 −0.646510 0.762906i \(-0.723772\pi\)
−0.646510 + 0.762906i \(0.723772\pi\)
\(252\) 12.9343 12.9343i 0.814785 0.814785i
\(253\) 12.4853i 0.784943i
\(254\) −12.8284 −0.804927
\(255\) 0 0
\(256\) −29.9706 −1.87316
\(257\) 6.14214i 0.383136i 0.981479 + 0.191568i \(0.0613572\pi\)
−0.981479 + 0.191568i \(0.938643\pi\)
\(258\) 1.53073 1.53073i 0.0952993 0.0952993i
\(259\) 24.1421 1.50012
\(260\) 2.93015 2.93015i 0.181720 0.181720i
\(261\) −0.409880 0.409880i −0.0253709 0.0253709i
\(262\) −25.9999 25.9999i −1.60628 1.60628i
\(263\) 10.4853i 0.646550i 0.946305 + 0.323275i \(0.104784\pi\)
−0.946305 + 0.323275i \(0.895216\pi\)
\(264\) 12.4853i 0.768416i
\(265\) 0.765367 + 0.765367i 0.0470161 + 0.0470161i
\(266\) 3.69552 + 3.69552i 0.226587 + 0.226587i
\(267\) −5.04054 + 5.04054i −0.308476 + 0.308476i
\(268\) 4.48528 0.273982
\(269\) −18.7018 + 18.7018i −1.14027 + 1.14027i −0.151865 + 0.988401i \(0.548528\pi\)
−0.988401 + 0.151865i \(0.951472\pi\)
\(270\) 9.65685i 0.587697i
\(271\) −22.1421 −1.34504 −0.672519 0.740079i \(-0.734788\pi\)
−0.672519 + 0.740079i \(0.734788\pi\)
\(272\) 0 0
\(273\) −4.00000 −0.242091
\(274\) 40.3848i 2.43973i
\(275\) −8.15640 + 8.15640i −0.491850 + 0.491850i
\(276\) 19.7990 1.19176
\(277\) 14.1096 14.1096i 0.847761 0.847761i −0.142092 0.989853i \(-0.545383\pi\)
0.989853 + 0.142092i \(0.0453829\pi\)
\(278\) −36.4524 36.4524i −2.18627 2.18627i
\(279\) 10.1355 + 10.1355i 0.606795 + 0.606795i
\(280\) 8.82843i 0.527599i
\(281\) 1.89949i 0.113314i −0.998394 0.0566572i \(-0.981956\pi\)
0.998394 0.0566572i \(-0.0180442\pi\)
\(282\) −9.55582 9.55582i −0.569041 0.569041i
\(283\) 13.1969 + 13.1969i 0.784477 + 0.784477i 0.980583 0.196106i \(-0.0628296\pi\)
−0.196106 + 0.980583i \(0.562830\pi\)
\(284\) 14.6508 14.6508i 0.869362 0.869362i
\(285\) −0.686292 −0.0406524
\(286\) 6.30864 6.30864i 0.373038 0.373038i
\(287\) 3.17157i 0.187212i
\(288\) 2.89949 0.170854
\(289\) 0 0
\(290\) −0.585786 −0.0343986
\(291\) 11.1716i 0.654889i
\(292\) −35.0146 + 35.0146i −2.04907 + 2.04907i
\(293\) 12.3431 0.721094 0.360547 0.932741i \(-0.382590\pi\)
0.360547 + 0.932741i \(0.382590\pi\)
\(294\) 0.317025 0.317025i 0.0184893 0.0184893i
\(295\) −3.24718 3.24718i −0.189058 0.189058i
\(296\) −28.8372 28.8372i −1.67613 1.67613i
\(297\) 13.6569i 0.792451i
\(298\) 40.9706i 2.37336i
\(299\) 4.77791 + 4.77791i 0.276314 + 0.276314i
\(300\) −12.9343 12.9343i −0.746763 0.746763i
\(301\) 1.53073 1.53073i 0.0882300 0.0882300i
\(302\) −17.3137 −0.996292
\(303\) 8.10201 8.10201i 0.465448 0.465448i
\(304\) 2.48528i 0.142541i
\(305\) −2.92893 −0.167710
\(306\) 0 0
\(307\) −26.1421 −1.49201 −0.746005 0.665940i \(-0.768031\pi\)
−0.746005 + 0.665940i \(0.768031\pi\)
\(308\) 26.1421i 1.48959i
\(309\) 9.55582 9.55582i 0.543612 0.543612i
\(310\) 14.4853 0.822709
\(311\) −18.1606 + 18.1606i −1.02979 + 1.02979i −0.0302488 + 0.999542i \(0.509630\pi\)
−0.999542 + 0.0302488i \(0.990370\pi\)
\(312\) 4.77791 + 4.77791i 0.270496 + 0.270496i
\(313\) 6.98116 + 6.98116i 0.394598 + 0.394598i 0.876323 0.481724i \(-0.159989\pi\)
−0.481724 + 0.876323i \(0.659989\pi\)
\(314\) 23.3137i 1.31567i
\(315\) 3.65685i 0.206040i
\(316\) 12.9343 + 12.9343i 0.727612 + 0.727612i
\(317\) −13.6068 13.6068i −0.764235 0.764235i 0.212850 0.977085i \(-0.431726\pi\)
−0.977085 + 0.212850i \(0.931726\pi\)
\(318\) −2.61313 + 2.61313i −0.146537 + 0.146537i
\(319\) −0.828427 −0.0463830
\(320\) 5.31911 5.31911i 0.297347 0.297347i
\(321\) 0.485281i 0.0270858i
\(322\) 30.1421 1.67976
\(323\) 0 0
\(324\) −0.656854 −0.0364919
\(325\) 6.24264i 0.346279i
\(326\) 14.4650 14.4650i 0.801145 0.801145i
\(327\) −16.8284 −0.930614
\(328\) −3.78837 + 3.78837i −0.209178 + 0.209178i
\(329\) −9.55582 9.55582i −0.526829 0.526829i
\(330\) 3.69552 + 3.69552i 0.203432 + 0.203432i
\(331\) 21.7990i 1.19818i 0.800681 + 0.599090i \(0.204471\pi\)
−0.800681 + 0.599090i \(0.795529\pi\)
\(332\) 44.6274i 2.44925i
\(333\) 11.9448 + 11.9448i 0.654570 + 0.654570i
\(334\) −3.37849 3.37849i −0.184863 0.184863i
\(335\) −0.634051 + 0.634051i −0.0346419 + 0.0346419i
\(336\) 8.48528 0.462910
\(337\) 3.97408 3.97408i 0.216482 0.216482i −0.590532 0.807014i \(-0.701082\pi\)
0.807014 + 0.590532i \(0.201082\pi\)
\(338\) 26.5563i 1.44447i
\(339\) −14.2843 −0.775815
\(340\) 0 0
\(341\) 20.4853 1.10934
\(342\) 3.65685i 0.197740i
\(343\) 13.2513 13.2513i 0.715505 0.715505i
\(344\) −3.65685 −0.197164
\(345\) −2.79884 + 2.79884i −0.150684 + 0.150684i
\(346\) 5.00208 + 5.00208i 0.268914 + 0.268914i
\(347\) −11.8519 11.8519i −0.636244 0.636244i 0.313383 0.949627i \(-0.398538\pi\)
−0.949627 + 0.313383i \(0.898538\pi\)
\(348\) 1.31371i 0.0704222i
\(349\) 4.24264i 0.227103i 0.993532 + 0.113552i \(0.0362227\pi\)
−0.993532 + 0.113552i \(0.963777\pi\)
