Properties

Label 289.2.c.c.251.4
Level $289$
Weight $2$
Character 289.251
Analytic conductor $2.308$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [289,2,Mod(38,289)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(289, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("289.38");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 289 = 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 289.c (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.30767661842\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{16})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 17)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 251.4
Root \(0.382683 - 0.923880i\) of defining polynomial
Character \(\chi\) \(=\) 289.251
Dual form 289.2.c.c.38.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.414214i q^{2} +(1.84776 + 1.84776i) q^{3} +1.82843 q^{4} +(-1.30656 - 1.30656i) q^{5} +(-0.765367 + 0.765367i) q^{6} +(-0.765367 + 0.765367i) q^{7} +1.58579i q^{8} +3.82843i q^{9} +(0.541196 - 0.541196i) q^{10} +(-0.765367 + 0.765367i) q^{11} +(3.37849 + 3.37849i) q^{12} +1.41421 q^{13} +(-0.317025 - 0.317025i) q^{14} -4.82843i q^{15} +3.00000 q^{16} -1.58579 q^{18} -4.82843i q^{19} +(-2.38896 - 2.38896i) q^{20} -2.82843 q^{21} +(-0.317025 - 0.317025i) q^{22} +(-2.93015 + 2.93015i) q^{23} +(-2.93015 + 2.93015i) q^{24} -1.58579i q^{25} +0.585786i q^{26} +(-1.53073 + 1.53073i) q^{27} +(-1.39942 + 1.39942i) q^{28} +(-3.15432 - 3.15432i) q^{29} +2.00000 q^{30} +(-2.29610 - 2.29610i) q^{31} +4.41421i q^{32} -2.82843 q^{33} +2.00000 q^{35} +7.00000i q^{36} +(2.70598 + 2.70598i) q^{37} +2.00000 q^{38} +(2.61313 + 2.61313i) q^{39} +(2.07193 - 2.07193i) q^{40} +(5.76745 - 5.76745i) q^{41} -1.17157i q^{42} -4.82843i q^{43} +(-1.39942 + 1.39942i) q^{44} +(5.00208 - 5.00208i) q^{45} +(-1.21371 - 1.21371i) q^{46} -10.8284 q^{47} +(5.54328 + 5.54328i) q^{48} +5.82843i q^{49} +0.656854 q^{50} +2.58579 q^{52} +1.41421i q^{53} +(-0.634051 - 0.634051i) q^{54} +2.00000 q^{55} +(-1.21371 - 1.21371i) q^{56} +(8.92177 - 8.92177i) q^{57} +(1.30656 - 1.30656i) q^{58} +6.00000i q^{59} -8.82843i q^{60} +(6.53281 - 6.53281i) q^{61} +(0.951076 - 0.951076i) q^{62} +(-2.93015 - 2.93015i) q^{63} +4.17157 q^{64} +(-1.84776 - 1.84776i) q^{65} -1.17157i q^{66} -6.82843 q^{67} -10.8284 q^{69} +0.828427i q^{70} +(-9.23880 - 9.23880i) q^{71} -6.07107 q^{72} +(3.78837 + 3.78837i) q^{73} +(-1.12085 + 1.12085i) q^{74} +(2.93015 - 2.93015i) q^{75} -8.82843i q^{76} -1.17157i q^{77} +(-1.08239 + 1.08239i) q^{78} +(-2.93015 + 2.93015i) q^{79} +(-3.91969 - 3.91969i) q^{80} +5.82843 q^{81} +(2.38896 + 2.38896i) q^{82} -0.343146i q^{83} -5.17157 q^{84} +2.00000 q^{86} -11.6569i q^{87} +(-1.21371 - 1.21371i) q^{88} -9.41421 q^{89} +(2.07193 + 2.07193i) q^{90} +(-1.08239 + 1.08239i) q^{91} +(-5.35757 + 5.35757i) q^{92} -8.48528i q^{93} -4.48528i q^{94} +(-6.30864 + 6.30864i) q^{95} +(-8.15640 + 8.15640i) q^{96} +(4.55374 + 4.55374i) q^{97} -2.41421 q^{98} +(-2.93015 - 2.93015i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} + 24 q^{16} - 24 q^{18} + 16 q^{30} + 16 q^{35} + 16 q^{38} - 64 q^{47} - 40 q^{50} + 32 q^{52} + 16 q^{55} + 56 q^{64} - 32 q^{67} - 64 q^{69} + 8 q^{72} + 24 q^{81} - 64 q^{84} + 16 q^{86}+ \cdots - 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/289\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.414214i 0.292893i 0.989219 + 0.146447i \(0.0467837\pi\)
−0.989219 + 0.146447i \(0.953216\pi\)
\(3\) 1.84776 + 1.84776i 1.06680 + 1.06680i 0.997603 + 0.0692015i \(0.0220451\pi\)
0.0692015 + 0.997603i \(0.477955\pi\)
\(4\) 1.82843 0.914214
\(5\) −1.30656 1.30656i −0.584313 0.584313i 0.351773 0.936085i \(-0.385579\pi\)
−0.936085 + 0.351773i \(0.885579\pi\)
\(6\) −0.765367 + 0.765367i −0.312460 + 0.312460i
