Properties

Label 425.2.n.a.349.1
Level $425$
Weight $2$
Character 425.349
Analytic conductor $3.394$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(49,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([4, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.n (of order \(8\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 17)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 349.1
Root \(0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 425.349
Dual form 425.2.n.a.274.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.292893 - 0.292893i) q^{2} +(-1.00000 + 2.41421i) q^{3} -1.82843i q^{4} +(1.00000 - 0.414214i) q^{6} +(-1.00000 + 0.414214i) q^{7} +(-1.12132 + 1.12132i) q^{8} +(-2.70711 - 2.70711i) q^{9} +O(q^{10})\) \(q+(-0.292893 - 0.292893i) q^{2} +(-1.00000 + 2.41421i) q^{3} -1.82843i q^{4} +(1.00000 - 0.414214i) q^{6} +(-1.00000 + 0.414214i) q^{7} +(-1.12132 + 1.12132i) q^{8} +(-2.70711 - 2.70711i) q^{9} +(-1.00000 + 0.414214i) q^{11} +(4.41421 + 1.82843i) q^{12} -1.41421 q^{13} +(0.414214 + 0.171573i) q^{14} -3.00000 q^{16} +(-3.00000 - 2.82843i) q^{17} +1.58579i q^{18} +(-3.41421 + 3.41421i) q^{19} -2.82843i q^{21} +(0.414214 + 0.171573i) q^{22} +(-1.58579 - 3.82843i) q^{23} +(-1.58579 - 3.82843i) q^{24} +(0.414214 + 0.414214i) q^{26} +(2.00000 - 0.828427i) q^{27} +(0.757359 + 1.82843i) q^{28} +(1.70711 - 4.12132i) q^{29} +(-3.00000 - 1.24264i) q^{31} +(3.12132 + 3.12132i) q^{32} -2.82843i q^{33} +(0.0502525 + 1.70711i) q^{34} +(-4.94975 + 4.94975i) q^{36} +(1.46447 - 3.53553i) q^{37} +2.00000 q^{38} +(1.41421 - 3.41421i) q^{39} +(-3.12132 - 7.53553i) q^{41} +(-0.828427 + 0.828427i) q^{42} +(-3.41421 + 3.41421i) q^{43} +(0.757359 + 1.82843i) q^{44} +(-0.656854 + 1.58579i) q^{46} -10.8284 q^{47} +(3.00000 - 7.24264i) q^{48} +(-4.12132 + 4.12132i) q^{49} +(9.82843 - 4.41421i) q^{51} +2.58579i q^{52} +(1.00000 + 1.00000i) q^{53} +(-0.828427 - 0.343146i) q^{54} +(0.656854 - 1.58579i) q^{56} +(-4.82843 - 11.6569i) q^{57} +(-1.70711 + 0.707107i) q^{58} +(4.24264 + 4.24264i) q^{59} +(3.53553 + 8.53553i) q^{61} +(0.514719 + 1.24264i) q^{62} +(3.82843 + 1.58579i) q^{63} +4.17157i q^{64} +(-0.828427 + 0.828427i) q^{66} +6.82843i q^{67} +(-5.17157 + 5.48528i) q^{68} +10.8284 q^{69} +(12.0711 + 5.00000i) q^{71} +6.07107 q^{72} +(4.94975 + 2.05025i) q^{73} +(-1.46447 + 0.606602i) q^{74} +(6.24264 + 6.24264i) q^{76} +(0.828427 - 0.828427i) q^{77} +(-1.41421 + 0.585786i) q^{78} +(3.82843 - 1.58579i) q^{79} -5.82843i q^{81} +(-1.29289 + 3.12132i) q^{82} +(0.242641 + 0.242641i) q^{83} -5.17157 q^{84} +2.00000 q^{86} +(8.24264 + 8.24264i) q^{87} +(0.656854 - 1.58579i) q^{88} +9.41421i q^{89} +(1.41421 - 0.585786i) q^{91} +(-7.00000 + 2.89949i) q^{92} +(6.00000 - 6.00000i) q^{93} +(3.17157 + 3.17157i) q^{94} +(-10.6569 + 4.41421i) q^{96} +(5.94975 + 2.46447i) q^{97} +2.41421 q^{98} +(3.82843 + 1.58579i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} - 4 q^{3} + 4 q^{6} - 4 q^{7} + 4 q^{8} - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{2} - 4 q^{3} + 4 q^{6} - 4 q^{7} + 4 q^{8} - 8 q^{9} - 4 q^{11} + 12 q^{12} - 4 q^{14} - 12 q^{16} - 12 q^{17} - 8 q^{19} - 4 q^{22} - 12 q^{23} - 12 q^{24} - 4 q^{26} + 8 q^{27} + 20 q^{28} + 4 q^{29} - 12 q^{31} + 4 q^{32} + 20 q^{34} + 20 q^{37} + 8 q^{38} - 4 q^{41} + 8 q^{42} - 8 q^{43} + 20 q^{44} + 20 q^{46} - 32 q^{47} + 12 q^{48} - 8 q^{49} + 28 q^{51} + 4 q^{53} + 8 q^{54} - 20 q^{56} - 8 q^{57} - 4 q^{58} + 36 q^{62} + 4 q^{63} + 8 q^{66} - 32 q^{68} + 32 q^{69} + 20 q^{71} - 4 q^{72} - 20 q^{74} + 8 q^{76} - 8 q^{77} + 4 q^{79} - 8 q^{82} - 16 q^{83} - 32 q^{84} + 8 q^{86} + 16 q^{87} - 20 q^{88} - 28 q^{92} + 24 q^{93} + 24 q^{94} - 20 q^{96} + 4 q^{97} + 4 q^{98} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.292893 0.292893i −0.207107 0.207107i 0.595930 0.803037i \(-0.296784\pi\)
−0.803037 + 0.595930i \(0.796784\pi\)
\(3\) −1.00000 + 2.41421i −0.577350 + 1.39385i 0.317832 + 0.948147i \(0.397045\pi\)
−0.895182 + 0.445700i \(0.852955\pi\)
\(4\) 1.82843i 0.914214i
\(5\) 0 0
\(6\) 1.00000 0.414214i 0.408248 0.169102i
\(7\) −1.00000 + 0.414214i −0.377964 + 0.156558i −0.563574 0.826066i \(-0.690574\pi\)
0.185610 + 0.982624i \(0.440574\pi\)
\(8\) −1.12132 + 1.12132i −0.396447 + 0.396447i
\(9\) −2.70711 2.70711i −0.902369 0.902369i
\(10\) 0 0
\(11\) −1.00000 + 0.414214i −0.301511 + 0.124890i −0.528310 0.849052i \(-0.677174\pi\)
0.226799 + 0.973942i \(0.427174\pi\)
\(12\) 4.41421 + 1.82843i 1.27427 + 0.527821i
\(13\) −1.41421 −0.392232 −0.196116 0.980581i \(-0.562833\pi\)
−0.196116 + 0.980581i \(0.562833\pi\)
\(14\) 0.414214 + 0.171573i 0.110703 + 0.0458548i
\(15\) 0 0
\(16\) −3.00000 −0.750000
\(17\) −3.00000 2.82843i −0.727607 0.685994i
\(18\) 1.58579i 0.373773i
\(19\) −3.41421 + 3.41421i −0.783274 + 0.783274i −0.980382 0.197108i \(-0.936845\pi\)
0.197108 + 0.980382i \(0.436845\pi\)
\(20\) 0 0
\(21\) 2.82843i 0.617213i
\(22\) 0.414214 + 0.171573i 0.0883106 + 0.0365795i
\(23\) −1.58579 3.82843i −0.330659 0.798282i −0.998540 0.0540140i \(-0.982798\pi\)
0.667881 0.744268i \(-0.267202\pi\)
\(24\) −1.58579 3.82843i −0.323697 0.781474i
\(25\) 0 0
\(26\) 0.414214 + 0.414214i 0.0812340 + 0.0812340i
\(27\) 2.00000 0.828427i 0.384900 0.159431i
\(28\) 0.757359 + 1.82843i 0.143127 + 0.345540i
\(29\) 1.70711 4.12132i 0.317002 0.765310i −0.682408 0.730971i \(-0.739067\pi\)
0.999410 0.0343389i \(-0.0109326\pi\)
\(30\) 0 0
\(31\) −3.00000 1.24264i −0.538816 0.223185i 0.0966436 0.995319i \(-0.469189\pi\)
−0.635460 + 0.772134i \(0.719189\pi\)
\(32\) 3.12132 + 3.12132i 0.551777 + 0.551777i
\(33\) 2.82843i 0.492366i
\(34\) 0.0502525 + 1.70711i 0.00861824 + 0.292766i
\(35\) 0 0
\(36\) −4.94975 + 4.94975i −0.824958 + 0.824958i
\(37\) 1.46447 3.53553i 0.240757 0.581238i −0.756602 0.653876i \(-0.773142\pi\)
0.997358 + 0.0726379i \(0.0231417\pi\)
\(38\) 2.00000 0.324443
\(39\) 1.41421 3.41421i 0.226455 0.546712i
\(40\) 0 0
\(41\) −3.12132 7.53553i −0.487468 1.17685i −0.955990 0.293400i \(-0.905213\pi\)
0.468521 0.883452i \(-0.344787\pi\)
\(42\) −0.828427 + 0.828427i −0.127829 + 0.127829i
\(43\) −3.41421 + 3.41421i −0.520663 + 0.520663i −0.917772 0.397109i \(-0.870014\pi\)
0.397109 + 0.917772i \(0.370014\pi\)
\(44\) 0.757359 + 1.82843i 0.114176 + 0.275646i
\(45\) 0 0
\(46\) −0.656854 + 1.58579i −0.0968479 + 0.233811i
\(47\) −10.8284 −1.57949 −0.789744 0.613436i \(-0.789787\pi\)
−0.789744 + 0.613436i \(0.789787\pi\)
\(48\) 3.00000 7.24264i 0.433013 1.04539i
\(49\) −4.12132 + 4.12132i −0.588760 + 0.588760i
\(50\) 0 0
\(51\) 9.82843 4.41421i 1.37626 0.618114i
\(52\) 2.58579i 0.358584i
\(53\) 1.00000 + 1.00000i 0.137361 + 0.137361i 0.772444 0.635083i \(-0.219034\pi\)
−0.635083 + 0.772444i \(0.719034\pi\)
\(54\) −0.828427 0.343146i −0.112735 0.0466962i
\(55\) 0 0
\(56\) 0.656854 1.58579i 0.0877758 0.211910i
\(57\) −4.82843 11.6569i −0.639541 1.54399i
\(58\) −1.70711 + 0.707107i −0.224154 + 0.0928477i