\(350\) −19.6913 19.6913i −1.05254 1.05254i
\(351\) −5.22625 5.22625i −0.278957 0.278957i
\(352\) 2.93015 2.93015i 0.156178 0.156178i
\(353\) 14.0000 0.745145 0.372572 0.928003i \(-0.378476\pi\)
0.372572 + 0.928003i \(0.378476\pi\)
\(354\) 11.0866 11.0866i 0.589244 0.589244i
\(355\) 4.14214i 0.219842i
\(356\) 25.2132 1.33630
\(357\) 0 0
\(358\) 14.4853 0.765571
\(359\) 28.8284i 1.52151i 0.649041 + 0.760753i \(0.275170\pi\)
−0.649041 + 0.760753i \(0.724830\pi\)
\(360\) 4.36803 4.36803i 0.230215 0.230215i
\(361\) 18.3137 0.963879
\(362\) −19.9155 + 19.9155i −1.04673 + 1.04673i
\(363\) −3.19278 3.19278i −0.167578 0.167578i
\(364\) 10.0042 + 10.0042i 0.524361 + 0.524361i
\(365\) 9.89949i 0.518163i
\(366\) 10.0000i 0.522708i
\(367\) −3.11586 3.11586i −0.162647 0.162647i 0.621091 0.783738i \(-0.286690\pi\)
−0.783738 + 0.621091i \(0.786690\pi\)
\(368\) −10.1355 10.1355i −0.528348 0.528348i
\(369\) 1.56920 1.56920i 0.0816890 0.0816890i
\(370\) 17.0711 0.887483
\(371\) −2.61313 + 2.61313i −0.135667 + 0.135667i
\(372\) 32.4853i 1.68428i
\(373\) −11.5563 −0.598365 −0.299183 0.954196i \(-0.596714\pi\)
−0.299183 + 0.954196i \(0.596714\pi\)
\(374\) 0 0
\(375\) 7.79899 0.402738
\(376\) 22.8284i 1.17729i
\(377\) 0.317025 0.317025i 0.0163276 0.0163276i
\(378\) −32.9706 −1.69582
\(379\) 1.84776 1.84776i 0.0949130 0.0949130i −0.658056 0.752969i \(-0.728621\pi\)
0.752969 + 0.658056i \(0.228621\pi\)
\(380\) 1.71644 + 1.71644i 0.0880517 + 0.0880517i
\(381\) 4.06694 + 4.06694i 0.208355 + 0.208355i
\(382\) 48.2843i 2.47044i
\(383\) 22.4853i 1.14894i −0.818524 0.574472i \(-0.805207\pi\)
0.818524 0.574472i \(-0.194793\pi\)
\(384\) 15.7331 + 15.7331i 0.802879 + 0.802879i
\(385\) 3.69552 + 3.69552i 0.188341 + 0.188341i
\(386\) −3.91969 + 3.91969i −0.199507 + 0.199507i
\(387\) 1.51472 0.0769975
\(388\) −27.9406 + 27.9406i −1.41847 + 1.41847i
\(389\) 12.1421i 0.615631i −0.951446 0.307815i \(-0.900402\pi\)
0.951446 0.307815i \(-0.0995979\pi\)
\(390\) −2.82843 −0.143223
\(391\) 0 0
\(392\) −0.757359 −0.0382524
\(393\) 16.4853i 0.831572i
\(394\) 7.93223 7.93223i 0.399620 0.399620i
\(395\) −3.65685 −0.183996
\(396\) 12.9343 12.9343i 0.649974 0.649974i
\(397\) 12.5788 + 12.5788i 0.631313 + 0.631313i 0.948397 0.317084i \(-0.102704\pi\)
−0.317084 + 0.948397i \(0.602704\pi\)
\(398\) 19.6913 + 19.6913i 0.987036 + 0.987036i
\(399\) 2.34315i 0.117304i
\(400\) 13.2426i 0.662132i
\(401\) −0.409880 0.409880i −0.0204684 0.0204684i 0.696799 0.717267i \(-0.254607\pi\)
−0.717267 + 0.696799i \(0.754607\pi\)
\(402\) −2.16478 2.16478i −0.107970 0.107970i
\(403\) −7.83938 + 7.83938i −0.390507 + 0.390507i
\(404\) −40.5269 −2.01629
\(405\) 0.0928546 0.0928546i 0.00461398 0.00461398i
\(406\) 2.00000i 0.0992583i
\(407\) 24.1421 1.19668
\(408\) 0 0
\(409\) −3.31371 −0.163852 −0.0819262 0.996638i \(-0.526107\pi\)
−0.0819262 + 0.996638i \(0.526107\pi\)
\(410\) 2.24264i 0.110756i
\(411\) −12.8030 + 12.8030i −0.631525 + 0.631525i
\(412\) −47.7990 −2.35489
\(413\) 11.0866 11.0866i 0.545534 0.545534i
\(414\) 14.9134 + 14.9134i 0.732953 + 0.732953i
\(415\) 6.30864 + 6.30864i 0.309679 + 0.309679i
\(416\) 2.24264i 0.109955i
\(417\) 23.1127i 1.13183i
\(418\) 3.69552 + 3.69552i 0.180754 + 0.180754i
\(419\) 9.42450 + 9.42450i 0.460417 + 0.460417i 0.898792 0.438375i \(-0.144446\pi\)
−0.438375 + 0.898792i \(0.644446\pi\)
\(420\) −5.86030 + 5.86030i −0.285953 + 0.285953i
\(421\) −14.5858 −0.710868 −0.355434 0.934701i \(-0.615667\pi\)
−0.355434 + 0.934701i \(0.615667\pi\)
\(422\) −36.4524 + 36.4524i −1.77448 + 1.77448i
\(423\) 9.45584i 0.459759i
\(424\) 6.24264 0.303169
\(425\) 0 0
\(426\) −14.1421 −0.685189
\(427\) 10.0000i 0.483934i
\(428\) 1.21371 1.21371i 0.0586668 0.0586668i
\(429\) −4.00000 −0.193122
\(430\) 1.08239 1.08239i 0.0521976 0.0521976i
\(431\) 5.17186 + 5.17186i 0.249120 + 0.249120i 0.820609 0.571490i \(-0.193634\pi\)
−0.571490 + 0.820609i \(0.693634\pi\)
\(432\) 11.0866 + 11.0866i 0.533402 + 0.533402i
\(433\) 20.8284i 1.00095i −0.865751 0.500475i \(-0.833159\pi\)
0.865751 0.500475i \(-0.166841\pi\)
\(434\) 49.4558i 2.37396i
\(435\) 0.185709 + 0.185709i 0.00890407 + 0.00890407i
\(436\) 42.0886 + 42.0886i 2.01568 + 2.01568i
\(437\) −2.79884 + 2.79884i −0.133886 + 0.133886i
\(438\) 33.7990 1.61498
\(439\) 7.52235 7.52235i 0.359022 0.359022i −0.504430 0.863452i \(-0.668297\pi\)
0.863452 + 0.504430i \(0.168297\pi\)
\(440\) 8.82843i 0.420879i
\(441\) 0.313708 0.0149385
\(442\) 0 0
\(443\) −23.7990 −1.13072 −0.565362 0.824843i \(-0.691264\pi\)
−0.565362 + 0.824843i \(0.691264\pi\)
\(444\) 38.2843i 1.81689i
\(445\) −3.56420 + 3.56420i −0.168959 + 0.168959i
\(446\) 11.6569 0.551968
\(447\) 12.9887 12.9887i 0.614345 0.614345i
\(448\) 18.1606 + 18.1606i 0.858006 + 0.858006i