\(7\) −0.765367 + 0.765367i −0.289281 + 0.289281i −0.836796 0.547515i \(-0.815574\pi\)
0.547515 + 0.836796i \(0.315574\pi\)
\(8\) 1.58579i 0.560660i
\(9\) 3.82843i 1.27614i
\(10\) 0.541196 0.541196i 0.171141 0.171141i
\(11\) −0.765367 + 0.765367i −0.230767 + 0.230767i −0.813013 0.582246i \(-0.802174\pi\)
0.582246 + 0.813013i \(0.302174\pi\)
\(12\) 3.37849 + 3.37849i 0.975287 + 0.975287i
\(13\) 1.41421 0.392232 0.196116 0.980581i \(-0.437167\pi\)
0.196116 + 0.980581i \(0.437167\pi\)
\(14\) −0.317025 0.317025i −0.0847286 0.0847286i
\(15\) 4.82843i 1.24669i
\(16\) 3.00000 0.750000
\(17\) 0 0
\(18\) −1.58579 −0.373773
\(19\) 4.82843i 1.10772i −0.832611 0.553859i \(-0.813155\pi\)
0.832611 0.553859i \(-0.186845\pi\)
\(20\) −2.38896 2.38896i −0.534187 0.534187i
\(21\) −2.82843 −0.617213
\(22\) −0.317025 0.317025i −0.0675900 0.0675900i
\(23\) −2.93015 + 2.93015i −0.610979 + 0.610979i −0.943201 0.332222i \(-0.892202\pi\)
0.332222 + 0.943201i \(0.392202\pi\)
\(24\) −2.93015 + 2.93015i −0.598115 + 0.598115i
\(25\) 1.58579i 0.317157i
\(26\) 0.585786i 0.114882i
\(27\) −1.53073 + 1.53073i −0.294590 + 0.294590i
\(28\) −1.39942 + 1.39942i −0.264465 + 0.264465i
\(29\) −3.15432 3.15432i −0.585743 0.585743i 0.350733 0.936476i \(-0.385933\pi\)
−0.936476 + 0.350733i \(0.885933\pi\)
\(30\) 2.00000 0.365148
\(31\) −2.29610 2.29610i −0.412392 0.412392i 0.470179 0.882571i \(-0.344189\pi\)
−0.882571 + 0.470179i \(0.844189\pi\)
\(32\) 4.41421i 0.780330i
\(33\) −2.82843 −0.492366
\(34\) 0 0
\(35\) 2.00000 0.338062
\(36\) 7.00000i 1.16667i
\(37\) 2.70598 + 2.70598i 0.444860 + 0.444860i 0.893642 0.448781i \(-0.148142\pi\)
−0.448781 + 0.893642i \(0.648142\pi\)
\(38\) 2.00000 0.324443
\(39\) 2.61313 + 2.61313i 0.418435 + 0.418435i
\(40\) 2.07193 2.07193i 0.327601 0.327601i
\(41\) 5.76745 5.76745i 0.900724 0.900724i −0.0947747 0.995499i \(-0.530213\pi\)
0.995499 + 0.0947747i \(0.0302131\pi\)
\(42\) 1.17157i 0.180778i
\(43\) 4.82843i 0.736328i −0.929761 0.368164i \(-0.879986\pi\)
0.929761 0.368164i \(-0.120014\pi\)
\(44\) −1.39942 + 1.39942i −0.210970 + 0.210970i
\(45\) 5.00208 5.00208i 0.745666 0.745666i
\(46\) −1.21371 1.21371i −0.178952 0.178952i
\(47\) −10.8284 −1.57949 −0.789744 0.613436i \(-0.789787\pi\)
−0.789744 + 0.613436i \(0.789787\pi\)
\(48\) 5.54328 + 5.54328i 0.800103 + 0.800103i
\(49\) 5.82843i 0.832632i
\(50\) 0.656854 0.0928932
\(51\) 0 0
\(52\) 2.58579 0.358584
\(53\) 1.41421i 0.194257i 0.995272 + 0.0971286i \(0.0309658\pi\)
−0.995272 + 0.0971286i \(0.969034\pi\)
\(54\) −0.634051 0.634051i −0.0862834 0.0862834i
\(55\) 2.00000 0.269680
\(56\) −1.21371 1.21371i −0.162189 0.162189i
\(57\) 8.92177 8.92177i 1.18172 1.18172i
\(58\) 1.30656 1.30656i 0.171560 0.171560i
\(59\) 6.00000i 0.781133i 0.920575 + 0.390567i \(0.127721\pi\)
−0.920575 + 0.390567i \(0.872279\pi\)
\(60\) 8.82843i 1.13975i
\(61\) 6.53281 6.53281i 0.836441 0.836441i −0.151947 0.988389i \(-0.548554\pi\)
0.988389 + 0.151947i \(0.0485544\pi\)
\(62\) 0.951076 0.951076i 0.120787 0.120787i
\(63\) −2.93015 2.93015i −0.369164 0.369164i
\(64\) 4.17157 0.521447
\(65\) −1.84776 1.84776i −0.229186 0.229186i
\(66\) 1.17157i 0.144211i
\(67\) −6.82843 −0.834225 −0.417113 0.908855i \(-0.636958\pi\)
−0.417113 + 0.908855i \(0.636958\pi\)
\(68\) 0 0
\(69\) −10.8284 −1.30359
\(70\) 0.828427i 0.0990160i
\(71\) −9.23880 9.23880i −1.09644 1.09644i −0.994823 0.101620i \(-0.967597\pi\)
−0.101620 0.994823i \(-0.532403\pi\)
\(72\) −6.07107 −0.715482
\(73\) 3.78837 + 3.78837i 0.443395 + 0.443395i 0.893151 0.449756i \(-0.148489\pi\)
−0.449756 + 0.893151i \(0.648489\pi\)
\(74\) −1.12085 + 1.12085i −0.130297 + 0.130297i
\(75\) 2.93015 2.93015i 0.338345 0.338345i
\(76\) 8.82843i 1.01269i
\(77\) 1.17157i 0.133513i
\(78\) −1.08239 + 1.08239i −0.122557 + 0.122557i