\(59\) 4.24264 + 4.24264i 0.552345 + 0.552345i 0.927117 0.374772i \(-0.122279\pi\)
−0.374772 + 0.927117i \(0.622279\pi\)
\(60\) 0 0
\(61\) 3.53553 + 8.53553i 0.452679 + 1.09286i 0.971300 + 0.237859i \(0.0764456\pi\)
−0.518621 + 0.855004i \(0.673554\pi\)
\(62\) 0.514719 + 1.24264i 0.0653693 + 0.157816i
\(63\) 3.82843 + 1.58579i 0.482336 + 0.199790i
\(64\) 4.17157i 0.521447i
\(65\) 0 0
\(66\) −0.828427 + 0.828427i −0.101972 + 0.101972i
\(67\) 6.82843i 0.834225i 0.908855 + 0.417113i \(0.136958\pi\)
−0.908855 + 0.417113i \(0.863042\pi\)
\(68\) −5.17157 + 5.48528i −0.627145 + 0.665188i
\(69\) 10.8284 1.30359
\(70\) 0 0
\(71\) 12.0711 + 5.00000i 1.43257 + 0.593391i 0.957985 0.286818i \(-0.0925974\pi\)
0.474587 + 0.880209i \(0.342597\pi\)
\(72\) 6.07107 0.715482
\(73\) 4.94975 + 2.05025i 0.579324 + 0.239964i 0.653050 0.757315i \(-0.273489\pi\)
−0.0737261 + 0.997279i \(0.523489\pi\)
\(74\) −1.46447 + 0.606602i −0.170241 + 0.0705160i
\(75\) 0 0
\(76\) 6.24264 + 6.24264i 0.716080 + 0.716080i
\(77\) 0.828427 0.828427i 0.0944080 0.0944080i
\(78\) −1.41421 + 0.585786i −0.160128 + 0.0663273i
\(79\) 3.82843 1.58579i 0.430732 0.178415i −0.156775 0.987634i \(-0.550110\pi\)
0.587506 + 0.809219i \(0.300110\pi\)
\(80\) 0 0
\(81\) 5.82843i 0.647603i
\(82\) −1.29289 + 3.12132i −0.142776 + 0.344692i
\(83\) 0.242641 + 0.242641i 0.0266333 + 0.0266333i 0.720298 0.693665i \(-0.244005\pi\)
−0.693665 + 0.720298i \(0.744005\pi\)
\(84\) −5.17157 −0.564265
\(85\) 0 0
\(86\) 2.00000 0.215666
\(87\) 8.24264 + 8.24264i 0.883704 + 0.883704i
\(88\) 0.656854 1.58579i 0.0700209 0.169045i
\(89\) 9.41421i 0.997905i 0.866629 + 0.498952i \(0.166282\pi\)
−0.866629 + 0.498952i \(0.833718\pi\)
\(90\) 0 0
\(91\) 1.41421 0.585786i 0.148250 0.0614071i
\(92\) −7.00000 + 2.89949i −0.729800 + 0.302293i
\(93\) 6.00000 6.00000i 0.622171 0.622171i
\(94\) 3.17157 + 3.17157i 0.327123 + 0.327123i
\(95\) 0 0
\(96\) −10.6569 + 4.41421i −1.08766 + 0.450524i
\(97\) 5.94975 + 2.46447i 0.604105 + 0.250229i 0.663706 0.747994i \(-0.268983\pi\)
−0.0596005 + 0.998222i \(0.518983\pi\)
\(98\) 2.41421 0.243872
\(99\) 3.82843 + 1.58579i 0.384771 + 0.159378i
\(100\) 0 0
\(101\) −13.4142 −1.33476 −0.667382 0.744715i \(-0.732585\pi\)
−0.667382 + 0.744715i \(0.732585\pi\)
\(102\) −4.17157 1.58579i −0.413047 0.157016i
\(103\) 4.48528i 0.441948i 0.975280 + 0.220974i \(0.0709236\pi\)
−0.975280 + 0.220974i \(0.929076\pi\)
\(104\) 1.58579 1.58579i 0.155499 0.155499i
\(105\) 0 0
\(106\) 0.585786i 0.0568966i
\(107\) −5.82843 2.41421i −0.563455 0.233391i 0.0827292 0.996572i \(-0.473636\pi\)
−0.646184 + 0.763181i \(0.723636\pi\)
\(108\) −1.51472 3.65685i −0.145754 0.351881i
\(109\) −1.63604 3.94975i −0.156704 0.378317i 0.825956 0.563735i \(-0.190636\pi\)
−0.982660 + 0.185418i \(0.940636\pi\)
\(110\) 0 0
\(111\) 7.07107 + 7.07107i 0.671156 + 0.671156i
\(112\) 3.00000 1.24264i 0.283473 0.117419i
\(113\) −6.19239 14.9497i −0.582531 1.40635i −0.890511 0.454961i \(-0.849653\pi\)
0.307980 0.951393i \(-0.400347\pi\)
\(114\) −2.00000 + 4.82843i −0.187317 + 0.452224i
\(115\) 0 0
\(116\) −7.53553 3.12132i −0.699657 0.289807i
\(117\) 3.82843 + 3.82843i 0.353938 + 0.353938i
\(118\) 2.48528i 0.228789i
\(119\) 4.17157 + 1.58579i 0.382407 + 0.145369i
\(120\) 0 0
\(121\) −6.94975 + 6.94975i −0.631795 + 0.631795i
\(122\) 1.46447 3.53553i 0.132587 0.320092i
\(123\) 21.3137 1.92179
\(124\) −2.27208 + 5.48528i −0.204039 + 0.492593i
\(125\) 0 0
\(126\) −0.656854 1.58579i −0.0585172 0.141273i
\(127\) 12.2426 12.2426i 1.08636 1.08636i 0.0904585 0.995900i \(-0.471167\pi\)
0.995900 0.0904585i \(-0.0288332\pi\)
\(128\) 7.46447 7.46447i 0.659772 0.659772i
\(129\) −4.82843 11.6569i −0.425119 1.02633i
\(130\) 0 0
\(131\) 0.0710678 0.171573i 0.00620922 0.0149904i −0.920745 0.390166i \(-0.872418\pi\)
0.926954 + 0.375176i \(0.122418\pi\)
\(132\) −5.17157 −0.450128
\(133\) 2.00000 4.82843i 0.173422 0.418678i
\(134\) 2.00000 2.00000i 0.172774 0.172774i
\(135\) 0 0
\(136\) 6.53553 0.192388i 0.560417 0.0164971i
\(137\) 8.72792i 0.745677i 0.927896 + 0.372838i \(0.121615\pi\)
−0.927896 + 0.372838i \(0.878385\pi\)
\(138\) −3.17157 3.17157i −0.269982 0.269982i
\(139\) 13.8284 + 5.72792i 1.17291 + 0.485836i 0.882154 0.470961i \(-0.156093\pi\)
0.290758 + 0.956797i \(0.406093\pi\)
\(140\) 0 0
\(141\) 10.8284 26.1421i 0.911918 2.20156i
\(142\) −2.07107 5.00000i −0.173800 0.419591i
\(143\) 1.41421 0.585786i 0.118262 0.0489859i
\(144\) 8.12132 + 8.12132i 0.676777 + 0.676777i
\(145\) 0 0
\(146\) −0.849242 2.05025i −0.0702838 0.169680i
\(147\) −5.82843 14.0711i −0.480721 1.16056i
\(148\) −6.46447 2.67767i −0.531376 0.220103i
\(149\) 16.9706i 1.39028i −0.718873 0.695141i \(-0.755342\pi\)
0.718873 0.695141i \(-0.244658\pi\)
\(150\) 0 0
\(151\) −9.07107 + 9.07107i −0.738193 + 0.738193i −0.972228 0.234035i \(-0.924807\pi\)
0.234035 + 0.972228i \(0.424807\pi\)
\(152\) 7.65685i 0.621053i
\(153\) 0.464466 + 15.7782i 0.0375499 + 1.27559i
\(154\) −0.485281 −0.0391051
\(155\) 0 0
\(156\) −6.24264 2.58579i −0.499811 0.207029i
\(157\) 1.65685 0.132231 0.0661157 0.997812i \(-0.478939\pi\)
0.0661157 + 0.997812i \(0.478939\pi\)
\(158\) −1.58579 0.656854i −0.126158 0.0522565i
\(159\) −3.41421 + 1.41421i −0.270765 + 0.112154i
\(160\) 0 0
\(161\) 3.17157 + 3.17157i 0.249955 + 0.249955i
\(162\) −1.70711 + 1.70711i −0.134123 + 0.134123i
\(163\) −5.24264 + 2.17157i −0.410635 + 0.170091i −0.578431 0.815731i \(-0.696335\pi\)
0.167796 + 0.985822i \(0.446335\pi\)
\(164\) −13.7782 + 5.70711i −1.07589 + 0.445650i
\(165\) 0 0
\(166\) 0.142136i 0.0110319i
\(167\) −3.82843 + 9.24264i −0.296253 + 0.715217i 0.703736 + 0.710461i \(0.251514\pi\)
−0.999989 + 0.00475555i \(0.998486\pi\)
\(168\) 3.17157 + 3.17157i 0.244692 + 0.244692i
\(169\) −11.0000 −0.846154
\(170\) 0 0
\(171\) 18.4853 1.41360
\(172\) 6.24264 + 6.24264i 0.475997 + 0.475997i
\(173\) −1.29289 + 3.12132i −0.0982969 + 0.237310i −0.965377 0.260859i \(-0.915994\pi\)
0.867080 + 0.498169i \(0.165994\pi\)
\(174\) 4.82843i 0.366042i
\(175\) 0 0
\(176\) 3.00000 1.24264i 0.226134 0.0936676i
\(177\) −14.4853 + 6.00000i −1.08878 + 0.450988i
\(178\) 2.75736 2.75736i 0.206673 0.206673i
\(179\) −4.24264 4.24264i −0.317110 0.317110i 0.530546 0.847656i \(-0.321987\pi\)
−0.847656 + 0.530546i \(0.821987\pi\)
\(180\) 0 0
\(181\) −11.5355 + 4.77817i −0.857429 + 0.355159i −0.767702 0.640807i \(-0.778600\pi\)
−0.0897278 + 0.995966i \(0.528600\pi\)
\(182\) −0.585786 0.242641i −0.0434214 0.0179857i
\(183\) −24.1421 −1.78464
\(184\) 6.07107 + 2.51472i 0.447565 + 0.185388i
\(185\) 0 0
\(186\) −3.51472 −0.257712
\(187\) 4.17157 + 1.58579i 0.305056 + 0.115964i
\(188\) 19.7990i 1.44399i
\(189\) −1.65685 + 1.65685i −0.120518 + 0.120518i
\(190\) 0 0
\(191\) 20.0000i 1.44715i −0.690246 0.723575i \(-0.742498\pi\)
0.690246 0.723575i \(-0.257502\pi\)
\(192\) −10.0711 4.17157i −0.726817 0.301057i
\(193\) −2.12132 5.12132i −0.152696 0.368641i 0.828958 0.559310i \(-0.188934\pi\)
−0.981654 + 0.190670i \(0.938934\pi\)