\(449\) −8.56628 8.56628i −0.404268 0.404268i 0.475466 0.879734i \(-0.342279\pi\)
−0.879734 + 0.475466i \(0.842279\pi\)
\(450\) 19.4853i 0.918545i
\(451\) 3.17157i 0.149344i
\(452\) 35.7255 + 35.7255i 1.68039 + 1.68039i
\(453\) 5.48888 + 5.48888i 0.257890 + 0.257890i
\(454\) −29.6955 + 29.6955i −1.39368 + 1.39368i
\(455\) −2.82843 −0.132599
\(456\) −2.79884 + 2.79884i −0.131067 + 0.131067i
\(457\) 13.1716i 0.616140i 0.951364 + 0.308070i \(0.0996831\pi\)
−0.951364 + 0.308070i \(0.900317\pi\)
\(458\) −41.4558 −1.93710
\(459\) 0 0
\(460\) 14.0000 0.652753
\(461\) 24.0416i 1.11973i −0.828584 0.559865i \(-0.810853\pi\)
0.828584 0.559865i \(-0.189147\pi\)
\(462\) −12.6173 + 12.6173i −0.587009 + 0.587009i
\(463\) −14.6274 −0.679794 −0.339897 0.940463i \(-0.610392\pi\)
−0.339897 + 0.940463i \(0.610392\pi\)
\(464\) −0.672512 + 0.672512i −0.0312206 + 0.0312206i
\(465\) −4.59220 4.59220i −0.212958 0.212958i
\(466\) 15.0062 + 15.0062i 0.695151 + 0.695151i
\(467\) 32.6274i 1.50982i −0.655830 0.754908i \(-0.727681\pi\)
0.655830 0.754908i \(-0.272319\pi\)
\(468\) 9.89949i 0.457604i
\(469\) −2.16478 2.16478i −0.0999605 0.0999605i
\(470\) −6.75699 6.75699i −0.311677 0.311677i
\(471\) 7.39104 7.39104i 0.340561 0.340561i
\(472\) −26.4853 −1.21908
\(473\) 1.53073 1.53073i 0.0703832 0.0703832i
\(474\) 12.4853i 0.573468i
\(475\) 3.65685 0.167788
\(476\) 0 0
\(477\) −2.58579 −0.118395
\(478\) 35.7990i 1.63741i
\(479\) 3.64113 3.64113i 0.166367 0.166367i −0.619013 0.785381i \(-0.712467\pi\)
0.785381 + 0.619013i \(0.212467\pi\)
\(480\) −1.31371 −0.0599623
\(481\) −9.23880 + 9.23880i −0.421253 + 0.421253i
\(482\) −6.08447 6.08447i −0.277140 0.277140i
\(483\) −9.55582 9.55582i −0.434805 0.434805i
\(484\) 15.9706i 0.725935i
\(485\) 7.89949i 0.358698i
\(486\) −26.4483 26.4483i −1.19972 1.19972i
\(487\) −18.6089 18.6089i −0.843250 0.843250i 0.146030 0.989280i \(-0.453350\pi\)
−0.989280 + 0.146030i \(0.953350\pi\)
\(488\) −11.9448 + 11.9448i −0.540715 + 0.540715i
\(489\) −9.17157 −0.414753
\(490\) 0.224171 0.224171i 0.0101270 0.0101270i
\(491\) 37.1127i 1.67487i 0.546535 + 0.837436i \(0.315947\pi\)
−0.546535 + 0.837436i \(0.684053\pi\)
\(492\) 5.02944 0.226745
\(493\) 0 0
\(494\) −2.82843 −0.127257
\(495\) 3.65685i 0.164363i
\(496\) 16.6298 16.6298i 0.746701 0.746701i
\(497\) −14.1421 −0.634361
\(498\) −21.5391 + 21.5391i −0.965188 + 0.965188i
\(499\) −15.1760 15.1760i −0.679372 0.679372i 0.280486 0.959858i \(-0.409504\pi\)
−0.959858 + 0.280486i \(0.909504\pi\)
\(500\) −19.5056 19.5056i −0.872316 0.872316i
\(501\) 2.14214i 0.0957036i
\(502\) 49.4558i 2.20732i
\(503\) −15.0991 15.0991i −0.673235 0.673235i 0.285225 0.958461i \(-0.407932\pi\)
−0.958461 + 0.285225i \(0.907932\pi\)
\(504\) 14.9134 + 14.9134i 0.664295 + 0.664295i
\(505\) 5.72899 5.72899i 0.254937 0.254937i
\(506\) 30.1421 1.33998
\(507\) −8.41904 + 8.41904i −0.373902 + 0.373902i
\(508\) 20.3431i 0.902581i
\(509\) 36.9706 1.63869 0.819346 0.573300i \(-0.194337\pi\)
0.819346 + 0.573300i \(0.194337\pi\)
\(510\) 0 0
\(511\) 33.7990 1.49518
\(512\) 31.2426i 1.38074i
\(513\) 3.06147 3.06147i 0.135167 0.135167i
\(514\) −14.8284 −0.654054
\(515\) 6.75699 6.75699i 0.297748 0.297748i
\(516\) 2.42742 + 2.42742i 0.106861 + 0.106861i
\(517\) −9.55582 9.55582i −0.420265 0.420265i
\(518\) 58.2843i 2.56086i
\(519\) 3.17157i 0.139217i
\(520\) 3.37849 + 3.37849i 0.148157 + 0.148157i
\(521\) −13.1585 13.1585i −0.576484 0.576484i 0.357449 0.933933i \(-0.383647\pi\)
−0.933933 + 0.357449i \(0.883647\pi\)
\(522\) 0.989538 0.989538i 0.0433109 0.0433109i
\(523\) −1.17157 −0.0512293 −0.0256147 0.999672i \(-0.508154\pi\)
−0.0256147 + 0.999672i \(0.508154\pi\)
\(524\) 41.2304 41.2304i 1.80116 1.80116i
\(525\) 12.4853i 0.544902i
\(526\) −25.3137 −1.10373
\(527\) 0 0
\(528\) 8.48528 0.369274
\(529\) 0.171573i 0.00745969i
\(530\) −1.84776 + 1.84776i −0.0802615 + 0.0802615i
\(531\) 10.9706 0.476082
\(532\) −5.86030 + 5.86030i −0.254076 + 0.254076i
\(533\) 1.21371 + 1.21371i 0.0525715 + 0.0525715i
\(534\) −12.1689 12.1689i −0.526602 0.526602i
\(535\) 0.343146i 0.0148355i
\(536\) 5.17157i 0.223378i
\(537\) −4.59220 4.59220i −0.198168 0.198168i
\(538\) −45.1500 45.1500i −1.94656 1.94656i
\(539\) 0.317025 0.317025i 0.0136552 0.0136552i
\(540\) −15.3137 −0.658997
\(541\) 13.0272 13.0272i 0.560082 0.560082i −0.369249 0.929331i \(-0.620385\pi\)
0.929331 + 0.369249i \(0.120385\pi\)
\(542\) 53.4558i 2.29613i
\(543\) 12.6274 0.541894
\(544\) 0 0
\(545\) −11.8995 −0.509718
\(546\) 9.65685i 0.413275i
\(547\) 5.72899 5.72899i 0.244954 0.244954i −0.573942 0.818896i \(-0.694587\pi\)
0.818896 + 0.573942i \(0.194587\pi\)
\(548\) 64.0416 2.73572
\(549\) 4.94769 4.94769i 0.211162 0.211162i
\(550\) −19.6913 19.6913i −0.839640 0.839640i
\(551\) 0.185709 + 0.185709i 0.00791148 + 0.00791148i