\(79\) −2.93015 + 2.93015i −0.329668 + 0.329668i −0.852460 0.522792i \(-0.824890\pi\)
0.522792 + 0.852460i \(0.324890\pi\)
\(80\) −3.91969 3.91969i −0.438235 0.438235i
\(81\) 5.82843 0.647603
\(82\) 2.38896 + 2.38896i 0.263816 + 0.263816i
\(83\) 0.343146i 0.0376651i −0.999823 0.0188326i \(-0.994005\pi\)
0.999823 0.0188326i \(-0.00599495\pi\)
\(84\) −5.17157 −0.564265
\(85\) 0 0
\(86\) 2.00000 0.215666
\(87\) 11.6569i 1.24975i
\(88\) −1.21371 1.21371i −0.129382 0.129382i
\(89\) −9.41421 −0.997905 −0.498952 0.866629i \(-0.666282\pi\)
−0.498952 + 0.866629i \(0.666282\pi\)
\(90\) 2.07193 + 2.07193i 0.218401 + 0.218401i
\(91\) −1.08239 + 1.08239i −0.113466 + 0.113466i
\(92\) −5.35757 + 5.35757i −0.558565 + 0.558565i
\(93\) 8.48528i 0.879883i
\(94\) 4.48528i 0.462621i
\(95\) −6.30864 + 6.30864i −0.647253 + 0.647253i
\(96\) −8.15640 + 8.15640i −0.832459 + 0.832459i
\(97\) 4.55374 + 4.55374i 0.462362 + 0.462362i 0.899429 0.437067i \(-0.143983\pi\)
−0.437067 + 0.899429i \(0.643983\pi\)
\(98\) −2.41421 −0.243872
\(99\) −2.93015 2.93015i −0.294491 0.294491i
\(100\) 2.89949i 0.289949i
\(101\) 13.4142 1.33476 0.667382 0.744715i \(-0.267415\pi\)
0.667382 + 0.744715i \(0.267415\pi\)
\(102\) 0 0
\(103\) −4.48528 −0.441948 −0.220974 0.975280i \(-0.570924\pi\)
−0.220974 + 0.975280i \(0.570924\pi\)
\(104\) 2.24264i 0.219909i
\(105\) 3.69552 + 3.69552i 0.360646 + 0.360646i
\(106\) −0.585786 −0.0568966
\(107\) 4.46088 + 4.46088i 0.431250 + 0.431250i 0.889053 0.457803i \(-0.151364\pi\)
−0.457803 + 0.889053i \(0.651364\pi\)
\(108\) −2.79884 + 2.79884i −0.269318 + 0.269318i
\(109\) −3.02301 + 3.02301i −0.289551 + 0.289551i −0.836903 0.547351i \(-0.815636\pi\)
0.547351 + 0.836903i \(0.315636\pi\)
\(110\) 0.828427i 0.0789874i
\(111\) 10.0000i 0.949158i
\(112\) −2.29610 + 2.29610i −0.216961 + 0.216961i
\(113\) 11.4420 11.4420i 1.07638 1.07638i 0.0795455 0.996831i \(-0.474653\pi\)
0.996831 0.0795455i \(-0.0253469\pi\)
\(114\) 3.69552 + 3.69552i 0.346117 + 0.346117i
\(115\) 7.65685 0.714005
\(116\) −5.76745 5.76745i −0.535494 0.535494i
\(117\) 5.41421i 0.500544i
\(118\) −2.48528 −0.228789
\(119\) 0 0
\(120\) 7.65685 0.698972
\(121\) 9.82843i 0.893493i
\(122\) 2.70598 + 2.70598i 0.244988 + 0.244988i
\(123\) 21.3137 1.92179
\(124\) −4.19825 4.19825i −0.377014 0.377014i
\(125\) −8.60474 + 8.60474i −0.769632 + 0.769632i
\(126\) 1.21371 1.21371i 0.108126 0.108126i
\(127\) 17.3137i 1.53634i 0.640244 + 0.768172i \(0.278833\pi\)
−0.640244 + 0.768172i \(0.721167\pi\)
\(128\) 10.5563i 0.933058i
\(129\) 8.92177 8.92177i 0.785518 0.785518i
\(130\) 0.765367 0.765367i 0.0671271 0.0671271i
\(131\) 0.131316 + 0.131316i 0.0114731 + 0.0114731i 0.712820 0.701347i \(-0.247418\pi\)
−0.701347 + 0.712820i \(0.747418\pi\)
\(132\) −5.17157 −0.450128
\(133\) 3.69552 + 3.69552i 0.320442 + 0.320442i
\(134\) 2.82843i 0.244339i
\(135\) 4.00000 0.344265
\(136\) 0 0
\(137\) 8.72792 0.745677 0.372838 0.927896i \(-0.378385\pi\)
0.372838 + 0.927896i \(0.378385\pi\)
\(138\) 4.48528i 0.381813i
\(139\) 10.5838 + 10.5838i 0.897708 + 0.897708i 0.995233 0.0975252i \(-0.0310926\pi\)
−0.0975252 + 0.995233i \(0.531093\pi\)
\(140\) 3.65685 0.309061
\(141\) −20.0083 20.0083i −1.68500 1.68500i
\(142\) 3.82683 3.82683i 0.321141 0.321141i
\(143\) −1.08239 + 1.08239i −0.0905142 + 0.0905142i
\(144\) 11.4853i 0.957107i
\(145\) 8.24264i 0.684514i
\(146\) −1.56920 + 1.56920i −0.129868 + 0.129868i
\(147\) −10.7695 + 10.7695i −0.888256 + 0.888256i
\(148\) 4.94769 + 4.94769i 0.406697 + 0.406697i
\(149\) −16.9706 −1.39028 −0.695141 0.718873i \(-0.744658\pi\)
−0.695141 + 0.718873i \(0.744658\pi\)
\(150\) 1.21371 + 1.21371i 0.0990989 + 0.0990989i
\(151\) 12.8284i 1.04396i −0.852957 0.521981i \(-0.825193\pi\)
0.852957 0.521981i \(-0.174807\pi\)
\(152\) 7.65685 0.621053
\(153\) 0 0
\(154\) 0.485281 0.0391051
\(155\) 6.00000i 0.481932i