\(194\) −1.02082 2.46447i −0.0732903 0.176938i
\(195\) 0 0
\(196\) 7.53553 + 7.53553i 0.538252 + 0.538252i
\(197\) 13.7782 5.70711i 0.981654 0.406615i 0.166616 0.986022i \(-0.446716\pi\)
0.815038 + 0.579407i \(0.196716\pi\)
\(198\) −0.656854 1.58579i −0.0466806 0.112697i
\(199\) 0.656854 1.58579i 0.0465632 0.112413i −0.898887 0.438181i \(-0.855623\pi\)
0.945450 + 0.325768i \(0.105623\pi\)
\(200\) 0 0
\(201\) −16.4853 6.82843i −1.16278 0.481640i
\(202\) 3.92893 + 3.92893i 0.276439 + 0.276439i
\(203\) 4.82843i 0.338889i
\(204\) −8.07107 17.9706i −0.565088 1.25819i
\(205\) 0 0
\(206\) 1.31371 1.31371i 0.0915304 0.0915304i
\(207\) −6.07107 + 14.6569i −0.421968 + 1.01872i
\(208\) 4.24264 0.294174
\(209\) 2.00000 4.82843i 0.138343 0.333989i
\(210\) 0 0
\(211\) 5.72792 + 13.8284i 0.394326 + 0.951988i 0.988986 + 0.148010i \(0.0472869\pi\)
−0.594659 + 0.803978i \(0.702713\pi\)
\(212\) 1.82843 1.82843i 0.125577 0.125577i
\(213\) −24.1421 + 24.1421i −1.65419 + 1.65419i
\(214\) 1.00000 + 2.41421i 0.0683586 + 0.165032i
\(215\) 0 0
\(216\) −1.31371 + 3.17157i −0.0893865 + 0.215798i
\(217\) 3.51472 0.238595
\(218\) −0.677670 + 1.63604i −0.0458976 + 0.110807i
\(219\) −9.89949 + 9.89949i −0.668946 + 0.668946i
\(220\) 0 0
\(221\) 4.24264 + 4.00000i 0.285391 + 0.269069i
\(222\) 4.14214i 0.278002i
\(223\) −0.585786 0.585786i −0.0392272 0.0392272i 0.687221 0.726448i \(-0.258830\pi\)
−0.726448 + 0.687221i \(0.758830\pi\)
\(224\) −4.41421 1.82843i −0.294937 0.122167i
\(225\) 0 0
\(226\) −2.56497 + 6.19239i −0.170619 + 0.411912i
\(227\) −1.92893 4.65685i −0.128028 0.309086i 0.846848 0.531835i \(-0.178497\pi\)
−0.974876 + 0.222748i \(0.928497\pi\)
\(228\) −21.3137 + 8.82843i −1.41153 + 0.584677i
\(229\) −16.1421 16.1421i −1.06670 1.06670i −0.997610 0.0690921i \(-0.977990\pi\)
−0.0690921 0.997610i \(-0.522010\pi\)
\(230\) 0 0
\(231\) 1.17157 + 2.82843i 0.0770838 + 0.186097i
\(232\) 2.70711 + 6.53553i 0.177730 + 0.429079i
\(233\) −9.36396 3.87868i −0.613453 0.254101i 0.0542508 0.998527i \(-0.482723\pi\)
−0.667704 + 0.744427i \(0.732723\pi\)
\(234\) 2.24264i 0.146606i
\(235\) 0 0
\(236\) 7.75736 7.75736i 0.504961 0.504961i
\(237\) 10.8284i 0.703382i
\(238\) −0.757359 1.68629i −0.0490923 0.109306i
\(239\) −9.17157 −0.593260 −0.296630 0.954993i \(-0.595863\pi\)
−0.296630 + 0.954993i \(0.595863\pi\)
\(240\) 0 0
\(241\) 11.3640 + 4.70711i 0.732017 + 0.303211i 0.717381 0.696681i \(-0.245341\pi\)
0.0146365 + 0.999893i \(0.495341\pi\)
\(242\) 4.07107 0.261698
\(243\) 20.0711 + 8.31371i 1.28756 + 0.533325i
\(244\) 15.6066 6.46447i 0.999110 0.413845i
\(245\) 0 0
\(246\) −6.24264 6.24264i −0.398016 0.398016i
\(247\) 4.82843 4.82843i 0.307225 0.307225i
\(248\) 4.75736 1.97056i 0.302093 0.125131i
\(249\) −0.828427 + 0.343146i −0.0524994 + 0.0217460i
\(250\) 0 0
\(251\) 3.51472i 0.221847i 0.993829 + 0.110924i \(0.0353809\pi\)
−0.993829 + 0.110924i \(0.964619\pi\)
\(252\) 2.89949 7.00000i 0.182651 0.440959i
\(253\) 3.17157 + 3.17157i 0.199395 + 0.199395i
\(254\) −7.17157 −0.449985
\(255\) 0 0
\(256\) 3.97056 0.248160
\(257\) −15.6569 15.6569i −0.976648 0.976648i 0.0230858 0.999733i \(-0.492651\pi\)
−0.999733 + 0.0230858i \(0.992651\pi\)
\(258\) −2.00000 + 4.82843i −0.124515 + 0.300605i
\(259\) 4.14214i 0.257380i
\(260\) 0 0
\(261\) −15.7782 + 6.53553i −0.976644 + 0.404539i
\(262\) −0.0710678 + 0.0294373i −0.00439058 + 0.00181864i
\(263\) −4.58579 + 4.58579i −0.282772 + 0.282772i −0.834213 0.551442i \(-0.814078\pi\)
0.551442 + 0.834213i \(0.314078\pi\)
\(264\) 3.17157 + 3.17157i 0.195197 + 0.195197i
\(265\) 0 0
\(266\) −2.00000 + 0.828427i −0.122628 + 0.0507941i
\(267\) −22.7279 9.41421i −1.39093 0.576141i
\(268\) 12.4853 0.762660
\(269\) −5.87868 2.43503i −0.358429 0.148466i 0.196200 0.980564i \(-0.437140\pi\)
−0.554629 + 0.832098i \(0.687140\pi\)
\(270\) 0 0
\(271\) −6.14214 −0.373108 −0.186554 0.982445i \(-0.559732\pi\)
−0.186554 + 0.982445i \(0.559732\pi\)
\(272\) 9.00000 + 8.48528i 0.545705 + 0.514496i
\(273\) 4.00000i 0.242091i
\(274\) 2.55635 2.55635i 0.154435 0.154435i
\(275\) 0 0
\(276\) 19.7990i 1.19176i
\(277\) 20.3640 + 8.43503i 1.22355 + 0.506812i 0.898537 0.438897i \(-0.144631\pi\)
0.325015 + 0.945709i \(0.394631\pi\)
\(278\) −2.37258 5.72792i −0.142298 0.343538i
\(279\) 4.75736 + 11.4853i 0.284816 + 0.687606i
\(280\) 0 0
\(281\) −12.6569 12.6569i −0.755045 0.755045i 0.220371 0.975416i \(-0.429273\pi\)
−0.975416 + 0.220371i \(0.929273\pi\)
\(282\) −10.8284 + 4.48528i −0.644823 + 0.267095i
\(283\) −8.75736 21.1421i −0.520571 1.25677i −0.937549 0.347853i \(-0.886911\pi\)
0.416978 0.908917i \(-0.363089\pi\)
\(284\) 9.14214 22.0711i 0.542486 1.30968i
\(285\) 0 0
\(286\) −0.585786 0.242641i −0.0346383 0.0143476i
\(287\) 6.24264 + 6.24264i 0.368491 + 0.368491i
\(288\) 16.8995i 0.995812i
\(289\) 1.00000 + 16.9706i 0.0588235 + 0.998268i
\(290\) 0 0
\(291\) −11.8995 + 11.8995i −0.697561 + 0.697561i
\(292\) 3.74874 9.05025i 0.219378 0.529626i
\(293\) 23.6569 1.38205 0.691024 0.722832i \(-0.257160\pi\)
0.691024 + 0.722832i \(0.257160\pi\)
\(294\) −2.41421 + 5.82843i −0.140800 + 0.339921i
\(295\) 0 0
\(296\) 2.32233 + 5.60660i 0.134983 + 0.325877i
\(297\) −1.65685 + 1.65685i −0.0961404 + 0.0961404i
\(298\) −4.97056 + 4.97056i −0.287937 + 0.287937i
\(299\) 2.24264 + 5.41421i 0.129695 + 0.313112i
\(300\) 0 0
\(301\) 2.00000 4.82843i 0.115278 0.278306i
\(302\) 5.31371 0.305770
\(303\) 13.4142 32.3848i 0.770626 1.86046i
\(304\) 10.2426 10.2426i 0.587456 0.587456i
\(305\) 0 0
\(306\) 4.48528 4.75736i 0.256406 0.271960i
\(307\) 2.14214i 0.122258i 0.998130 + 0.0611291i \(0.0194701\pi\)
−0.998130 + 0.0611291i \(0.980530\pi\)
\(308\) −1.51472 1.51472i −0.0863091 0.0863091i
\(309\) −10.8284 4.48528i −0.616008 0.255159i
\(310\) 0 0
\(311\) −1.72792 + 4.17157i −0.0979815 + 0.236548i −0.965268 0.261261i \(-0.915862\pi\)
0.867287 + 0.497809i \(0.165862\pi\)
\(312\) 2.24264 + 5.41421i 0.126965 + 0.306519i
\(313\) −11.7782 + 4.87868i −0.665742 + 0.275759i −0.689852 0.723950i \(-0.742325\pi\)
0.0241106 + 0.999709i \(0.492325\pi\)
\(314\) −0.485281 0.485281i −0.0273860 0.0273860i
\(315\) 0 0
\(316\) −2.89949 7.00000i −0.163109 0.393781i
\(317\) −2.22183 5.36396i −0.124790 0.301270i 0.849122 0.528198i \(-0.177132\pi\)
−0.973912 + 0.226927i \(0.927132\pi\)
\(318\) 1.41421 + 0.585786i 0.0793052 + 0.0328493i
\(319\) 4.82843i 0.270340i
\(320\) 0 0
\(321\) 11.6569 11.6569i 0.650622 0.650622i
\(322\) 1.85786i 0.103535i
\(323\) 19.8995 0.585786i 1.10724 0.0325940i
\(324\) −10.6569 −0.592047
\(325\) 0 0
\(326\) 2.17157 + 0.899495i 0.120272 + 0.0498184i
\(327\) 11.1716 0.617789
\(328\) 11.9497 + 4.94975i 0.659814 + 0.273304i
\(329\) 10.8284 4.48528i 0.596991 0.247282i
\(330\) 0 0
\(331\) −12.5858 12.5858i −0.691777 0.691777i 0.270845 0.962623i \(-0.412697\pi\)
−0.962623 + 0.270845i \(0.912697\pi\)
\(332\) 0.443651 0.443651i 0.0243485 0.0243485i
\(333\) −13.5355 + 5.60660i −0.741743 + 0.307240i