\(552\) 22.8284i 0.971642i
\(553\) 12.4853i 0.530928i
\(554\) 34.0635 + 34.0635i 1.44722 + 1.44722i
\(555\) −5.41196 5.41196i −0.229725 0.229725i
\(556\) 57.8058 57.8058i 2.45151 2.45151i
\(557\) 19.7574 0.837146 0.418573 0.908183i \(-0.362530\pi\)
0.418573 + 0.908183i \(0.362530\pi\)
\(558\) −24.4692 + 24.4692i −1.03586 + 1.03586i
\(559\) 1.17157i 0.0495523i
\(560\) 6.00000 0.253546
\(561\) 0 0
\(562\) 4.58579 0.193440
\(563\) 34.7696i 1.46536i −0.680572 0.732681i \(-0.738269\pi\)
0.680572 0.732681i \(-0.261731\pi\)
\(564\) 15.1535 15.1535i 0.638077 0.638077i
\(565\) −10.1005 −0.424931
\(566\) −31.8602 + 31.8602i −1.33919 + 1.33919i
\(567\) 0.317025 + 0.317025i 0.0133138 + 0.0133138i
\(568\) 16.8925 + 16.8925i 0.708792 + 0.708792i
\(569\) 12.0416i 0.504811i −0.967621 0.252406i \(-0.918778\pi\)
0.967621 0.252406i \(-0.0812218\pi\)
\(570\) 1.65685i 0.0693980i
\(571\) −3.00707 3.00707i −0.125842 0.125842i 0.641381 0.767223i \(-0.278362\pi\)
−0.767223 + 0.641381i \(0.778362\pi\)
\(572\) 10.0042 + 10.0042i 0.418295 + 0.418295i
\(573\) −15.3073 + 15.3073i −0.639473 + 0.639473i
\(574\) 7.65685 0.319591
\(575\) 14.9134 14.9134i 0.621931 0.621931i
\(576\) 17.9706i 0.748773i
\(577\) 27.0711 1.12698 0.563492 0.826122i \(-0.309458\pi\)
0.563492 + 0.826122i \(0.309458\pi\)
\(578\) 0 0
\(579\) 2.48528 0.103285
\(580\) 0.928932i 0.0385718i
\(581\) −21.5391 + 21.5391i −0.893591 + 0.893591i
\(582\) 26.9706 1.11797
\(583\) −2.61313 + 2.61313i −0.108225 + 0.108225i
\(584\) −40.3721 40.3721i −1.67061 1.67061i
\(585\) −1.39942 1.39942i −0.0578588 0.0578588i
\(586\) 29.7990i 1.23098i
\(587\) 45.3137i 1.87030i 0.354256 + 0.935148i \(0.384734\pi\)
−0.354256 + 0.935148i \(0.615266\pi\)
\(588\) 0.502734 + 0.502734i 0.0207324 + 0.0207324i
\(589\) −4.59220 4.59220i −0.189218 0.189218i
\(590\) 7.83938 7.83938i 0.322742 0.322742i
\(591\) −5.02944 −0.206883
\(592\) 19.5984 19.5984i 0.805491 0.805491i
\(593\) 12.9289i 0.530928i 0.964121 + 0.265464i \(0.0855251\pi\)
−0.964121 + 0.265464i \(0.914475\pi\)
\(594\) −32.9706 −1.35280
\(595\) 0 0
\(596\) −64.9706 −2.66130
\(597\) 12.4853i 0.510989i
\(598\) −11.5349 + 11.5349i −0.471697 + 0.471697i
\(599\) 10.6274 0.434224 0.217112 0.976147i \(-0.430336\pi\)
0.217112 + 0.976147i \(0.430336\pi\)
\(600\) 14.9134 14.9134i 0.608837 0.608837i
\(601\) −5.95316 5.95316i −0.242834 0.242834i 0.575187 0.818022i \(-0.304929\pi\)
−0.818022 + 0.575187i \(0.804929\pi\)
\(602\) 3.69552 + 3.69552i 0.150618 + 0.150618i
\(603\) 2.14214i 0.0872345i
\(604\) 27.4558i 1.11716i
\(605\) −2.25764 2.25764i −0.0917861 0.0917861i
\(606\) 19.5600 + 19.5600i 0.794570 + 0.794570i
\(607\) 11.5893 11.5893i 0.470395 0.470395i −0.431648 0.902042i \(-0.642068\pi\)
0.902042 + 0.431648i \(0.142068\pi\)
\(608\) −1.31371 −0.0532779
\(609\) −0.634051 + 0.634051i −0.0256930 + 0.0256930i
\(610\) 7.07107i 0.286299i
\(611\) 7.31371 0.295881
\(612\) 0 0
\(613\) 5.31371 0.214619 0.107309 0.994226i \(-0.465776\pi\)
0.107309 + 0.994226i \(0.465776\pi\)
\(614\) 63.1127i 2.54702i
\(615\) −0.710974 + 0.710974i −0.0286692 + 0.0286692i
\(616\) 30.1421 1.21446
\(617\) 2.07193 2.07193i 0.0834128 0.0834128i −0.664169 0.747582i \(-0.731215\pi\)
0.747582 + 0.664169i \(0.231215\pi\)
\(618\) 23.0698 + 23.0698i 0.928003 + 0.928003i
\(619\) −20.1396 20.1396i −0.809480 0.809480i 0.175075 0.984555i \(-0.443983\pi\)
−0.984555 + 0.175075i \(0.943983\pi\)
\(620\) 22.9706i 0.922520i
\(621\) 24.9706i 1.00203i
\(622\) −43.8435 43.8435i −1.75796 1.75796i
\(623\) −12.1689 12.1689i −0.487539 0.487539i
\(624\) −3.24718 + 3.24718i −0.129991 + 0.129991i
\(625\) −16.5563 −0.662254
\(626\) −16.8540 + 16.8540i −0.673621 + 0.673621i
\(627\) 2.34315i 0.0935762i
\(628\) −36.9706 −1.47529
\(629\) 0 0
\(630\) −8.82843 −0.351733
\(631\) 29.3137i 1.16696i 0.812127 + 0.583480i \(0.198309\pi\)
−0.812127 + 0.583480i \(0.801691\pi\)
\(632\) −14.9134 + 14.9134i −0.593223 + 0.593223i
\(633\) 23.1127 0.918647
\(634\) 32.8498 32.8498i 1.30463 1.30463i
\(635\) 2.87576 + 2.87576i 0.114121 + 0.114121i
\(636\) −4.14386 4.14386i −0.164315 0.164315i
\(637\) 0.242641i 0.00961377i
\(638\) 2.00000i 0.0791808i
\(639\) −6.99709 6.99709i −0.276801 0.276801i
\(640\) 11.1250 + 11.1250i 0.439755 + 0.439755i
\(641\) −29.2856 + 29.2856i −1.15671 + 1.15671i −0.171532 + 0.985178i \(0.554872\pi\)
−0.985178 + 0.171532i \(0.945128\pi\)
\(642\) −1.17157 −0.0462383
\(643\) −20.4023 + 20.4023i −0.804587 + 0.804587i −0.983809 0.179222i \(-0.942642\pi\)
0.179222 + 0.983809i \(0.442642\pi\)
\(644\) 47.7990i 1.88354i
\(645\) −0.686292 −0.0270227
\(646\) 0 0
\(647\) −2.82843 −0.111197 −0.0555985 0.998453i \(-0.517707\pi\)
−0.0555985 + 0.998453i \(0.517707\pi\)
\(648\) 0.757359i 0.0297519i
\(649\) 11.0866 11.0866i 0.435185 0.435185i