\(156\) 4.77791 + 4.77791i 0.382539 + 0.382539i
\(157\) −1.65685 −0.132231 −0.0661157 0.997812i \(-0.521061\pi\)
−0.0661157 + 0.997812i \(0.521061\pi\)
\(158\) −1.21371 1.21371i −0.0965575 0.0965575i
\(159\) −2.61313 + 2.61313i −0.207234 + 0.207234i
\(160\) 5.76745 5.76745i 0.455957 0.455957i
\(161\) 4.48528i 0.353490i
\(162\) 2.41421i 0.189679i
\(163\) −4.01254 + 4.01254i −0.314287 + 0.314287i −0.846568 0.532281i \(-0.821335\pi\)
0.532281 + 0.846568i \(0.321335\pi\)
\(164\) 10.5454 10.5454i 0.823454 0.823454i
\(165\) 3.69552 + 3.69552i 0.287696 + 0.287696i
\(166\) 0.142136 0.0110319
\(167\) 7.07401 + 7.07401i 0.547403 + 0.547403i 0.925689 0.378286i \(-0.123486\pi\)
−0.378286 + 0.925689i \(0.623486\pi\)
\(168\) 4.48528i 0.346047i
\(169\) −11.0000 −0.846154
\(170\) 0 0
\(171\) 18.4853 1.41360
\(172\) 8.82843i 0.673161i
\(173\) 2.38896 + 2.38896i 0.181629 + 0.181629i 0.792065 0.610436i \(-0.209006\pi\)
−0.610436 + 0.792065i \(0.709006\pi\)
\(174\) 4.82843 0.366042
\(175\) 1.21371 + 1.21371i 0.0917477 + 0.0917477i
\(176\) −2.29610 + 2.29610i −0.173075 + 0.173075i
\(177\) −11.0866 + 11.0866i −0.833316 + 0.833316i
\(178\) 3.89949i 0.292280i
\(179\) 6.00000i 0.448461i 0.974536 + 0.224231i \(0.0719869\pi\)
−0.974536 + 0.224231i \(0.928013\pi\)
\(180\) 9.14594 9.14594i 0.681698 0.681698i
\(181\) −8.82892 + 8.82892i −0.656248 + 0.656248i −0.954490 0.298242i \(-0.903600\pi\)
0.298242 + 0.954490i \(0.403600\pi\)
\(182\) −0.448342 0.448342i −0.0332333 0.0332333i
\(183\) 24.1421 1.78464
\(184\) −4.64659 4.64659i −0.342551 0.342551i
\(185\) 7.07107i 0.519875i
\(186\) 3.51472 0.257712
\(187\) 0 0
\(188\) −19.7990 −1.44399
\(189\) 2.34315i 0.170439i
\(190\) −2.61313 2.61313i −0.189576 0.189576i
\(191\) −20.0000 −1.44715 −0.723575 0.690246i \(-0.757502\pi\)
−0.723575 + 0.690246i \(0.757502\pi\)
\(192\) 7.70806 + 7.70806i 0.556281 + 0.556281i
\(193\) −3.91969 + 3.91969i −0.282145 + 0.282145i −0.833964 0.551819i \(-0.813934\pi\)
0.551819 + 0.833964i \(0.313934\pi\)
\(194\) −1.88622 + 1.88622i −0.135423 + 0.135423i
\(195\) 6.82843i 0.488994i
\(196\) 10.6569i 0.761204i
\(197\) −10.5454 + 10.5454i −0.751326 + 0.751326i −0.974727 0.223401i \(-0.928284\pi\)
0.223401 + 0.974727i \(0.428284\pi\)
\(198\) 1.21371 1.21371i 0.0862545 0.0862545i
\(199\) −1.21371 1.21371i −0.0860375 0.0860375i 0.662778 0.748816i \(-0.269377\pi\)
−0.748816 + 0.662778i \(0.769377\pi\)
\(200\) 2.51472 0.177817
\(201\) −12.6173 12.6173i −0.889955 0.889955i
\(202\) 5.55635i 0.390943i
\(203\) 4.82843 0.338889
\(204\) 0 0
\(205\) −15.0711 −1.05261
\(206\) 1.85786i 0.129444i
\(207\) −11.2179 11.2179i −0.779696 0.779696i
\(208\) 4.24264 0.294174
\(209\) 3.69552 + 3.69552i 0.255624 + 0.255624i
\(210\) −1.53073 + 1.53073i −0.105631 + 0.105631i
\(211\) −10.5838 + 10.5838i −0.728620 + 0.728620i −0.970345 0.241725i \(-0.922287\pi\)
0.241725 + 0.970345i \(0.422287\pi\)
\(212\) 2.58579i 0.177593i
\(213\) 34.1421i 2.33938i
\(214\) −1.84776 + 1.84776i −0.126310 + 0.126310i
\(215\) −6.30864 + 6.30864i −0.430246 + 0.430246i
\(216\) −2.42742 2.42742i −0.165165 0.165165i
\(217\) 3.51472 0.238595
\(218\) −1.25217 1.25217i −0.0848077 0.0848077i
\(219\) 14.0000i 0.946032i
\(220\) 3.65685 0.246545
\(221\) 0 0
\(222\) −4.14214 −0.278002
\(223\) 0.828427i 0.0554756i −0.999615 0.0277378i \(-0.991170\pi\)
0.999615 0.0277378i \(-0.00883035\pi\)
\(224\) −3.37849 3.37849i −0.225735 0.225735i
\(225\) 6.07107 0.404738
\(226\) 4.73945 + 4.73945i 0.315263 + 0.315263i
\(227\) 3.56420 3.56420i 0.236564 0.236564i −0.578861 0.815426i \(-0.696503\pi\)
0.815426 + 0.578861i \(0.196503\pi\)
\(228\) 16.3128 16.3128i 1.08034 1.08034i
\(229\) 22.8284i 1.50854i −0.656562 0.754272i \(-0.727990\pi\)
0.656562 0.754272i \(-0.272010\pi\)
\(230\) 3.17157i 0.209127i
\(231\) 2.16478 2.16478i 0.142432 0.142432i