\(334\) 3.82843 1.58579i 0.209482 0.0867704i
\(335\) 0 0
\(336\) 8.48528i 0.462910i
\(337\) 13.1924 31.8492i 0.718635 1.73494i 0.0414336 0.999141i \(-0.486808\pi\)
0.677202 0.735798i \(-0.263192\pi\)
\(338\) 3.22183 + 3.22183i 0.175244 + 0.175244i
\(339\) 42.2843 2.29657
\(340\) 0 0
\(341\) 3.51472 0.190333
\(342\) −5.41421 5.41421i −0.292767 0.292767i
\(343\) 5.31371 12.8284i 0.286913 0.692670i
\(344\) 7.65685i 0.412830i
\(345\) 0 0
\(346\) 1.29289 0.535534i 0.0695064 0.0287905i
\(347\) 3.58579 1.48528i 0.192495 0.0797341i −0.284354 0.958719i \(-0.591779\pi\)
0.476849 + 0.878985i \(0.341779\pi\)
\(348\) 15.0711 15.0711i 0.807894 0.807894i
\(349\) −3.00000 3.00000i −0.160586 0.160586i 0.622240 0.782826i \(-0.286223\pi\)
−0.782826 + 0.622240i \(0.786223\pi\)
\(350\) 0 0
\(351\) −2.82843 + 1.17157i −0.150970 + 0.0625339i
\(352\) −4.41421 1.82843i −0.235278 0.0974555i
\(353\) −14.0000 −0.745145 −0.372572 0.928003i \(-0.621524\pi\)
−0.372572 + 0.928003i \(0.621524\pi\)
\(354\) 6.00000 + 2.48528i 0.318896 + 0.132091i
\(355\) 0 0
\(356\) 17.2132 0.912298
\(357\) −8.00000 + 8.48528i −0.423405 + 0.449089i
\(358\) 2.48528i 0.131351i
\(359\) −16.3848 + 16.3848i −0.864755 + 0.864755i −0.991886 0.127131i \(-0.959423\pi\)
0.127131 + 0.991886i \(0.459423\pi\)
\(360\) 0 0
\(361\) 4.31371i 0.227037i
\(362\) 4.77817 + 1.97918i 0.251135 + 0.104024i
\(363\) −9.82843 23.7279i −0.515859 1.24539i
\(364\) −1.07107 2.58579i −0.0561392 0.135532i
\(365\) 0 0
\(366\) 7.07107 + 7.07107i 0.369611 + 0.369611i
\(367\) −24.3137 + 10.0711i −1.26917 + 0.525705i −0.912710 0.408607i \(-0.866015\pi\)
−0.356455 + 0.934313i \(0.616015\pi\)
\(368\) 4.75736 + 11.4853i 0.247994 + 0.598712i
\(369\) −11.9497 + 28.8492i −0.622079 + 1.50183i
\(370\) 0 0
\(371\) −1.41421 0.585786i −0.0734223 0.0304125i
\(372\) −10.9706 10.9706i −0.568797 0.568797i
\(373\) 19.5563i 1.01259i 0.862361 + 0.506295i \(0.168985\pi\)
−0.862361 + 0.506295i \(0.831015\pi\)
\(374\) −0.757359 1.68629i −0.0391621 0.0871961i
\(375\) 0 0
\(376\) 12.1421 12.1421i 0.626183 0.626183i
\(377\) −2.41421 + 5.82843i −0.124338 + 0.300179i
\(378\) 0.970563 0.0499204
\(379\) −0.414214 + 1.00000i −0.0212767 + 0.0513665i −0.934161 0.356852i \(-0.883850\pi\)
0.912884 + 0.408219i \(0.133850\pi\)
\(380\) 0 0
\(381\) 17.3137 + 41.7990i 0.887008 + 2.14143i
\(382\) −5.85786 + 5.85786i −0.299714 + 0.299714i
\(383\) 3.89949 3.89949i 0.199255 0.199255i −0.600426 0.799681i \(-0.705002\pi\)
0.799681 + 0.600426i \(0.205002\pi\)
\(384\) 10.5563 + 25.4853i 0.538701 + 1.30054i
\(385\) 0 0
\(386\) −0.878680 + 2.12132i −0.0447236 + 0.107972i
\(387\) 18.4853 0.939660
\(388\) 4.50610 10.8787i 0.228762 0.552281i
\(389\) 11.4142 11.4142i 0.578724 0.578724i −0.355828 0.934551i \(-0.615801\pi\)
0.934551 + 0.355828i \(0.115801\pi\)
\(390\) 0 0
\(391\) −6.07107 + 15.9706i −0.307027 + 0.807666i
\(392\) 9.24264i 0.466824i
\(393\) 0.343146 + 0.343146i 0.0173094 + 0.0173094i
\(394\) −5.70711 2.36396i −0.287520 0.119095i
\(395\) 0 0
\(396\) 2.89949 7.00000i 0.145705 0.351763i
\(397\) 10.4350 + 25.1924i 0.523719 + 1.26437i 0.935577 + 0.353122i \(0.114880\pi\)
−0.411858 + 0.911248i \(0.635120\pi\)
\(398\) −0.656854 + 0.272078i −0.0329251 + 0.0136380i
\(399\) 9.65685 + 9.65685i 0.483447 + 0.483447i
\(400\) 0 0
\(401\) 6.53553 + 15.7782i 0.326369 + 0.787924i 0.998856 + 0.0478157i \(0.0152260\pi\)
−0.672487 + 0.740109i \(0.734774\pi\)
\(402\) 2.82843 + 6.82843i 0.141069 + 0.340571i
\(403\) 4.24264 + 1.75736i 0.211341 + 0.0875403i
\(404\) 24.5269i 1.22026i
\(405\) 0 0
\(406\) 1.41421 1.41421i 0.0701862 0.0701862i
\(407\) 4.14214i 0.205318i
\(408\) −6.07107 + 15.9706i −0.300563 + 0.790661i
\(409\) −19.3137 −0.955001 −0.477501 0.878631i \(-0.658457\pi\)
−0.477501 + 0.878631i \(0.658457\pi\)
\(410\) 0 0
\(411\) −21.0711 8.72792i −1.03936 0.430517i
\(412\) 8.20101 0.404035
\(413\) −6.00000 2.48528i −0.295241 0.122293i
\(414\) 6.07107 2.51472i 0.298377 0.123592i
\(415\) 0 0
\(416\) −4.41421 4.41421i −0.216425 0.216425i
\(417\) −27.6569 + 27.6569i −1.35436 + 1.35436i
\(418\) −2.00000 + 0.828427i −0.0978232 + 0.0405197i
\(419\) 24.8995 10.3137i 1.21642 0.503858i 0.320150 0.947367i \(-0.396267\pi\)
0.896270 + 0.443509i \(0.146267\pi\)
\(420\) 0 0
\(421\) 17.4142i 0.848717i 0.905494 + 0.424358i \(0.139500\pi\)
−0.905494 + 0.424358i \(0.860500\pi\)
\(422\) 2.37258 5.72792i 0.115496 0.278831i
\(423\) 29.3137 + 29.3137i 1.42528 + 1.42528i
\(424\) −2.24264 −0.108912
\(425\) 0 0
\(426\) 14.1421 0.685189
\(427\) −7.07107 7.07107i −0.342193 0.342193i
\(428\) −4.41421 + 10.6569i −0.213369 + 0.515118i
\(429\) 4.00000i 0.193122i
\(430\) 0 0
\(431\) −36.7990 + 15.2426i −1.77254 + 0.734212i −0.778200 + 0.628017i \(0.783867\pi\)
−0.994345 + 0.106195i \(0.966133\pi\)
\(432\) −6.00000 + 2.48528i −0.288675 + 0.119573i
\(433\) −10.7279 + 10.7279i −0.515551 + 0.515551i −0.916222 0.400671i \(-0.868777\pi\)
0.400671 + 0.916222i \(0.368777\pi\)
\(434\) −1.02944 1.02944i −0.0494146 0.0494146i
\(435\) 0 0
\(436\) −7.22183 + 2.99138i −0.345863 + 0.143261i
\(437\) 18.4853 + 7.65685i 0.884271 + 0.366277i
\(438\) 5.79899 0.277086
\(439\) −10.0711 4.17157i −0.480666 0.199098i 0.129176 0.991622i \(-0.458767\pi\)
−0.609841 + 0.792523i \(0.708767\pi\)
\(440\) 0 0
\(441\) 22.3137 1.06256
\(442\) −0.0710678 2.41421i −0.00338035 0.114832i
\(443\) 15.7990i 0.750633i −0.926897 0.375316i \(-0.877534\pi\)
0.926897 0.375316i \(-0.122466\pi\)
\(444\) 12.9289 12.9289i 0.613580 0.613580i
\(445\) 0 0
\(446\) 0.343146i 0.0162484i
\(447\) 40.9706 + 16.9706i 1.93784 + 0.802680i
\(448\) −1.72792 4.17157i −0.0816366 0.197088i
\(449\) 7.19239 + 17.3640i 0.339430 + 0.819456i 0.997771 + 0.0667361i \(0.0212585\pi\)
−0.658341 + 0.752720i \(0.728741\pi\)
\(450\) 0 0
\(451\) 6.24264 + 6.24264i 0.293954 + 0.293954i
\(452\) −27.3345 + 11.3223i −1.28571 + 0.532558i
\(453\) −12.8284 30.9706i −0.602732 1.45512i
\(454\) −0.798990 + 1.92893i −0.0374985 + 0.0905293i
\(455\) 0 0
\(456\) 18.4853 + 7.65685i 0.865653 + 0.358565i
\(457\) −13.3137 13.3137i −0.622789 0.622789i 0.323455 0.946244i \(-0.395156\pi\)
−0.946244 + 0.323455i \(0.895156\pi\)
\(458\) 9.45584i 0.441843i
\(459\) −8.34315 3.17157i −0.389425 0.148036i
\(460\) 0 0
\(461\) 17.0000 17.0000i 0.791769 0.791769i −0.190013 0.981782i \(-0.560853\pi\)
0.981782 + 0.190013i \(0.0608529\pi\)
\(462\) 0.485281 1.17157i 0.0225773 0.0545065i
\(463\) 30.6274 1.42338 0.711688 0.702495i \(-0.247931\pi\)
0.711688 + 0.702495i \(0.247931\pi\)
\(464\) −5.12132 + 12.3640i −0.237751 + 0.573982i
\(465\) 0 0
\(466\) 1.60660 + 3.87868i 0.0744244 + 0.179676i
\(467\) −8.92893 + 8.92893i −0.413182 + 0.413182i −0.882845 0.469664i \(-0.844375\pi\)
0.469664 + 0.882845i \(0.344375\pi\)
\(468\) 7.00000 7.00000i 0.323575 0.323575i
\(469\) −2.82843 6.82843i −0.130605 0.315307i
\(470\) 0 0
\(471\) −1.65685 + 4.00000i −0.0763438 + 0.184310i
\(472\) −9.51472 −0.437950
\(473\) 2.00000 4.82843i 0.0919601 0.222011i
\(474\) 3.17157 3.17157i 0.145675 0.145675i