\(650\) 15.0711 0.591136
\(651\) 15.6788 15.6788i 0.614499 0.614499i
\(652\) 22.9385 + 22.9385i 0.898340 + 0.898340i
\(653\) −6.71852 6.71852i −0.262916 0.262916i 0.563322 0.826238i \(-0.309523\pi\)
−0.826238 + 0.563322i \(0.809523\pi\)
\(654\) 40.6274i 1.58866i
\(655\) 11.6569i 0.455471i
\(656\) −2.57466 2.57466i −0.100524 0.100524i
\(657\) 16.7227 + 16.7227i 0.652414 + 0.652414i
\(658\) 23.0698 23.0698i 0.899354 0.899354i
\(659\) 8.48528 0.330540 0.165270 0.986248i \(-0.447151\pi\)
0.165270 + 0.986248i \(0.447151\pi\)
\(660\) −5.86030 + 5.86030i −0.228112 + 0.228112i
\(661\) 1.21320i 0.0471881i 0.999722 + 0.0235941i \(0.00751092\pi\)
−0.999722 + 0.0235941i \(0.992489\pi\)
\(662\) −52.6274 −2.04542
\(663\) 0 0
\(664\) 51.4558 1.99687
\(665\) 1.65685i 0.0642501i
\(666\) −28.8372 + 28.8372i −1.11742 + 1.11742i
\(667\) 1.51472 0.0586501
\(668\) 5.35757 5.35757i 0.207291 0.207291i
\(669\) −3.69552 3.69552i −0.142877 0.142877i
\(670\) −1.53073 1.53073i −0.0591374 0.0591374i
\(671\) 10.0000i 0.386046i
\(672\) 4.48528i 0.173023i
\(673\) 3.15432 + 3.15432i 0.121590 + 0.121590i 0.765284 0.643693i \(-0.222599\pi\)
−0.643693 + 0.765284i \(0.722599\pi\)
\(674\) 9.59428 + 9.59428i 0.369558 + 0.369558i
\(675\) −16.3128 + 16.3128i −0.627880 + 0.627880i
\(676\) 42.1127 1.61972
\(677\) 26.9351 26.9351i 1.03520 1.03520i 0.0358421 0.999357i \(-0.488589\pi\)
0.999357 0.0358421i \(-0.0114113\pi\)
\(678\) 34.4853i 1.32440i
\(679\) 26.9706 1.03504
\(680\) 0 0
\(681\) 18.8284 0.721507
\(682\) 49.4558i 1.89376i
\(683\) −16.8155 + 16.8155i −0.643429 + 0.643429i −0.951397 0.307968i \(-0.900351\pi\)
0.307968 + 0.951397i \(0.400351\pi\)
\(684\) −5.79899 −0.221730
\(685\) −9.05309 + 9.05309i −0.345901 + 0.345901i
\(686\) 31.9916 + 31.9916i 1.22144 + 1.22144i
\(687\) 13.1426 + 13.1426i 0.501420 + 0.501420i
\(688\) 2.48528i 0.0947505i
\(689\) 2.00000i 0.0761939i
\(690\) −6.75699 6.75699i −0.257234 0.257234i
\(691\) 14.0936 + 14.0936i 0.536147 + 0.536147i 0.922395 0.386248i \(-0.126229\pi\)
−0.386248 + 0.922395i \(0.626229\pi\)
\(692\) −7.93223 + 7.93223i −0.301538 + 0.301538i
\(693\) −12.4853 −0.474277
\(694\) 28.6131 28.6131i 1.08614 1.08614i
\(695\) 16.3431i 0.619931i
\(696\) 1.51472 0.0574153
\(697\) 0 0
\(698\) −10.2426 −0.387690
\(699\) 9.51472i 0.359880i
\(700\) 31.2262 31.2262i 1.18024 1.18024i
\(701\) −37.6985 −1.42385 −0.711926 0.702254i \(-0.752177\pi\)
−0.711926 + 0.702254i \(0.752177\pi\)
\(702\) 12.6173 12.6173i 0.476209 0.476209i
\(703\) −5.41196 5.41196i −0.204116 0.204116i
\(704\) 18.1606 + 18.1606i 0.684452 + 0.684452i
\(705\) 4.28427i 0.161355i
\(706\) 33.7990i 1.27204i
\(707\) 19.5600 + 19.5600i 0.735629 + 0.735629i
\(708\) 17.5809 + 17.5809i 0.660731 + 0.660731i
\(709\) 17.1710 17.1710i 0.644871 0.644871i −0.306878 0.951749i \(-0.599284\pi\)
0.951749 + 0.306878i \(0.0992842\pi\)
\(710\) −10.0000 −0.375293
\(711\) 6.17733 6.17733i 0.231668 0.231668i
\(712\) 29.0711i 1.08948i
\(713\) −37.4558 −1.40273
\(714\) 0 0
\(715\) −2.82843 −0.105777
\(716\) 22.9706i 0.858450i
\(717\) 11.3492 11.3492i 0.423843 0.423843i
\(718\) −69.5980 −2.59737
\(719\) 24.0209 24.0209i 0.895827 0.895827i −0.0992367 0.995064i \(-0.531640\pi\)
0.995064 + 0.0992367i \(0.0316401\pi\)
\(720\) 2.96861 + 2.96861i 0.110634 + 0.110634i
\(721\) 23.0698 + 23.0698i 0.859164 + 0.859164i
\(722\) 44.2132i 1.64545i
\(723\) 3.85786i 0.143476i
\(724\) −31.5817 31.5817i −1.17372 1.17372i
\(725\) −0.989538 0.989538i −0.0367505 0.0367505i
\(726\) 7.70806 7.70806i 0.286073 0.286073i
\(727\) 43.1127 1.59896 0.799481 0.600692i \(-0.205108\pi\)
0.799481 + 0.600692i \(0.205108\pi\)
\(728\) −11.5349 + 11.5349i −0.427512 + 0.427512i
\(729\) 17.2843i 0.640158i
\(730\) 23.8995 0.884560
\(731\) 0 0
\(732\) 15.8579 0.586124
\(733\) 36.0416i 1.33123i 0.746296 + 0.665614i \(0.231830\pi\)
−0.746296 + 0.665614i \(0.768170\pi\)
\(734\) 7.52235 7.52235i 0.277655 0.277655i
\(735\) −0.142136 −0.00524275
\(736\) −5.35757 + 5.35757i −0.197483 + 0.197483i
\(737\) −2.16478 2.16478i −0.0797409 0.0797409i
\(738\) 3.78837 + 3.78837i 0.139452 + 0.139452i
\(739\) 22.2843i 0.819740i −0.912144 0.409870i \(-0.865574\pi\)
0.912144 0.409870i \(-0.134426\pi\)
\(740\) 27.0711i 0.995152i
\(741\) 0.896683 + 0.896683i 0.0329405 + 0.0329405i
\(742\) −6.30864 6.30864i −0.231598 0.231598i
\(743\) 36.0810 36.0810i 1.32368 1.32368i 0.412915 0.910770i \(-0.364511\pi\)
0.910770 0.412915i \(-0.135489\pi\)
\(744\) −37.4558 −1.37320
\(745\) 9.18440 9.18440i 0.336490 0.336490i
\(746\) 27.8995i 1.02147i
\(747\) −21.3137 −0.779828
\(748\) 0 0
\(749\) −1.17157 −0.0428083
\(750\) 18.8284i 0.687517i
\(751\) 33.6536 33.6536i 1.22804 1.22804i 0.263333 0.964705i \(-0.415178\pi\)
0.964705 0.263333i \(-0.0848217\pi\)
\(752\) −15.5147 −0.565764