\(232\) 5.00208 5.00208i 0.328403 0.328403i
\(233\) 7.16687 + 7.16687i 0.469517 + 0.469517i 0.901758 0.432241i \(-0.142277\pi\)
−0.432241 + 0.901758i \(0.642277\pi\)
\(234\) −2.24264 −0.146606
\(235\) 14.1480 + 14.1480i 0.922915 + 0.922915i
\(236\) 10.9706i 0.714123i
\(237\) −10.8284 −0.703382
\(238\) 0 0
\(239\) 9.17157 0.593260 0.296630 0.954993i \(-0.404137\pi\)
0.296630 + 0.954993i \(0.404137\pi\)
\(240\) 14.4853i 0.935021i
\(241\) −8.69760 8.69760i −0.560262 0.560262i 0.369120 0.929382i \(-0.379659\pi\)
−0.929382 + 0.369120i \(0.879659\pi\)
\(242\) −4.07107 −0.261698
\(243\) 15.3617 + 15.3617i 0.985455 + 0.985455i
\(244\) 11.9448 11.9448i 0.764686 0.764686i
\(245\) 7.61521 7.61521i 0.486518 0.486518i
\(246\) 8.82843i 0.562880i
\(247\) 6.82843i 0.434482i
\(248\) 3.64113 3.64113i 0.231212 0.231212i
\(249\) 0.634051 0.634051i 0.0401813 0.0401813i
\(250\) −3.56420 3.56420i −0.225420 0.225420i
\(251\) −3.51472 −0.221847 −0.110924 0.993829i \(-0.535381\pi\)
−0.110924 + 0.993829i \(0.535381\pi\)
\(252\) −5.35757 5.35757i −0.337495 0.337495i
\(253\) 4.48528i 0.281987i
\(254\) −7.17157 −0.449985
\(255\) 0 0
\(256\) 3.97056 0.248160
\(257\) 22.1421i 1.38119i 0.723242 + 0.690594i \(0.242651\pi\)
−0.723242 + 0.690594i \(0.757349\pi\)
\(258\) 3.69552 + 3.69552i 0.230073 + 0.230073i
\(259\) −4.14214 −0.257380
\(260\) −3.37849 3.37849i −0.209525 0.209525i
\(261\) 12.0761 12.0761i 0.747491 0.747491i
\(262\) −0.0543929 + 0.0543929i −0.00336041 + 0.00336041i
\(263\) 6.48528i 0.399900i 0.979806 + 0.199950i \(0.0640779\pi\)
−0.979806 + 0.199950i \(0.935922\pi\)
\(264\) 4.48528i 0.276050i
\(265\) 1.84776 1.84776i 0.113507 0.113507i
\(266\) −1.53073 + 1.53073i −0.0938553 + 0.0938553i
\(267\) −17.3952 17.3952i −1.06457 1.06457i
\(268\) −12.4853 −0.762660
\(269\) 4.49935 + 4.49935i 0.274330 + 0.274330i 0.830841 0.556511i \(-0.187860\pi\)
−0.556511 + 0.830841i \(0.687860\pi\)
\(270\) 1.65685i 0.100833i
\(271\) 6.14214 0.373108 0.186554 0.982445i \(-0.440268\pi\)
0.186554 + 0.982445i \(0.440268\pi\)
\(272\) 0 0
\(273\) −4.00000 −0.242091
\(274\) 3.61522i 0.218404i
\(275\) 1.21371 + 1.21371i 0.0731894 + 0.0731894i
\(276\) −19.7990 −1.19176
\(277\) −15.5859 15.5859i −0.936466 0.936466i 0.0616329 0.998099i \(-0.480369\pi\)
−0.998099 + 0.0616329i \(0.980369\pi\)
\(278\) −4.38396 + 4.38396i −0.262933 + 0.262933i
\(279\) 8.79045 8.79045i 0.526271 0.526271i
\(280\) 3.17157i 0.189538i
\(281\) 17.8995i 1.06779i −0.845549 0.533897i \(-0.820727\pi\)
0.845549 0.533897i \(-0.179273\pi\)
\(282\) 8.28772 8.28772i 0.493527 0.493527i
\(283\) 16.1815 16.1815i 0.961890 0.961890i −0.0374103 0.999300i \(-0.511911\pi\)
0.999300 + 0.0374103i \(0.0119108\pi\)
\(284\) −16.8925 16.8925i −1.00238 1.00238i
\(285\) −23.3137 −1.38098
\(286\) −0.448342 0.448342i −0.0265110 0.0265110i
\(287\) 8.82843i 0.521126i
\(288\) −16.8995 −0.995812
\(289\) 0 0
\(290\) −3.41421 −0.200490
\(291\) 16.8284i 0.986500i
\(292\) 6.92676 + 6.92676i 0.405358 + 0.405358i
\(293\) 23.6569 1.38205 0.691024 0.722832i \(-0.257160\pi\)
0.691024 + 0.722832i \(0.257160\pi\)
\(294\) −4.46088 4.46088i −0.260164 0.260164i
\(295\) 7.83938 7.83938i 0.456426 0.456426i
\(296\) −4.29111 + 4.29111i −0.249416 + 0.249416i
\(297\) 2.34315i 0.135963i
\(298\) 7.02944i 0.407204i
\(299\) −4.14386 + 4.14386i −0.239646 + 0.239646i
\(300\) 5.35757 5.35757i 0.309319 0.309319i
\(301\) 3.69552 + 3.69552i 0.213006 + 0.213006i
\(302\) 5.31371 0.305770
\(303\) 24.7862 + 24.7862i 1.42393 + 1.42393i
\(304\) 14.4853i 0.830788i
\(305\) −17.0711 −0.977486
\(306\) 0 0
\(307\) 2.14214 0.122258 0.0611291 0.998130i \(-0.480530\pi\)
0.0611291 + 0.998130i \(0.480530\pi\)
\(308\) 2.14214i 0.122060i
\(309\) −8.28772 8.28772i −0.471472 0.471472i
\(310\) −2.48528 −0.141154