\(475\) 0 0
\(476\) 2.89949 7.62742i 0.132898 0.349602i
\(477\) 5.41421i 0.247900i
\(478\) 2.68629 + 2.68629i 0.122868 + 0.122868i
\(479\) 31.9706 + 13.2426i 1.46077 + 0.605072i 0.964733 0.263229i \(-0.0847874\pi\)
0.496039 + 0.868300i \(0.334787\pi\)
\(480\) 0 0
\(481\) −2.07107 + 5.00000i −0.0944326 + 0.227980i
\(482\) −1.94975 4.70711i −0.0888086 0.214403i
\(483\) −10.8284 + 4.48528i −0.492710 + 0.204087i
\(484\) 12.7071 + 12.7071i 0.577596 + 0.577596i
\(485\) 0 0
\(486\) −3.44365 8.31371i −0.156207 0.377117i
\(487\) −1.68629 4.07107i −0.0764132 0.184478i 0.881057 0.473010i \(-0.156833\pi\)
−0.957470 + 0.288533i \(0.906833\pi\)
\(488\) −13.5355 5.60660i −0.612725 0.253799i
\(489\) 14.8284i 0.670565i
\(490\) 0 0
\(491\) 17.7574 17.7574i 0.801378 0.801378i −0.181933 0.983311i \(-0.558235\pi\)
0.983311 + 0.181933i \(0.0582353\pi\)
\(492\) 38.9706i 1.75693i
\(493\) −16.7782 + 7.53553i −0.755651 + 0.339383i
\(494\) −2.82843 −0.127257
\(495\) 0 0
\(496\) 9.00000 + 3.72792i 0.404112 + 0.167389i
\(497\) −14.1421 −0.634361
\(498\) 0.343146 + 0.142136i 0.0153767 + 0.00636925i
\(499\) −34.2132 + 14.1716i −1.53159 + 0.634407i −0.979873 0.199622i \(-0.936028\pi\)
−0.551720 + 0.834029i \(0.686028\pi\)
\(500\) 0 0
\(501\) −18.4853 18.4853i −0.825861 0.825861i
\(502\) 1.02944 1.02944i 0.0459460 0.0459460i
\(503\) 13.8284 5.72792i 0.616579 0.255395i −0.0524595 0.998623i \(-0.516706\pi\)
0.669039 + 0.743228i \(0.266706\pi\)
\(504\) −6.07107 + 2.51472i −0.270427 + 0.112014i
\(505\) 0 0
\(506\) 1.85786i 0.0825921i
\(507\) 11.0000 26.5563i 0.488527 1.17941i
\(508\) −22.3848 22.3848i −0.993164 0.993164i
\(509\) 3.02944 0.134277 0.0671387 0.997744i \(-0.478613\pi\)
0.0671387 + 0.997744i \(0.478613\pi\)
\(510\) 0 0
\(511\) −5.79899 −0.256532
\(512\) −16.0919 16.0919i −0.711167 0.711167i
\(513\) −4.00000 + 9.65685i −0.176604 + 0.426361i
\(514\) 9.17157i 0.404541i
\(515\) 0 0
\(516\) −21.3137 + 8.82843i −0.938284 + 0.388650i
\(517\) 10.8284 4.48528i 0.476234 0.197262i
\(518\) 1.21320 1.21320i 0.0533051 0.0533051i
\(519\) −6.24264 6.24264i −0.274022 0.274022i
\(520\) 0 0
\(521\) 2.87868 1.19239i 0.126117 0.0522395i −0.318732 0.947845i \(-0.603257\pi\)
0.444850 + 0.895605i \(0.353257\pi\)
\(522\) 6.53553 + 2.70711i 0.286053 + 0.118487i
\(523\) 6.82843 0.298586 0.149293 0.988793i \(-0.452300\pi\)
0.149293 + 0.988793i \(0.452300\pi\)
\(524\) −0.313708 0.129942i −0.0137044 0.00567656i
\(525\) 0 0
\(526\) 2.68629 0.117128
\(527\) 5.48528 + 12.2132i 0.238943 + 0.532015i
\(528\) 8.48528i 0.369274i
\(529\) 4.12132 4.12132i 0.179188 0.179188i
\(530\) 0 0
\(531\) 22.9706i 0.996838i
\(532\) −8.82843 3.65685i −0.382761 0.158545i
\(533\) 4.41421 + 10.6569i 0.191201 + 0.461600i
\(534\) 3.89949 + 9.41421i 0.168748 + 0.407393i
\(535\) 0 0
\(536\) −7.65685 7.65685i −0.330726 0.330726i
\(537\) 14.4853 6.00000i 0.625086 0.258919i
\(538\) 1.00862 + 2.43503i 0.0434848 + 0.104982i
\(539\) 2.41421 5.82843i 0.103988 0.251048i
\(540\) 0 0
\(541\) −16.9497 7.02082i −0.728727 0.301848i −0.0126980 0.999919i \(-0.504042\pi\)
−0.716029 + 0.698071i \(0.754042\pi\)
\(542\) 1.79899 + 1.79899i 0.0772732 + 0.0772732i
\(543\) 32.6274i 1.40018i
\(544\) −0.535534 18.1924i −0.0229608 0.779992i
\(545\) 0 0
\(546\) 1.17157 1.17157i 0.0501387 0.0501387i
\(547\) −9.48528 + 22.8995i −0.405561 + 0.979112i 0.580730 + 0.814096i \(0.302767\pi\)
−0.986291 + 0.165015i \(0.947233\pi\)
\(548\) 15.9584 0.681708
\(549\) 13.5355 32.6777i 0.577683 1.39465i
\(550\) 0 0
\(551\) 8.24264 + 19.8995i 0.351148 + 0.847747i
\(552\) −12.1421 + 12.1421i −0.516804 + 0.516804i
\(553\) −3.17157 + 3.17157i −0.134869 + 0.134869i
\(554\) −3.49390 8.43503i −0.148442 0.358370i
\(555\) 0 0
\(556\) 10.4731 25.2843i 0.444158 1.07229i
\(557\) 28.2426 1.19668 0.598340 0.801243i \(-0.295827\pi\)
0.598340 + 0.801243i \(0.295827\pi\)
\(558\) 1.97056 4.75736i 0.0834206 0.201395i
\(559\) 4.82843 4.82843i 0.204221 0.204221i
\(560\) 0 0
\(561\) −8.00000 + 8.48528i −0.337760 + 0.358249i
\(562\) 7.41421i 0.312750i
\(563\) −27.4142 27.4142i −1.15537 1.15537i −0.985459 0.169912i \(-0.945652\pi\)
−0.169912 0.985459i \(-0.554348\pi\)
\(564\) −47.7990 19.7990i −2.01270 0.833688i
\(565\) 0 0
\(566\) −3.62742 + 8.75736i −0.152472 + 0.368099i
\(567\) 2.41421 + 5.82843i 0.101387 + 0.244771i
\(568\) −19.1421 + 7.92893i −0.803186 + 0.332691i
\(569\) −25.4853 25.4853i −1.06840 1.06840i −0.997482 0.0709163i \(-0.977408\pi\)
−0.0709163 0.997482i \(-0.522592\pi\)
\(570\) 0 0
\(571\) −18.0711 43.6274i −0.756251 1.82575i −0.520295 0.853987i \(-0.674178\pi\)
−0.235956 0.971764i \(-0.575822\pi\)
\(572\) −1.07107 2.58579i −0.0447836 0.108117i
\(573\) 48.2843 + 20.0000i 2.01710 + 0.835512i
\(574\) 3.65685i 0.152634i
\(575\) 0 0
\(576\) 11.2929 11.2929i 0.470537 0.470537i
\(577\) 12.9289i 0.538238i −0.963107 0.269119i \(-0.913267\pi\)
0.963107 0.269119i \(-0.0867326\pi\)
\(578\) 4.67767 5.26346i 0.194565 0.218931i
\(579\) 14.4853 0.601988
\(580\) 0 0
\(581\) −0.343146 0.142136i −0.0142361 0.00589678i
\(582\) 6.97056 0.288939
\(583\) −1.41421 0.585786i −0.0585707 0.0242608i
\(584\) −7.84924 + 3.25126i −0.324804 + 0.134538i
\(585\) 0 0
\(586\) −6.92893 6.92893i −0.286232 0.286232i
\(587\) 16.0416 16.0416i 0.662109 0.662109i −0.293768 0.955877i \(-0.594909\pi\)
0.955877 + 0.293768i \(0.0949093\pi\)
\(588\) −25.7279 + 10.6569i −1.06100 + 0.439481i
\(589\) 14.4853 6.00000i 0.596856 0.247226i
\(590\) 0 0
\(591\) 38.9706i 1.60303i
\(592\) −4.39340 + 10.6066i −0.180568 + 0.435929i
\(593\) 19.1421 + 19.1421i 0.786073 + 0.786073i 0.980848 0.194775i \(-0.0623976\pi\)
−0.194775 + 0.980848i \(0.562398\pi\)
\(594\) 0.970563 0.0398227
\(595\) 0 0
\(596\) −31.0294 −1.27102
\(597\) 3.17157 + 3.17157i 0.129804 + 0.129804i
\(598\) 0.928932 2.24264i 0.0379869 0.0917084i
\(599\) 34.6274i 1.41484i 0.706794 + 0.707419i \(0.250141\pi\)
−0.706794 + 0.707419i \(0.749859\pi\)
\(600\) 0 0
\(601\) −18.7782 + 7.77817i −0.765978 + 0.317278i −0.731242 0.682118i \(-0.761059\pi\)
−0.0347358 + 0.999397i \(0.511059\pi\)
\(602\) −2.00000 + 0.828427i −0.0815139 + 0.0337642i
\(603\) 18.4853 18.4853i 0.752779 0.752779i
\(604\) 16.5858 + 16.5858i 0.674866 + 0.674866i
\(605\) 0 0
\(606\) −13.4142 + 5.55635i −0.544915 + 0.225711i
\(607\) −31.7279 13.1421i −1.28780 0.533423i −0.369469 0.929243i \(-0.620460\pi\)
−0.918328 + 0.395820i \(0.870460\pi\)
\(608\) −21.3137 −0.864385
\(609\) −11.6569 4.82843i −0.472360 0.195658i
\(610\) 0 0
\(611\) 15.3137 0.619526
\(612\) 28.8492 0.849242i 1.16616 0.0343286i
\(613\) 17.3137i 0.699294i 0.936881 + 0.349647i \(0.113698\pi\)
−0.936881 + 0.349647i \(0.886302\pi\)
\(614\) 0.627417 0.627417i 0.0253205 0.0253205i
\(615\) 0 0
\(616\) 1.85786i 0.0748555i
\(617\) −3.12132 1.29289i −0.125660 0.0520499i 0.318968 0.947766i \(-0.396664\pi\)
−0.444627 + 0.895716i \(0.646664\pi\)
\(618\) 1.85786 + 4.48528i 0.0747343 + 0.180424i
\(619\) −3.68629 8.89949i −0.148165 0.357701i 0.832320 0.554295i \(-0.187012\pi\)