\(753\) −15.6788 + 15.6788i −0.571366 + 0.571366i
\(754\) 0.765367 + 0.765367i 0.0278730 + 0.0278730i
\(755\) 3.88123 + 3.88123i 0.141252 + 0.141252i
\(756\) 52.2843i 1.90156i
\(757\) 2.54416i 0.0924689i −0.998931 0.0462345i \(-0.985278\pi\)
0.998931 0.0462345i \(-0.0147221\pi\)
\(758\) 4.46088 + 4.46088i 0.162027 + 0.162027i
\(759\) −9.55582 9.55582i −0.346854 0.346854i
\(760\) −1.97908 + 1.97908i −0.0717886 + 0.0717886i
\(761\) −37.6985 −1.36657 −0.683285 0.730152i \(-0.739449\pi\)
−0.683285 + 0.730152i \(0.739449\pi\)
\(762\) −9.81845 + 9.81845i −0.355685 + 0.355685i
\(763\) 40.6274i 1.47081i
\(764\) 76.5685 2.77015
\(765\) 0 0
\(766\) 54.2843 1.96137
\(767\) 8.48528i 0.306386i
\(768\) −22.9385 + 22.9385i −0.827721 + 0.827721i
\(769\) −12.7279 −0.458981 −0.229490 0.973311i \(-0.573706\pi\)
−0.229490 + 0.973311i \(0.573706\pi\)
\(770\) −8.92177 + 8.92177i −0.321518 + 0.321518i
\(771\) 4.70099 + 4.70099i 0.169302 + 0.169302i
\(772\) −6.21579 6.21579i −0.223711 0.223711i
\(773\) 0.828427i 0.0297965i 0.999889 + 0.0148982i \(0.00474243\pi\)
−0.999889 + 0.0148982i \(0.995258\pi\)
\(774\) 3.65685i 0.131443i
\(775\) 24.4692 + 24.4692i 0.878960 + 0.878960i
\(776\) −32.2157 32.2157i −1.15648 1.15648i
\(777\) 18.4776 18.4776i 0.662880 0.662880i
\(778\) 29.3137 1.05095
\(779\) −0.710974 + 0.710974i −0.0254733 + 0.0254733i
\(780\) 4.48528i 0.160599i
\(781\) −14.1421 −0.506045
\(782\) 0 0
\(783\) −1.65685 −0.0592111
\(784\) 0.514719i 0.0183828i
\(785\) 5.22625 5.22625i 0.186533 0.186533i
\(786\) −39.7990 −1.41958
\(787\) 14.5420 14.5420i 0.518365 0.518365i −0.398711 0.917077i \(-0.630542\pi\)
0.917077 + 0.398711i \(0.130542\pi\)
\(788\) 12.5788 + 12.5788i 0.448102 + 0.448102i
\(789\) 8.02509 + 8.02509i 0.285701 + 0.285701i
\(790\) 8.82843i 0.314101i
\(791\) 34.4853i 1.22616i
\(792\) 14.9134 + 14.9134i 0.529924 + 0.529924i
\(793\) 3.82683 + 3.82683i 0.135895 + 0.135895i
\(794\) −30.3680 + 30.3680i −1.07772 + 1.07772i
\(795\) 1.17157 0.0415514
\(796\) −31.2262 + 31.2262i −1.10678 + 1.10678i
\(797\) 25.2132i 0.893097i −0.894759 0.446549i \(-0.852653\pi\)
0.894759 0.446549i \(-0.147347\pi\)
\(798\) 5.65685 0.200250
\(799\) 0 0
\(800\) 7.00000 0.247487
\(801\) 12.0416i 0.425470i
\(802\) 0.989538 0.989538i 0.0349418 0.0349418i
\(803\) 33.7990 1.19274
\(804\) 3.43289 3.43289i 0.121069 0.121069i
\(805\) −6.75699 6.75699i −0.238152 0.238152i
\(806\) −18.9259 18.9259i −0.666638 0.666638i
\(807\) 28.6274i 1.00773i
\(808\) 46.7279i 1.64388i
\(809\) −24.9560 24.9560i −0.877407 0.877407i 0.115859 0.993266i \(-0.463038\pi\)
−0.993266 + 0.115859i \(0.963038\pi\)
\(810\) 0.224171 + 0.224171i 0.00787656 + 0.00787656i
\(811\) −38.9886 + 38.9886i −1.36908 + 1.36908i −0.507317 + 0.861759i \(0.669363\pi\)
−0.861759 + 0.507317i \(0.830637\pi\)
\(812\) 3.17157 0.111300
\(813\) −16.9469 + 16.9469i −0.594352 + 0.594352i
\(814\) 58.2843i 2.04286i
\(815\) −6.48528 −0.227169
\(816\) 0 0
\(817\) −0.686292 −0.0240103
\(818\) 8.00000i 0.279713i
\(819\) 4.77791 4.77791i 0.166954 0.166954i
\(820\) 3.55635 0.124193
\(821\) −27.1752 + 27.1752i −0.948421 + 0.948421i −0.998734 0.0503128i \(-0.983978\pi\)
0.0503128 + 0.998734i \(0.483978\pi\)
\(822\) −30.9092 30.9092i −1.07808 1.07808i
\(823\) −6.88830 6.88830i −0.240111 0.240111i 0.576785 0.816896i \(-0.304307\pi\)
−0.816896 + 0.576785i \(0.804307\pi\)
\(824\) 55.1127i 1.91994i
\(825\) 12.4853i 0.434682i
\(826\) 26.7653 + 26.7653i 0.931284 + 0.931284i
\(827\) 33.1283 + 33.1283i 1.15199 + 1.15199i 0.986154 + 0.165831i \(0.0530307\pi\)
0.165831 + 0.986154i \(0.446969\pi\)
\(828\) −23.6494 + 23.6494i −0.821875 + 0.821875i
\(829\) −53.9411 −1.87345 −0.936726 0.350062i \(-0.886160\pi\)
−0.936726 + 0.350062i \(0.886160\pi\)
\(830\) −15.2304 + 15.2304i −0.528655 + 0.528655i
\(831\) 21.5980i 0.749226i
\(832\) −13.8995 −0.481878
\(833\) 0 0
\(834\) −55.7990 −1.93216
\(835\) 1.51472i 0.0524190i
\(836\) −5.86030 + 5.86030i −0.202683 + 0.202683i
\(837\) 40.9706 1.41615
\(838\) −22.7528 + 22.7528i −0.785981 + 0.785981i
\(839\) −11.8519 11.8519i −0.409174 0.409174i 0.472277 0.881450i \(-0.343432\pi\)
−0.881450 + 0.472277i \(0.843432\pi\)
\(840\) −6.75699 6.75699i −0.233138 0.233138i
\(841\) 28.8995i 0.996534i
\(842\) 35.2132i 1.21353i
\(843\) −1.45381 1.45381i −0.0500719 0.0500719i
\(844\) −57.8058 57.8058i −1.98976 1.98976i
\(845\) −5.95316 + 5.95316i −0.204795 + 0.204795i
\(846\) 22.8284 0.784857
\(847\) 7.70806 7.70806i 0.264852 0.264852i
\(848\) 4.24264i 0.145693i
\(849\) 20.2010 0.693297
\(850\) 0 0
\(851\) −44.1421 −1.51317
\(852\) 22.4264i 0.768316i
\(853\) −13.5524 + 13.5524i −0.464026 + 0.464026i −0.899973 0.435946i \(-0.856414\pi\)
0.435946 + 0.899973i \(0.356414\pi\)
\(854\) 24.1421 0.826127
\(855\) 0.819760 0.819760i 0.0280352 0.0280352i