\(311\) 3.19278 + 3.19278i 0.181046 + 0.181046i 0.791812 0.610765i \(-0.209138\pi\)
−0.610765 + 0.791812i \(0.709138\pi\)
\(312\) −4.14386 + 4.14386i −0.234600 + 0.234600i
\(313\) 9.01462 9.01462i 0.509537 0.509537i −0.404848 0.914384i \(-0.632675\pi\)
0.914384 + 0.404848i \(0.132675\pi\)
\(314\) 0.686292i 0.0387297i
\(315\) 7.65685i 0.431415i
\(316\) −5.35757 + 5.35757i −0.301387 + 0.301387i
\(317\) −4.10540 + 4.10540i −0.230582 + 0.230582i −0.812936 0.582354i \(-0.802132\pi\)
0.582354 + 0.812936i \(0.302132\pi\)
\(318\) −1.08239 1.08239i −0.0606975 0.0606975i
\(319\) 4.82843 0.270340
\(320\) −5.45042 5.45042i −0.304688 0.304688i
\(321\) 16.4853i 0.920119i
\(322\) 1.85786 0.103535
\(323\) 0 0
\(324\) 10.6569 0.592047
\(325\) 2.24264i 0.124399i
\(326\) −1.66205 1.66205i −0.0920524 0.0920524i
\(327\) −11.1716 −0.617789
\(328\) 9.14594 + 9.14594i 0.505000 + 0.505000i
\(329\) 8.28772 8.28772i 0.456917 0.456917i
\(330\) −1.53073 + 1.53073i −0.0842641 + 0.0842641i
\(331\) 17.7990i 0.978321i 0.872194 + 0.489160i \(0.162697\pi\)
−0.872194 + 0.489160i \(0.837303\pi\)
\(332\) 0.627417i 0.0344340i
\(333\) −10.3596 + 10.3596i −0.567705 + 0.567705i
\(334\) −2.93015 + 2.93015i −0.160331 + 0.160331i
\(335\) 8.92177 + 8.92177i 0.487448 + 0.487448i
\(336\) −8.48528 −0.462910
\(337\) −24.3764 24.3764i −1.32786 1.32786i −0.907230 0.420634i \(-0.861808\pi\)
−0.420634 0.907230i \(-0.638192\pi\)
\(338\) 4.55635i 0.247833i
\(339\) 42.2843 2.29657
\(340\) 0 0
\(341\) 3.51472 0.190333
\(342\) 7.65685i 0.414035i
\(343\) −9.81845 9.81845i −0.530147 0.530147i
\(344\) 7.65685 0.412830
\(345\) 14.1480 + 14.1480i 0.761704 + 0.761704i
\(346\) −0.989538 + 0.989538i −0.0531979 + 0.0531979i
\(347\) 2.74444 2.74444i 0.147329 0.147329i −0.629595 0.776924i \(-0.716779\pi\)
0.776924 + 0.629595i \(0.216779\pi\)
\(348\) 21.3137i 1.14253i
\(349\) 4.24264i 0.227103i 0.993532 + 0.113552i \(0.0362227\pi\)
−0.993532 + 0.113552i \(0.963777\pi\)
\(350\) −0.502734 + 0.502734i −0.0268723 + 0.0268723i
\(351\) −2.16478 + 2.16478i −0.115548 + 0.115548i
\(352\) −3.37849 3.37849i −0.180074 0.180074i
\(353\) 14.0000 0.745145 0.372572 0.928003i \(-0.378476\pi\)
0.372572 + 0.928003i \(0.378476\pi\)
\(354\) −4.59220 4.59220i −0.244073 0.244073i
\(355\) 24.1421i 1.28133i
\(356\) −17.2132 −0.912298
\(357\) 0 0
\(358\) −2.48528 −0.131351
\(359\) 23.1716i 1.22295i −0.791264 0.611474i \(-0.790577\pi\)
0.791264 0.611474i \(-0.209423\pi\)
\(360\) 7.93223 + 7.93223i 0.418065 + 0.418065i
\(361\) −4.31371 −0.227037
\(362\) −3.65706 3.65706i −0.192211 0.192211i
\(363\) −18.1606 + 18.1606i −0.953182 + 0.953182i
\(364\) −1.97908 + 1.97908i −0.103732 + 0.103732i
\(365\) 9.89949i 0.518163i
\(366\) 10.0000i 0.522708i
\(367\) 18.6089 18.6089i 0.971377 0.971377i −0.0282246 0.999602i \(-0.508985\pi\)
0.999602 + 0.0282246i \(0.00898536\pi\)
\(368\) −8.79045 + 8.79045i −0.458234 + 0.458234i
\(369\) 22.0803 + 22.0803i 1.14945 + 1.14945i
\(370\) 2.92893 0.152268
\(371\) −1.08239 1.08239i −0.0561950 0.0561950i
\(372\) 15.5147i 0.804401i
\(373\) 19.5563 1.01259 0.506295 0.862361i \(-0.331015\pi\)
0.506295 + 0.862361i \(0.331015\pi\)
\(374\) 0 0
\(375\) −31.7990 −1.64209
\(376\) 17.1716i 0.885556i
\(377\) −4.46088 4.46088i −0.229747 0.229747i
\(378\) 0.970563 0.0499204
\(379\) −0.765367 0.765367i −0.0393143 0.0393143i 0.687176 0.726491i \(-0.258850\pi\)
−0.726491 + 0.687176i \(0.758850\pi\)
\(380\) −11.5349 + 11.5349i −0.591728 + 0.591728i
\(381\) −31.9916 + 31.9916i −1.63898 + 1.63898i
\(382\) 8.28427i 0.423860i
\(383\) 5.51472i 0.281789i 0.990025 + 0.140894i \(0.0449978\pi\)
−0.990025 + 0.140894i \(0.955002\pi\)
\(384\) −19.5056 + 19.5056i −0.995390 + 0.995390i
\(385\) −1.53073 + 1.53073i −0.0780134 + 0.0780134i
\(386\) −1.62359 1.62359i −0.0826385 0.0826385i
\(387\) 18.4853 0.939660
\(388\) 8.32618 + 8.32618i 0.422698 + 0.422698i