−0.980485 + 0.196594i \(0.937012\pi\)
\(620\) 0 0
\(621\) −6.34315 6.34315i −0.254542 0.254542i
\(622\) 1.72792 0.715729i 0.0692834 0.0286981i
\(623\) −3.89949 9.41421i −0.156230 0.377173i
\(624\) −4.24264 + 10.2426i −0.169842 + 0.410034i
\(625\) 0 0
\(626\) 4.87868 + 2.02082i 0.194991 + 0.0807680i
\(627\) 9.65685 + 9.65685i 0.385658 + 0.385658i
\(628\) 3.02944i 0.120888i
\(629\) −14.3934 + 6.46447i −0.573902 + 0.257755i
\(630\) 0 0
\(631\) 4.72792 4.72792i 0.188216 0.188216i −0.606709 0.794924i \(-0.707511\pi\)
0.794924 + 0.606709i \(0.207511\pi\)
\(632\) −2.51472 + 6.07107i −0.100030 + 0.241494i
\(633\) −39.1127 −1.55459
\(634\) −0.920310 + 2.22183i −0.0365502 + 0.0882400i
\(635\) 0 0
\(636\) 2.58579 + 6.24264i 0.102533 + 0.247537i
\(637\) 5.82843 5.82843i 0.230931 0.230931i
\(638\) 1.41421 1.41421i 0.0559893 0.0559893i
\(639\) −19.1421 46.2132i −0.757251 1.82817i
\(640\) 0 0
\(641\) −5.73654 + 13.8492i −0.226580 + 0.547012i −0.995757 0.0920237i \(-0.970666\pi\)
0.769177 + 0.639036i \(0.220666\pi\)
\(642\) −6.82843 −0.269497
\(643\) −15.3431 + 37.0416i −0.605075 + 1.46078i 0.263223 + 0.964735i \(0.415215\pi\)
−0.868297 + 0.496044i \(0.834785\pi\)
\(644\) 5.79899 5.79899i 0.228512 0.228512i
\(645\) 0 0
\(646\) −6.00000 5.65685i −0.236067 0.222566i
\(647\) 2.82843i 0.111197i 0.998453 + 0.0555985i \(0.0177067\pi\)
−0.998453 + 0.0555985i \(0.982293\pi\)
\(648\) 6.53553 + 6.53553i 0.256740 + 0.256740i
\(649\) −6.00000 2.48528i −0.235521 0.0975558i
\(650\) 0 0
\(651\) −3.51472 + 8.48528i −0.137753 + 0.332564i
\(652\) 3.97056 + 9.58579i 0.155499 + 0.375408i
\(653\) −16.3640 + 6.77817i −0.640371 + 0.265250i −0.679152 0.733997i \(-0.737652\pi\)
0.0387812 + 0.999248i \(0.487652\pi\)
\(654\) −3.27208 3.27208i −0.127948 0.127948i
\(655\) 0 0
\(656\) 9.36396 + 22.6066i 0.365601 + 0.882640i
\(657\) −7.84924 18.9497i −0.306228 0.739300i
\(658\) −4.48528 1.85786i −0.174854 0.0724271i
\(659\) 8.48528i 0.330540i −0.986248 0.165270i \(-0.947151\pi\)
0.986248 0.165270i \(-0.0528495\pi\)
\(660\) 0 0
\(661\) 29.1421 29.1421i 1.13350 1.13350i 0.143906 0.989591i \(-0.454034\pi\)
0.989591 0.143906i \(-0.0459664\pi\)
\(662\) 7.37258i 0.286544i
\(663\) −13.8995 + 6.24264i −0.539812 + 0.242444i
\(664\) −0.544156 −0.0211173
\(665\) 0 0
\(666\) 5.60660 + 2.32233i 0.217251 + 0.0899885i
\(667\) −18.4853 −0.715753
\(668\) 16.8995 + 7.00000i 0.653861 + 0.270838i
\(669\) 2.00000 0.828427i 0.0773245 0.0320288i
\(670\) 0 0
\(671\) −7.07107 7.07107i −0.272976 0.272976i
\(672\) 8.82843 8.82843i 0.340564 0.340564i
\(673\) −0.292893 + 0.121320i −0.0112902 + 0.00467656i −0.388321 0.921524i \(-0.626945\pi\)
0.377031 + 0.926201i \(0.376945\pi\)
\(674\) −13.1924 + 5.46447i −0.508152 + 0.210483i
\(675\) 0 0
\(676\) 20.1127i 0.773565i
\(677\) −16.8076 + 40.5772i −0.645969 + 1.55951i 0.172533 + 0.985004i \(0.444805\pi\)
−0.818502 + 0.574503i \(0.805195\pi\)
\(678\) −12.3848 12.3848i −0.475634 0.475634i
\(679\) −6.97056 −0.267506
\(680\) 0 0
\(681\) 13.1716 0.504736
\(682\) −1.02944 1.02944i −0.0394192 0.0394192i
\(683\) −11.9706 + 28.8995i −0.458041 + 1.10581i 0.511149 + 0.859492i \(0.329220\pi\)
−0.969190 + 0.246316i \(0.920780\pi\)
\(684\) 33.7990i 1.29234i
\(685\) 0 0
\(686\) −5.31371 + 2.20101i −0.202878 + 0.0840350i
\(687\) 55.1127 22.8284i 2.10268 0.870959i
\(688\) 10.2426 10.2426i 0.390497 0.390497i
\(689\) −1.41421 1.41421i −0.0538772 0.0538772i
\(690\) 0 0
\(691\) 37.6274 15.5858i 1.43141 0.592911i 0.473714 0.880679i \(-0.342913\pi\)
0.957700 + 0.287767i \(0.0929130\pi\)
\(692\) 5.70711 + 2.36396i 0.216952 + 0.0898643i
\(693\) −4.48528 −0.170382
\(694\) −1.48528 0.615224i −0.0563805 0.0233536i
\(695\) 0 0
\(696\) −18.4853 −0.700683
\(697\) −11.9497 + 31.4350i −0.452629 + 1.19069i
\(698\) 1.75736i 0.0665170i
\(699\) 18.7279 18.7279i 0.708355 0.708355i
\(700\) 0 0
\(701\) 21.6985i 0.819540i 0.912189 + 0.409770i \(0.134391\pi\)
−0.912189 + 0.409770i \(0.865609\pi\)
\(702\) 1.17157 + 0.485281i 0.0442182 + 0.0183158i
\(703\) 7.07107 + 17.0711i 0.266690 + 0.643848i
\(704\) −1.72792 4.17157i −0.0651235 0.157222i
\(705\) 0 0
\(706\) 4.10051 + 4.10051i 0.154325 + 0.154325i
\(707\) 13.4142 5.55635i 0.504493 0.208968i
\(708\) 10.9706 + 26.4853i 0.412299 + 0.995378i
\(709\) 4.43503 10.7071i 0.166561 0.402114i −0.818456 0.574569i \(-0.805170\pi\)
0.985017 + 0.172455i \(0.0551699\pi\)
\(710\) 0 0
\(711\) −14.6569 6.07107i −0.549675 0.227683i
\(712\) −10.5563 10.5563i −0.395616 0.395616i
\(713\) 13.4558i 0.503925i
\(714\) 4.82843 0.142136i 0.180699 0.00531929i
\(715\) 0 0
\(716\) −7.75736 + 7.75736i −0.289906 + 0.289906i
\(717\) 9.17157 22.1421i 0.342519 0.826913i
\(718\) 9.59798 0.358193
\(719\) −5.38478 + 13.0000i −0.200818 + 0.484818i −0.991920 0.126867i \(-0.959508\pi\)
0.791102 + 0.611685i \(0.209508\pi\)
\(720\) 0 0
\(721\) −1.85786 4.48528i −0.0691905 0.167041i
\(722\) −1.26346 + 1.26346i −0.0470210 + 0.0470210i
\(723\) −22.7279 + 22.7279i −0.845261 + 0.845261i
\(724\) 8.73654 + 21.0919i 0.324691 + 0.783874i
\(725\) 0 0
\(726\) −4.07107 + 9.82843i −0.151091 + 0.364767i
\(727\) −19.1127 −0.708851 −0.354425 0.935084i \(-0.615324\pi\)
−0.354425 + 0.935084i \(0.615324\pi\)
\(728\) −0.928932 + 2.24264i −0.0344285 + 0.0831178i
\(729\) −27.7782 + 27.7782i −1.02882 + 1.02882i
\(730\) 0 0
\(731\) 19.8995 0.585786i 0.736009 0.0216661i
\(732\) 44.1421i 1.63154i
\(733\) 8.51472 + 8.51472i 0.314498 + 0.314498i 0.846649 0.532151i \(-0.178616\pi\)
−0.532151 + 0.846649i \(0.678616\pi\)
\(734\) 10.0711 + 4.17157i 0.371730 + 0.153976i
\(735\) 0 0
\(736\) 7.00000 16.8995i 0.258023 0.622924i
\(737\) −2.82843 6.82843i −0.104186 0.251528i
\(738\) 11.9497 4.94975i 0.439876 0.182203i
\(739\) −24.2426 24.2426i −0.891780 0.891780i 0.102911 0.994691i \(-0.467184\pi\)
−0.994691 + 0.102911i \(0.967184\pi\)
\(740\) 0 0
\(741\) 6.82843 + 16.4853i 0.250849 + 0.605602i
\(742\) 0.242641 + 0.585786i 0.00890762 + 0.0215049i
\(743\) −45.5269 18.8579i −1.67022 0.691828i −0.671433 0.741065i \(-0.734321\pi\)
−0.998787 + 0.0492371i \(0.984321\pi\)
\(744\) 13.4558i 0.493315i
\(745\) 0 0
\(746\) 5.72792 5.72792i 0.209714 0.209714i
\(747\) 1.31371i 0.0480661i
\(748\) 2.89949 7.62742i 0.106016 0.278886i
\(749\) 6.82843 0.249505
\(750\) 0 0
\(751\) −24.2132 10.0294i −0.883552 0.365979i −0.105679 0.994400i \(-0.533702\pi\)
−0.777873 + 0.628421i \(0.783702\pi\)
\(752\) 32.4853 1.18462
\(753\) −8.48528 3.51472i −0.309221 0.128083i
\(754\) 2.41421 1.00000i 0.0879205 0.0364179i
\(755\) 0 0
\(756\) 3.02944 + 3.02944i 0.110180 + 0.110180i
\(757\) −37.7990 + 37.7990i −1.37383 + 1.37383i −0.519136 + 0.854692i \(0.673746\pi\)
−0.854692 + 0.519136i \(0.826254\pi\)
\(758\) 0.414214 0.171573i 0.0150449 0.00623181i
\(759\) −10.8284 + 4.48528i −0.393047 + 0.162805i
\(760\) 0 0
\(761\) 21.6985i 0.786569i −0.919417 0.393285i \(-0.871339\pi\)
0.919417 0.393285i \(-0.128661\pi\)
\(762\) 7.17157 17.3137i 0.259799 0.627209i