\(856\) 1.39942 + 1.39942i 0.0478311 + 0.0478311i
\(857\) 6.53281 + 6.53281i 0.223157 + 0.223157i 0.809826 0.586670i \(-0.199561\pi\)
−0.586670 + 0.809826i \(0.699561\pi\)
\(858\) 9.65685i 0.329680i
\(859\) 34.9706i 1.19318i 0.802546 + 0.596590i \(0.203478\pi\)
−0.802546 + 0.596590i \(0.796522\pi\)
\(860\) 1.71644 + 1.71644i 0.0585302 + 0.0585302i
\(861\) −2.42742 2.42742i −0.0827261 0.0827261i
\(862\) −12.4860 + 12.4860i −0.425274 + 0.425274i
\(863\) 10.6274 0.361761 0.180881 0.983505i \(-0.442105\pi\)
0.180881 + 0.983505i \(0.442105\pi\)
\(864\) 5.86030 5.86030i 0.199372 0.199372i
\(865\) 2.24264i 0.0762521i
\(866\) 50.2843 1.70873
\(867\) 0 0
\(868\) −78.4264 −2.66197
\(869\) 12.4853i 0.423534i
\(870\) −0.448342 + 0.448342i −0.0152002 + 0.0152002i
\(871\) 1.65685 0.0561404
\(872\) −48.5285 + 48.5285i −1.64338 + 1.64338i
\(873\) 13.3442 + 13.3442i 0.451633 + 0.451633i
\(874\) −6.75699 6.75699i −0.228558 0.228558i
\(875\) 18.8284i 0.636517i
\(876\) 53.5980i 1.81091i
\(877\) 35.5173 + 35.5173i 1.19933 + 1.19933i 0.974366 + 0.224968i \(0.0722277\pi\)
0.224968 + 0.974366i \(0.427772\pi\)
\(878\) 18.1606 + 18.1606i 0.612889 + 0.612889i
\(879\) 9.44703 9.44703i 0.318641 0.318641i
\(880\) 6.00000 0.202260
\(881\) −23.7967 + 23.7967i −0.801731 + 0.801731i −0.983366 0.181635i \(-0.941861\pi\)
0.181635 + 0.983366i \(0.441861\pi\)
\(882\) 0.757359i 0.0255016i
\(883\) −8.00000 −0.269221 −0.134611 0.990899i \(-0.542978\pi\)
−0.134611 + 0.990899i \(0.542978\pi\)
\(884\) 0 0
\(885\) −4.97056 −0.167084
\(886\) 57.4558i 1.93027i
\(887\) 31.1493 31.1493i 1.04589 1.04589i 0.0469951 0.998895i \(-0.485035\pi\)
0.998895 0.0469951i \(-0.0149645\pi\)
\(888\) −44.1421 −1.48131
\(889\) −9.81845 + 9.81845i −0.329300 + 0.329300i
\(890\) −8.60474 8.60474i −0.288432 0.288432i
\(891\) 0.317025 + 0.317025i 0.0106207 + 0.0106207i
\(892\) 18.4853i 0.618933i
\(893\) 4.28427i 0.143368i
\(894\) 31.3575 + 31.3575i 1.04875 + 1.04875i
\(895\) −3.24718 3.24718i −0.108541 0.108541i
\(896\) −37.9832 + 37.9832i −1.26893 + 1.26893i
\(897\) 7.31371 0.244198
\(898\) 20.6808 20.6808i 0.690128 0.690128i
\(899\) 2.48528i 0.0828888i
\(900\) 30.8995 1.02998
\(901\) 0 0
\(902\) 7.65685 0.254945
\(903\) 2.34315i 0.0779750i
\(904\) −41.1919 + 41.1919i −1.37002 + 1.37002i
\(905\) 8.92893 0.296808
\(906\) −13.2513 + 13.2513i −0.440246 + 0.440246i
\(907\) 9.50143 + 9.50143i 0.315490 + 0.315490i 0.847032 0.531542i \(-0.178387\pi\)
−0.531542 + 0.847032i \(0.678387\pi\)
\(908\) −47.0907 47.0907i −1.56276 1.56276i
\(909\) 19.3553i 0.641976i
\(910\) 6.82843i 0.226360i
\(911\) 4.01254 + 4.01254i 0.132941 + 0.132941i 0.770446 0.637505i \(-0.220033\pi\)
−0.637505 + 0.770446i \(0.720033\pi\)
\(912\) −1.90215 1.90215i −0.0629865 0.0629865i
\(913\) −21.5391 + 21.5391i −0.712839 + 0.712839i
\(914\) −31.7990 −1.05182
\(915\) −2.24171 + 2.24171i −0.0741086 + 0.0741086i
\(916\) 65.7401i 2.17211i
\(917\) −39.7990 −1.31428
\(918\) 0 0
\(919\) 19.3137 0.637100 0.318550 0.947906i \(-0.396804\pi\)
0.318550 + 0.947906i \(0.396804\pi\)
\(920\) 16.1421i 0.532190i
\(921\) −20.0083 + 20.0083i −0.659297 + 0.659297i
\(922\) 58.0416 1.91150
\(923\) 5.41196 5.41196i 0.178137 0.178137i
\(924\) −20.0083 20.0083i −0.658226 0.658226i
\(925\) 28.8372 + 28.8372i 0.948163 + 0.948163i
\(926\) 35.3137i 1.16048i
\(927\) 22.8284i 0.749784i
\(928\) 0.355487 + 0.355487i 0.0116694 + 0.0116694i
\(929\) −12.2618 12.2618i −0.402297 0.402297i 0.476745 0.879042i \(-0.341817\pi\)
−0.879042 + 0.476745i \(0.841817\pi\)
\(930\) 11.0866 11.0866i 0.363542 0.363542i
\(931\) −0.142136 −0.00465831
\(932\) −23.7967 + 23.7967i −0.779487 + 0.779487i
\(933\) 27.7990i 0.910098i
\(934\) 78.7696 2.57742
\(935\) 0 0
\(936\) −11.4142 −0.373085
\(937\) 27.5563i 0.900227i −0.892971 0.450113i \(-0.851384\pi\)
0.892971 0.450113i \(-0.148616\pi\)
\(938\) 5.22625 5.22625i 0.170643 0.170643i
\(939\) 10.6863 0.348734
\(940\) 10.7151 10.7151i 0.349489 0.349489i
\(941\) −28.2032 28.2032i −0.919398 0.919398i 0.0775878 0.996986i \(-0.475278\pi\)
−0.996986 + 0.0775878i \(0.975278\pi\)
\(942\) 17.8435 + 17.8435i 0.581374 + 0.581374i
\(943\) 5.79899i 0.188841i
\(944\) 18.0000i 0.585850i
\(945\) 7.39104 + 7.39104i 0.240430 + 0.240430i
\(946\) 3.69552 + 3.69552i 0.120152 + 0.120152i
\(947\) 21.6704 21.6704i 0.704193 0.704193i −0.261115 0.965308i \(-0.584090\pi\)
0.965308 + 0.261115i \(0.0840902\pi\)
\(948\) 19.7990 0.643041
\(949\) −12.9343 + 12.9343i −0.419866 + 0.419866i
\(950\) 8.82843i 0.286432i
\(951\) −20.8284 −0.675408
\(952\) 0 0
\(953\) 49.6985 1.60989 0.804946 0.593348i \(-0.202194\pi\)
0.804946 + 0.593348i \(0.202194\pi\)
\(954\) 6.24264i 0.202113i
\(955\) −10.8239 + 10.8239i −0.350254 + 0.350254i
\(956\) −56.7696 −1.83606