\(389\) 16.1421i 0.818439i −0.912436 0.409219i \(-0.865801\pi\)
0.912436 0.409219i \(-0.134199\pi\)
\(390\) 2.82843 0.143223
\(391\) 0 0
\(392\) −9.24264 −0.466824
\(393\) 0.485281i 0.0244792i
\(394\) −4.36803 4.36803i −0.220058 0.220058i
\(395\) 7.65685 0.385258
\(396\) −5.35757 5.35757i −0.269228 0.269228i
\(397\) −19.2814 + 19.2814i −0.967707 + 0.967707i −0.999495 0.0317879i \(-0.989880\pi\)
0.0317879 + 0.999495i \(0.489880\pi\)
\(398\) 0.502734 0.502734i 0.0251998 0.0251998i
\(399\) 13.6569i 0.683698i
\(400\) 4.75736i 0.237868i
\(401\) 12.0761 12.0761i 0.603051 0.603051i −0.338070 0.941121i \(-0.609774\pi\)
0.941121 + 0.338070i \(0.109774\pi\)
\(402\) 5.22625 5.22625i 0.260662 0.260662i
\(403\) −3.24718 3.24718i −0.161753 0.161753i
\(404\) 24.5269 1.22026
\(405\) −7.61521 7.61521i −0.378403 0.378403i
\(406\) 2.00000i 0.0992583i
\(407\) −4.14214 −0.205318
\(408\) 0 0
\(409\) 19.3137 0.955001 0.477501 0.878631i \(-0.341543\pi\)
0.477501 + 0.878631i \(0.341543\pi\)
\(410\) 6.24264i 0.308302i
\(411\) 16.1271 + 16.1271i 0.795491 + 0.795491i
\(412\) −8.20101 −0.404035
\(413\) −4.59220 4.59220i −0.225967 0.225967i
\(414\) 4.64659 4.64659i 0.228368 0.228368i
\(415\) −0.448342 + 0.448342i −0.0220082 + 0.0220082i
\(416\) 6.24264i 0.306071i
\(417\) 39.1127i 1.91536i
\(418\) −1.53073 + 1.53073i −0.0748706 + 0.0748706i
\(419\) −19.0572 + 19.0572i −0.931008 + 0.931008i −0.997769 0.0667615i \(-0.978733\pi\)
0.0667615 + 0.997769i \(0.478733\pi\)
\(420\) 6.75699 + 6.75699i 0.329707 + 0.329707i
\(421\) −17.4142 −0.848717 −0.424358 0.905494i \(-0.639500\pi\)
−0.424358 + 0.905494i \(0.639500\pi\)
\(422\) −4.38396 4.38396i −0.213408 0.213408i
\(423\) 41.4558i 2.01565i
\(424\) −2.24264 −0.108912
\(425\) 0 0
\(426\) 14.1421 0.685189
\(427\) 10.0000i 0.483934i
\(428\) 8.15640 + 8.15640i 0.394255 + 0.394255i
\(429\) −4.00000 −0.193122
\(430\) −2.61313 2.61313i −0.126016 0.126016i
\(431\) 28.1647 28.1647i 1.35665 1.35665i 0.478631 0.878016i \(-0.341133\pi\)
0.878016 0.478631i \(-0.158867\pi\)
\(432\) −4.59220 + 4.59220i −0.220942 + 0.220942i
\(433\) 15.1716i 0.729099i 0.931184 + 0.364550i \(0.118777\pi\)
−0.931184 + 0.364550i \(0.881223\pi\)
\(434\) 1.45584i 0.0698828i
\(435\) −15.2304 + 15.2304i −0.730242 + 0.730242i
\(436\) −5.52735 + 5.52735i −0.264712 + 0.264712i
\(437\) 14.1480 + 14.1480i 0.676792 + 0.676792i
\(438\) −5.79899 −0.277086
\(439\) 7.70806 + 7.70806i 0.367886 + 0.367886i 0.866706 0.498820i \(-0.166233\pi\)
−0.498820 + 0.866706i \(0.666233\pi\)
\(440\) 3.17157i 0.151199i
\(441\) −22.3137 −1.06256
\(442\) 0 0
\(443\) 15.7990 0.750633 0.375316 0.926897i \(-0.377534\pi\)
0.375316 + 0.926897i \(0.377534\pi\)
\(444\) 18.2843i 0.867733i
\(445\) 12.3003 + 12.3003i 0.583088 + 0.583088i
\(446\) 0.343146 0.0162484
\(447\) −31.3575 31.3575i −1.48316 1.48316i
\(448\) −3.19278 + 3.19278i −0.150845 + 0.150845i
\(449\) 13.2898 13.2898i 0.627184 0.627184i −0.320174 0.947359i \(-0.603741\pi\)
0.947359 + 0.320174i \(0.103741\pi\)
\(450\) 2.51472i 0.118545i
\(451\) 8.82843i 0.415714i
\(452\) 20.9209 20.9209i 0.984038 0.984038i
\(453\) 23.7038 23.7038i 1.11370 1.11370i
\(454\) 1.47634 + 1.47634i 0.0692881 + 0.0692881i
\(455\) 2.82843 0.132599
\(456\) 14.1480 + 14.1480i 0.662542 + 0.662542i
\(457\) 18.8284i 0.880757i −0.897812 0.440378i \(-0.854844\pi\)
0.897812 0.440378i \(-0.145156\pi\)
\(458\) 9.45584 0.441843
\(459\) 0 0
\(460\) 14.0000 0.652753
\(461\) 24.0416i 1.11973i −0.828584 0.559865i \(-0.810853\pi\)
0.828584 0.559865i \(-0.189147\pi\)
\(462\) 0.896683 + 0.896683i 0.0417175 + 0.0417175i
\(463\) 30.6274 1.42338 0.711688 0.702495i \(-0.247931\pi\)
0.711688 + 0.702495i \(0.247931\pi\)
\(464\) −9.46297 9.46297i −0.439307 0.439307i
\(465\) −11.0866 + 11.0866i −0.514127 + 0.514127i
\(466\) −2.96861 + 2.96861i −0.137518 + 0.137518i