\(763\) 3.27208 + 3.27208i 0.118457 + 0.118457i
\(764\) −36.5685 −1.32300
\(765\) 0 0
\(766\) −2.28427 −0.0825341
\(767\) −6.00000 6.00000i −0.216647 0.216647i
\(768\) −3.97056 + 9.58579i −0.143275 + 0.345897i
\(769\) 12.7279i 0.458981i −0.973311 0.229490i \(-0.926294\pi\)
0.973311 0.229490i \(-0.0737059\pi\)
\(770\) 0 0
\(771\) 53.4558 22.1421i 1.92517 0.797430i
\(772\) −9.36396 + 3.87868i −0.337016 + 0.139597i
\(773\) −3.41421 + 3.41421i −0.122801 + 0.122801i −0.765836 0.643036i \(-0.777675\pi\)
0.643036 + 0.765836i \(0.277675\pi\)
\(774\) −5.41421 5.41421i −0.194610 0.194610i
\(775\) 0 0
\(776\) −9.43503 + 3.90812i −0.338698 + 0.140293i
\(777\) −10.0000 4.14214i −0.358748 0.148598i
\(778\) −6.68629 −0.239715
\(779\) 36.3848 + 15.0711i 1.30362 + 0.539977i
\(780\) 0 0
\(781\) −14.1421 −0.506045
\(782\) 6.45584 2.89949i 0.230861 0.103686i
\(783\) 9.65685i 0.345108i
\(784\) 12.3640 12.3640i 0.441570 0.441570i
\(785\) 0 0
\(786\) 0.201010i 0.00716979i
\(787\) −45.8701 19.0000i −1.63509 0.677277i −0.639302 0.768955i \(-0.720777\pi\)
−0.995789 + 0.0916786i \(0.970777\pi\)
\(788\) −10.4350 25.1924i −0.371733 0.897442i
\(789\) −6.48528 15.6569i −0.230882 0.557399i
\(790\) 0 0
\(791\) 12.3848 + 12.3848i 0.440352 + 0.440352i
\(792\) −6.07107 + 2.51472i −0.215726 + 0.0893566i
\(793\) −5.00000 12.0711i −0.177555 0.428656i
\(794\) 4.32233 10.4350i 0.153394 0.370325i
\(795\) 0 0
\(796\) −2.89949 1.20101i −0.102770 0.0425687i
\(797\) −12.1716 12.1716i −0.431139 0.431139i 0.457877 0.889016i \(-0.348610\pi\)
−0.889016 + 0.457877i \(0.848610\pi\)
\(798\) 5.65685i 0.200250i
\(799\) 32.4853 + 30.6274i 1.14925 + 1.08352i
\(800\) 0 0
\(801\) 25.4853 25.4853i 0.900478 0.900478i
\(802\) 2.70711 6.53553i 0.0955913 0.230778i
\(803\) −5.79899 −0.204642
\(804\) −12.4853 + 30.1421i −0.440322 + 1.06303i
\(805\) 0 0
\(806\) −0.727922 1.75736i −0.0256400 0.0619003i
\(807\) 11.7574 11.7574i 0.413879 0.413879i
\(808\) 15.0416 15.0416i 0.529163 0.529163i
\(809\) 11.3934 + 27.5061i 0.400571 + 0.967063i 0.987528 + 0.157445i \(0.0503257\pi\)
−0.586957 + 0.809618i \(0.699674\pi\)
\(810\) 0 0
\(811\) 16.9411 40.8995i 0.594883 1.43618i −0.283853 0.958868i \(-0.591613\pi\)
0.878736 0.477308i \(-0.158387\pi\)
\(812\) 8.82843 0.309817
\(813\) 6.14214 14.8284i 0.215414 0.520056i
\(814\) 1.21320 1.21320i 0.0425228 0.0425228i
\(815\) 0 0
\(816\) −29.4853 + 13.2426i −1.03219 + 0.463585i
\(817\) 23.3137i 0.815643i
\(818\) 5.65685 + 5.65685i 0.197787 + 0.197787i
\(819\) −5.41421 2.24264i −0.189188 0.0783642i
\(820\) 0 0
\(821\) −5.50610 + 13.2929i −0.192164 + 0.463925i −0.990368 0.138463i \(-0.955784\pi\)
0.798204 + 0.602388i \(0.205784\pi\)
\(822\) 3.61522 + 8.72792i 0.126095 + 0.304421i
\(823\) 21.7279 9.00000i 0.757388 0.313720i 0.0296358 0.999561i \(-0.490565\pi\)
0.727752 + 0.685840i \(0.240565\pi\)
\(824\) −5.02944 5.02944i −0.175209 0.175209i
\(825\) 0 0
\(826\) 1.02944 + 2.48528i 0.0358187 + 0.0864740i
\(827\) −13.2843 32.0711i −0.461939 1.11522i −0.967600 0.252488i \(-0.918751\pi\)
0.505661 0.862732i \(-0.331249\pi\)
\(828\) 26.7990 + 11.1005i 0.931329 + 0.385769i
\(829\) 13.9411i 0.484195i 0.970252 + 0.242098i \(0.0778354\pi\)
−0.970252 + 0.242098i \(0.922165\pi\)
\(830\) 0 0
\(831\) −40.7279 + 40.7279i −1.41284 + 1.41284i
\(832\) 5.89949i 0.204528i
\(833\) 24.0208 0.707107i 0.832272 0.0244998i
\(834\) 16.2010 0.560995
\(835\) 0 0
\(836\) −8.82843 3.65685i −0.305338 0.126475i
\(837\) −7.02944 −0.242973
\(838\) −10.3137 4.27208i −0.356281 0.147576i
\(839\) 3.58579 1.48528i 0.123795 0.0512776i −0.319926 0.947443i \(-0.603658\pi\)
0.443721 + 0.896165i \(0.353658\pi\)
\(840\) 0 0
\(841\) 6.43503 + 6.43503i 0.221898 + 0.221898i
\(842\) 5.10051 5.10051i 0.175775 0.175775i
\(843\) 43.2132 17.8995i 1.48834 0.616491i
\(844\) 25.2843 10.4731i 0.870321 0.360499i
\(845\) 0 0
\(846\) 17.1716i 0.590371i
\(847\) 4.07107 9.82843i 0.139884 0.337709i
\(848\) −3.00000 3.00000i −0.103020 0.103020i
\(849\) 59.7990 2.05230
\(850\) 0 0
\(851\) −15.8579 −0.543601
\(852\) 44.1421 + 44.1421i 1.51228 + 1.51228i
\(853\) 16.2929 39.3345i 0.557858 1.34679i −0.353601 0.935397i \(-0.615043\pi\)
0.911459 0.411392i \(-0.134957\pi\)
\(854\) 4.14214i 0.141741i
\(855\) 0 0
\(856\) 9.24264 3.82843i 0.315907 0.130853i
\(857\) 3.53553 1.46447i 0.120772 0.0500252i −0.321479 0.946917i \(-0.604180\pi\)
0.442251 + 0.896891i \(0.354180\pi\)
\(858\) 1.17157 1.17157i 0.0399968 0.0399968i
\(859\) 0.727922 + 0.727922i 0.0248364 + 0.0248364i 0.719416 0.694580i \(-0.244410\pi\)
−0.694580 + 0.719416i \(0.744410\pi\)
\(860\) 0 0
\(861\) −21.3137 + 8.82843i −0.726369 + 0.300872i
\(862\) 15.2426 + 6.31371i 0.519166 + 0.215046i
\(863\) 34.6274 1.17873 0.589365 0.807867i \(-0.299378\pi\)
0.589365 + 0.807867i \(0.299378\pi\)
\(864\) 8.82843 + 3.65685i 0.300349 + 0.124409i
\(865\) 0 0
\(866\) 6.28427 0.213548
\(867\) −41.9706 14.5563i −1.42540 0.494360i
\(868\) 6.42641i 0.218126i
\(869\) −3.17157 + 3.17157i −0.107588 + 0.107588i
\(870\) 0 0
\(871\) 9.65685i 0.327210i
\(872\) 6.26346 + 2.59441i 0.212107 + 0.0878578i
\(873\) −9.43503 22.7782i −0.319327 0.770924i
\(874\) −3.17157 7.65685i −0.107280 0.258997i
\(875\) 0 0
\(876\) 18.1005 + 18.1005i 0.611559 + 0.611559i
\(877\) 34.7782 14.4056i 1.17438 0.486442i 0.291739 0.956498i \(-0.405766\pi\)
0.882637 + 0.470056i \(0.155766\pi\)
\(878\) 1.72792 + 4.17157i 0.0583145 + 0.140784i
\(879\) −23.6569 + 57.1127i −0.797926 + 1.92636i
\(880\) 0 0
\(881\) 17.1213 + 7.09188i 0.576832 + 0.238932i 0.651974 0.758241i \(-0.273941\pi\)
−0.0751422 + 0.997173i \(0.523941\pi\)
\(882\) −6.53553 6.53553i −0.220063 0.220063i
\(883\) 8.00000i 0.269221i −0.990899 0.134611i \(-0.957022\pi\)
0.990899 0.134611i \(-0.0429784\pi\)
\(884\) 7.31371 7.75736i 0.245987 0.260908i
\(885\) 0 0
\(886\) −4.62742 + 4.62742i −0.155461 + 0.155461i
\(887\) −18.6985 + 45.1421i −0.627834 + 1.51572i 0.214475 + 0.976729i \(0.431196\pi\)
−0.842309 + 0.538995i \(0.818804\pi\)
\(888\) −15.8579 −0.532155
\(889\) −7.17157 + 17.3137i −0.240527 + 0.580683i
\(890\) 0 0
\(891\) 2.41421 + 5.82843i 0.0808792 + 0.195260i
\(892\) −1.07107 + 1.07107i −0.0358620 + 0.0358620i
\(893\) 36.9706 36.9706i 1.23717 1.23717i
\(894\) −7.02944 16.9706i −0.235100 0.567581i
\(895\) 0 0
\(896\) −4.37258 + 10.5563i −0.146078 + 0.352663i
\(897\) −15.3137 −0.511310
\(898\) 2.97918 7.19239i 0.0994167 0.240013i
\(899\) −10.2426 + 10.2426i −0.341611 + 0.341611i
\(900\) 0 0
\(901\) −0.171573 5.82843i −0.00571592 0.194173i
\(902\) 3.65685i 0.121760i
\(903\) 9.65685 + 9.65685i 0.321360 + 0.321360i
\(904\) 23.7071 + 9.81981i 0.788487 + 0.326602i
\(905\) 0 0
\(906\) −5.31371 + 12.8284i −0.176536 + 0.426196i
\(907\) −9.58579 23.1421i −0.318291 0.768422i −0.999345 0.0361889i \(-0.988478\pi\)
0.681054 0.732233i \(-0.261522\pi\)
\(908\) −8.51472 + 3.52691i −0.282571 + 0.117045i
\(909\) 36.3137 + 36.3137i 1.20445 + 1.20445i
\(910\) 0 0
\(911\) −3.24264 7.82843i −0.107433 0.259367i 0.861016 0.508578i \(-0.169829\pi\)