\(957\) −0.634051 + 0.634051i −0.0204959 + 0.0204959i
\(958\) 8.79045 + 8.79045i 0.284007 + 0.284007i
\(959\) −30.9092 30.9092i −0.998109 0.998109i
\(960\) 8.14214i 0.262786i
\(961\) 30.4558i 0.982447i
\(962\) −22.3044 22.3044i −0.719124 0.719124i
\(963\) −0.579658 0.579658i −0.0186792 0.0186792i
\(964\) 9.64868 9.64868i 0.310763 0.310763i
\(965\) 1.75736 0.0565714
\(966\) 23.0698 23.0698i 0.742258 0.742258i
\(967\) 43.6569i 1.40391i −0.712221 0.701955i \(-0.752311\pi\)
0.712221 0.701955i \(-0.247689\pi\)
\(968\) −18.4142 −0.591855
\(969\) 0 0
\(970\) 19.0711 0.612335
\(971\) 51.7401i 1.66042i 0.557451 + 0.830210i \(0.311779\pi\)
−0.557451 + 0.830210i \(0.688221\pi\)
\(972\) 41.9413 41.9413i 1.34527 1.34527i
\(973\) −55.7990 −1.78883
\(974\) 44.9259 44.9259i 1.43952 1.43952i
\(975\) −4.77791 4.77791i −0.153016 0.153016i
\(976\) −8.11794 8.11794i −0.259849 0.259849i
\(977\) 38.3848i 1.22804i 0.789291 + 0.614019i \(0.210448\pi\)
−0.789291 + 0.614019i \(0.789552\pi\)
\(978\) 22.1421i 0.708027i
\(979\) −12.1689 12.1689i −0.388921 0.388921i
\(980\) 0.355487 + 0.355487i 0.0113556 + 0.0113556i
\(981\) 20.1012 20.1012i 0.641781 0.641781i
\(982\) −89.5980 −2.85919
\(983\) −6.88830 + 6.88830i −0.219703 + 0.219703i −0.808373 0.588670i \(-0.799652\pi\)
0.588670 + 0.808373i \(0.299652\pi\)
\(984\) 5.79899i 0.184865i
\(985\) −3.55635 −0.113315
\(986\) 0 0
\(987\) −14.6274 −0.465596
\(988\) 4.48528i 0.142696i
\(989\) −2.79884 + 2.79884i −0.0889978 + 0.0889978i
\(990\) −8.82843 −0.280586
\(991\) −28.8757 + 28.8757i −0.917267 + 0.917267i −0.996830 0.0795630i \(-0.974648\pi\)
0.0795630 + 0.996830i \(0.474648\pi\)
\(992\) −8.79045 8.79045i −0.279097 0.279097i
\(993\) 16.6842 + 16.6842i 0.529458 + 0.529458i
\(994\) 34.1421i 1.08292i
\(995\) 8.82843i 0.279880i
\(996\) −34.1563 34.1563i −1.08229 1.08229i
\(997\) 5.31911 + 5.31911i 0.168458 + 0.168458i 0.786301 0.617843i \(-0.211993\pi\)
−0.617843 + 0.786301i \(0.711993\pi\)
\(998\) 36.6382 36.6382i 1.15976 1.15976i
\(999\) 48.2843 1.52765
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 289.2.c.c.38.4 8
17.2 even 8 289.2.b.b.288.1 4
17.3 odd 16 289.2.d.c.155.1 4
17.4 even 4 inner 289.2.c.c.251.1 8
17.5 odd 16 17.2.d.a.15.1 yes 4
17.6 odd 16 17.2.d.a.8.1 4
17.7 odd 16 289.2.d.b.179.1 4
17.8 even 8 289.2.a.f.1.3 4
17.9 even 8 289.2.a.f.1.4 4
17.10 odd 16 289.2.d.c.179.1 4
17.11 odd 16 289.2.d.a.110.1 4
17.12 odd 16 289.2.d.a.134.1 4
17.13 even 4 inner 289.2.c.c.251.2 8
17.14 odd 16 289.2.d.b.155.1 4
17.15 even 8 289.2.b.b.288.2 4
17.16 even 2 inner 289.2.c.c.38.3 8
51.5 even 16 153.2.l.c.100.1 4
51.8 odd 8 2601.2.a.bb.1.1 4
51.23 even 16 153.2.l.c.127.1 4
51.26 odd 8 2601.2.a.bb.1.2 4
68.23 even 16 272.2.v.d.161.1 4
68.39 even 16 272.2.v.d.49.1 4
68.43 odd 8 4624.2.a.bp.1.2 4
68.59 odd 8 4624.2.a.bp.1.3 4
85.9 even 8 7225.2.a.u.1.1 4
85.22 even 16 425.2.n.b.49.1 4
85.23 even 16 425.2.n.b.399.1 4
85.39 odd 16 425.2.m.a.151.1 4
85.57 even 16 425.2.n.a.399.1 4
85.59 even 8 7225.2.a.u.1.2 4
85.73 even 16 425.2.n.a.49.1 4
85.74 odd 16 425.2.m.a.76.1 4
119.5 even 48 833.2.v.a.508.1 8
119.6 even 16 833.2.l.a.246.1 4
119.23 odd 48 833.2.v.b.263.1 8
119.39 odd 48 833.2.v.b.814.1 8
119.40 even 48 833.2.v.a.263.1 8
119.73 even 48 833.2.v.a.814.1 8
119.74 odd 48 833.2.v.b.569.1 8
119.90 even 16 833.2.l.a.491.1 4
119.107 odd 48 833.2.v.b.508.1 8
119.108 even 48 833.2.v.a.569.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.2.d.a.8.1 4 17.6 odd 16
17.2.d.a.15.1 yes 4 17.5 odd 16
153.2.l.c.100.1 4 51.5 even 16
153.2.l.c.127.1 4 51.23 even 16
272.2.v.d.49.1 4 68.39 even 16
272.2.v.d.161.1 4 68.23 even 16
289.2.a.f.1.3 4 17.8 even 8
289.2.a.f.1.4 4 17.9 even 8
289.2.b.b.288.1 4 17.2 even 8
289.2.b.b.288.2 4 17.15 even 8
289.2.c.c.38.3 8 17.16 even 2 inner
289.2.c.c.38.4 8 1.1 even 1 trivial
289.2.c.c.251.1 8 17.4 even 4 inner
289.2.c.c.251.2 8 17.13 even 4 inner
289.2.d.a.110.1 4 17.11 odd 16
289.2.d.a.134.1 4 17.12 odd 16
289.2.d.b.155.1 4 17.14 odd 16
289.2.d.b.179.1 4 17.7 odd 16
289.2.d.c.155.1 4 17.3 odd 16
289.2.d.c.179.1 4 17.10 odd 16
425.2.m.a.76.1 4 85.74 odd 16
425.2.m.a.151.1 4 85.39 odd 16
425.2.n.a.49.1 4 85.73 even 16
425.2.n.a.399.1 4 85.57 even 16
425.2.n.b.49.1 4 85.22 even 16
425.2.n.b.399.1 4 85.23 even 16
833.2.l.a.246.1 4 119.6 even 16
833.2.l.a.491.1 4 119.90 even 16
833.2.v.a.263.1 8 119.40 even 48
833.2.v.a.508.1 8 119.5 even 48
833.2.v.a.569.1 8 119.108 even 48
833.2.v.a.814.1 8 119.73 even 48
833.2.v.b.263.1 8 119.23 odd 48
833.2.v.b.508.1 8 119.107 odd 48
833.2.v.b.569.1 8 119.74 odd 48
833.2.v.b.814.1 8 119.39 odd 48
2601.2.a.bb.1.1 4 51.8 odd 8
2601.2.a.bb.1.2 4 51.26 odd 8
4624.2.a.bp.1.2 4 68.43 odd 8
4624.2.a.bp.1.3 4 68.59 odd 8
7225.2.a.u.1.1 4 85.9 even 8
7225.2.a.u.1.2 4 85.59 even 8