−0.968449 + 0.249211i \(0.919829\pi\)
\(912\) 14.4853 + 34.9706i 0.479656 + 1.15799i
\(913\) −0.343146 0.142136i −0.0113565 0.00470400i
\(914\) 7.79899i 0.257968i
\(915\) 0 0
\(916\) −29.5147 + 29.5147i −0.975194 + 0.975194i
\(917\) 0.201010i 0.00663794i
\(918\) 1.51472 + 3.37258i 0.0499932 + 0.111312i
\(919\) 3.31371 0.109309 0.0546546 0.998505i \(-0.482594\pi\)
0.0546546 + 0.998505i \(0.482594\pi\)
\(920\) 0 0
\(921\) −5.17157 2.14214i −0.170409 0.0705858i
\(922\) −9.95837 −0.327961
\(923\) −17.0711 7.07107i −0.561901 0.232747i
\(924\) 5.17157 2.14214i 0.170132 0.0704711i
\(925\) 0 0
\(926\) −8.97056 8.97056i −0.294791 0.294791i
\(927\) 12.1421 12.1421i 0.398800 0.398800i
\(928\) 18.1924 7.53553i 0.597194 0.247366i
\(929\) −19.3640 + 8.02082i −0.635311 + 0.263154i −0.677008 0.735976i \(-0.736724\pi\)
0.0416968 + 0.999130i \(0.486724\pi\)
\(930\) 0 0
\(931\) 28.1421i 0.922321i
\(932\) −7.09188 + 17.1213i −0.232302 + 0.560827i
\(933\) −8.34315 8.34315i −0.273142 0.273142i
\(934\) 5.23045 0.171145
\(935\) 0 0
\(936\) −8.58579 −0.280635
\(937\) 2.51472 + 2.51472i 0.0821523 + 0.0821523i 0.746989 0.664837i \(-0.231499\pi\)
−0.664837 + 0.746989i \(0.731499\pi\)
\(938\) −1.17157 + 2.82843i −0.0382532 + 0.0923514i
\(939\) 33.3137i 1.08715i
\(940\) 0 0
\(941\) 17.2635 7.15076i 0.562773 0.233108i −0.0831158 0.996540i \(-0.526487\pi\)
0.645888 + 0.763432i \(0.276487\pi\)
\(942\) 1.65685 0.686292i 0.0539832 0.0223606i
\(943\) −23.8995 + 23.8995i −0.778275 + 0.778275i
\(944\) −12.7279 12.7279i −0.414259 0.414259i
\(945\) 0 0
\(946\) −2.00000 + 0.828427i −0.0650256 + 0.0269345i
\(947\) 13.7279 + 5.68629i 0.446098 + 0.184780i 0.594412 0.804161i \(-0.297385\pi\)
−0.148315 + 0.988940i \(0.547385\pi\)
\(948\) 19.7990 0.643041
\(949\) −7.00000 2.89949i −0.227230 0.0941216i
\(950\) 0 0
\(951\) 15.1716 0.491972
\(952\) −6.45584 + 2.89949i −0.209235 + 0.0939732i
\(953\) 9.69848i 0.314165i 0.987586 + 0.157082i \(0.0502088\pi\)
−0.987586 + 0.157082i \(0.949791\pi\)
\(954\) −1.58579 + 1.58579i −0.0513417 + 0.0513417i
\(955\) 0 0
\(956\) 16.7696i 0.542366i
\(957\) −11.6569 4.82843i −0.376813 0.156081i
\(958\) −5.48528 13.2426i −0.177221 0.427850i
\(959\) −3.61522 8.72792i −0.116742 0.281839i
\(960\) 0 0
\(961\) −14.4645 14.4645i −0.466596 0.466596i
\(962\) 2.07107 0.857864i 0.0667739 0.0276587i
\(963\) 9.24264 + 22.3137i 0.297840 + 0.719049i
\(964\) 8.60660 20.7782i 0.277200 0.669220i
\(965\) 0 0
\(966\) 4.48528 + 1.85786i 0.144312 + 0.0597758i
\(967\) 22.8701 + 22.8701i 0.735451 + 0.735451i 0.971694 0.236243i \(-0.0759160\pi\)
−0.236243 + 0.971694i \(0.575916\pi\)
\(968\) 15.5858i 0.500946i
\(969\) −18.4853 + 48.6274i −0.593833 + 1.56214i
\(970\) 0 0
\(971\) −39.4142 + 39.4142i −1.26486 + 1.26486i −0.316155 + 0.948708i \(0.602392\pi\)
−0.948708 + 0.316155i \(0.897608\pi\)
\(972\) 15.2010 36.6985i 0.487573 1.17710i
\(973\) −16.2010 −0.519381
\(974\) −0.698485 + 1.68629i −0.0223809 + 0.0540323i
\(975\) 0 0
\(976\) −10.6066 25.6066i −0.339509 0.819647i
\(977\) −1.14214 + 1.14214i −0.0365402 + 0.0365402i −0.725141 0.688601i \(-0.758225\pi\)
0.688601 + 0.725141i \(0.258225\pi\)
\(978\) −4.34315 + 4.34315i −0.138878 + 0.138878i
\(979\) −3.89949 9.41421i −0.124628 0.300880i
\(980\) 0 0
\(981\) −6.26346 + 15.1213i −0.199977 + 0.482787i
\(982\) −10.4020 −0.331942
\(983\) −9.00000 + 21.7279i −0.287055 + 0.693013i −0.999966 0.00824183i \(-0.997377\pi\)
0.712911 + 0.701255i \(0.247377\pi\)
\(984\) −23.8995 + 23.8995i −0.761888 + 0.761888i
\(985\) 0 0
\(986\) 7.12132 + 2.70711i 0.226789 + 0.0862118i
\(987\) 30.6274i 0.974881i
\(988\) −8.82843 8.82843i −0.280870 0.280870i
\(989\) 18.4853 + 7.65685i 0.587798 + 0.243474i
\(990\) 0 0
\(991\) 12.2721 29.6274i 0.389835 0.941146i −0.600139 0.799896i \(-0.704888\pi\)
0.989974 0.141250i \(-0.0451121\pi\)
\(992\) −5.48528 13.2426i −0.174158 0.420454i
\(993\) 42.9706 17.7990i 1.36363 0.564834i
\(994\) 4.14214 + 4.14214i 0.131381 + 0.131381i
\(995\) 0 0
\(996\) 0.627417 + 1.51472i 0.0198805 + 0.0479957i
\(997\) −2.94975 7.12132i −0.0934194 0.225534i 0.870262 0.492589i \(-0.163950\pi\)
−0.963681 + 0.267055i \(0.913950\pi\)
\(998\) 14.1716 + 5.87006i 0.448593 + 0.185813i
\(999\) 8.28427i 0.262103i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.n.a.349.1 4
5.2 odd 4 425.2.m.a.26.1 4
5.3 odd 4 17.2.d.a.9.1 yes 4
5.4 even 2 425.2.n.b.349.1 4
15.8 even 4 153.2.l.c.145.1 4
17.2 even 8 425.2.n.b.274.1 4
20.3 even 4 272.2.v.d.145.1 4
35.3 even 12 833.2.v.a.128.1 8
35.13 even 4 833.2.l.a.638.1 4
35.18 odd 12 833.2.v.b.128.1 8
35.23 odd 12 833.2.v.b.655.1 8
35.33 even 12 833.2.v.a.655.1 8
85.2 odd 8 425.2.m.a.376.1 4
85.3 even 16 289.2.c.c.251.3 8
85.8 odd 8 289.2.d.c.134.1 4
85.13 odd 4 289.2.d.c.110.1 4
85.19 even 8 inner 425.2.n.a.274.1 4
85.23 even 16 289.2.a.f.1.1 4
85.28 even 16 289.2.a.f.1.2 4
85.33 odd 4 289.2.d.a.179.1 4
85.38 odd 4 289.2.d.b.110.1 4
85.43 odd 8 289.2.d.b.134.1 4
85.48 even 16 289.2.c.c.251.4 8
85.53 odd 8 17.2.d.a.2.1 4
85.57 even 16 7225.2.a.u.1.4 4
85.58 even 16 289.2.b.b.288.4 4
85.62 even 16 7225.2.a.u.1.3 4
85.63 even 16 289.2.c.c.38.1 8
85.73 even 16 289.2.c.c.38.2 8
85.78 even 16 289.2.b.b.288.3 4
85.83 odd 8 289.2.d.a.155.1 4
255.23 odd 16 2601.2.a.bb.1.4 4
255.53 even 8 153.2.l.c.19.1 4
255.113 odd 16 2601.2.a.bb.1.3 4
340.23 odd 16 4624.2.a.bp.1.4 4
340.223 even 8 272.2.v.d.257.1 4
340.283 odd 16 4624.2.a.bp.1.1 4
595.53 odd 24 833.2.v.b.716.1 8
595.138 even 24 833.2.v.a.410.1 8
595.223 even 8 833.2.l.a.393.1 4
595.478 odd 24 833.2.v.b.410.1 8
595.563 even 24 833.2.v.a.716.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.2.d.a.2.1 4 85.53 odd 8
17.2.d.a.9.1 yes 4 5.3 odd 4
153.2.l.c.19.1 4 255.53 even 8
153.2.l.c.145.1 4 15.8 even 4
272.2.v.d.145.1 4 20.3 even 4
272.2.v.d.257.1 4 340.223 even 8
289.2.a.f.1.1 4 85.23 even 16
289.2.a.f.1.2 4 85.28 even 16
289.2.b.b.288.3 4 85.78 even 16
289.2.b.b.288.4 4 85.58 even 16
289.2.c.c.38.1 8 85.63 even 16
289.2.c.c.38.2 8 85.73 even 16
289.2.c.c.251.3 8 85.3 even 16
289.2.c.c.251.4 8 85.48 even 16
289.2.d.a.155.1 4 85.83 odd 8
289.2.d.a.179.1 4 85.33 odd 4
289.2.d.b.110.1 4 85.38 odd 4
289.2.d.b.134.1 4 85.43 odd 8
289.2.d.c.110.1 4 85.13 odd 4
289.2.d.c.134.1 4 85.8 odd 8
425.2.m.a.26.1 4 5.2 odd 4
425.2.m.a.376.1 4 85.2 odd 8
425.2.n.a.274.1 4 85.19 even 8 inner
425.2.n.a.349.1 4 1.1 even 1 trivial
425.2.n.b.274.1 4 17.2 even 8
425.2.n.b.349.1 4 5.4 even 2
833.2.l.a.393.1 4 595.223 even 8
833.2.l.a.638.1 4 35.13 even 4
833.2.v.a.128.1 8 35.3 even 12
833.2.v.a.410.1 8 595.138 even 24
833.2.v.a.655.1 8 35.33 even 12
833.2.v.a.716.1 8 595.563 even 24
833.2.v.b.128.1 8 35.18 odd 12
833.2.v.b.410.1 8 595.478 odd 24
833.2.v.b.655.1 8 35.23 odd 12
833.2.v.b.716.1 8 595.53 odd 24
2601.2.a.bb.1.3 4 255.113 odd 16
2601.2.a.bb.1.4 4 255.23 odd 16
4624.2.a.bp.1.1 4 340.283 odd 16
4624.2.a.bp.1.4 4 340.23 odd 16
7225.2.a.u.1.3 4 85.62 even 16
7225.2.a.u.1.4 4 85.57 even 16