\(467\) 12.6274i 0.584327i −0.956368 0.292164i \(-0.905625\pi\)
0.956368 0.292164i \(-0.0943752\pi\)
\(468\) 9.89949i 0.457604i
\(469\) 5.22625 5.22625i 0.241326 0.241326i
\(470\) −5.86030 + 5.86030i −0.270316 + 0.270316i
\(471\) −3.06147 3.06147i −0.141065 0.141065i
\(472\) −9.51472 −0.437950
\(473\) 3.69552 + 3.69552i 0.169920 + 0.169920i
\(474\) 4.48528i 0.206016i
\(475\) −7.65685 −0.351321
\(476\) 0 0
\(477\) −5.41421 −0.247900
\(478\) 3.79899i 0.173762i
\(479\) 24.4692 + 24.4692i 1.11803 + 1.11803i 0.992031 + 0.125996i \(0.0402126\pi\)
0.125996 + 0.992031i \(0.459787\pi\)
\(480\) 21.3137 0.972833
\(481\) 3.82683 + 3.82683i 0.174489 + 0.174489i
\(482\) 3.60266 3.60266i 0.164097 0.164097i
\(483\) 8.28772 8.28772i 0.377104 0.377104i
\(484\) 17.9706i 0.816844i
\(485\) 11.8995i 0.540328i
\(486\) −6.36304 + 6.36304i −0.288633 + 0.288633i
\(487\) −3.11586 + 3.11586i −0.141193 + 0.141193i −0.774170 0.632977i \(-0.781833\pi\)
0.632977 + 0.774170i \(0.281833\pi\)
\(488\) 10.3596 + 10.3596i 0.468959 + 0.468959i
\(489\) −14.8284 −0.670565
\(490\) 3.15432 + 3.15432i 0.142498 + 0.142498i
\(491\) 25.1127i 1.13332i 0.823952 + 0.566660i \(0.191765\pi\)
−0.823952 + 0.566660i \(0.808235\pi\)
\(492\) 38.9706 1.75693
\(493\) 0 0
\(494\) 2.82843 0.127257
\(495\) 7.65685i 0.344150i
\(496\) −6.88830 6.88830i −0.309294 0.309294i
\(497\) 14.1421 0.634361
\(498\) 0.262632 + 0.262632i 0.0117688 + 0.0117688i
\(499\) −26.1857 + 26.1857i −1.17223 + 1.17223i −0.190554 + 0.981677i \(0.561028\pi\)
−0.981677 + 0.190554i \(0.938972\pi\)
\(500\) −15.7331 + 15.7331i −0.703608 + 0.703608i
\(501\) 26.1421i 1.16794i
\(502\) 1.45584i 0.0649775i
\(503\) 10.5838 10.5838i 0.471909 0.471909i −0.430623 0.902532i \(-0.641706\pi\)
0.902532 + 0.430623i \(0.141706\pi\)
\(504\) 4.64659 4.64659i 0.206976 0.206976i
\(505\) −17.5265 17.5265i −0.779920 0.779920i
\(506\) 1.85786 0.0825921
\(507\) −20.3253 20.3253i −0.902680 0.902680i
\(508\) 31.6569i 1.40455i
\(509\) 3.02944 0.134277 0.0671387 0.997744i \(-0.478613\pi\)
0.0671387 + 0.997744i \(0.478613\pi\)
\(510\) 0 0
\(511\) −5.79899 −0.256532
\(512\) 22.7574i 1.00574i
\(513\) 7.39104 + 7.39104i 0.326322 + 0.326322i
\(514\) −9.17157 −0.404541
\(515\) 5.86030 + 5.86030i 0.258236 + 0.258236i
\(516\) 16.3128 16.3128i 0.718131 0.718131i
\(517\) 8.28772 8.28772i 0.364493 0.364493i
\(518\) 1.71573i 0.0753848i
\(519\) 8.82843i 0.387525i
\(520\) 2.93015 2.93015i 0.128496 0.128496i
\(521\) 2.20325 2.20325i 0.0965260 0.0965260i −0.657195 0.753721i \(-0.728257\pi\)
0.753721 + 0.657195i \(0.228257\pi\)
\(522\) 5.00208 + 5.00208i 0.218935 + 0.218935i
\(523\) −6.82843 −0.298586 −0.149293 0.988793i \(-0.547700\pi\)
−0.149293 + 0.988793i \(0.547700\pi\)
\(524\) 0.240102 + 0.240102i 0.0104889 + 0.0104889i
\(525\) 4.48528i 0.195754i
\(526\) −2.68629 −0.117128
\(527\) 0 0
\(528\) −8.48528 −0.369274
\(529\) 5.82843i 0.253410i
\(530\) 0.765367 + 0.765367i 0.0332454 + 0.0332454i
\(531\) −22.9706 −0.996838
\(532\) 6.75699 + 6.75699i 0.292952 + 0.292952i
\(533\) 8.15640 8.15640i 0.353293 0.353293i
\(534\) 7.20533 7.20533i 0.311805 0.311805i
\(535\) 11.6569i 0.503970i
\(536\) 10.8284i 0.467717i
\(537\) −11.0866 + 11.0866i −0.478420 + 0.478420i
\(538\) −1.86369 + 1.86369i −0.0803494 + 0.0803494i
\(539\) −4.46088 4.46088i −0.192144 0.192144i
\(540\) 7.31371 0.314732
\(541\) −12.9728 12.9728i −0.557743 0.557743i 0.370921 0.928664i \(-0.379042\pi\)
−0.928664 + 0.370921i \(0.879042\pi\)
\(542\) 2.54416i 0.109281i
\(543\) −32.6274 −1.40018
\(544\) 0 0
\(545\) 7.89949 0.338377
\(546\) 1.65685i 0.0709068i
\(547\) −17.5265 17.5265i −0.749380 0.749380i 0.224983 0.974363i \(-0.427767\pi\)
−0.974363 + 0.224983i \(0.927767\pi\)
\(548\) 15.9584 0.681708
\(549\) 25.0104 + 25.0104i 1.06742 + 1.06742i
\(550\) −0.502734 + 0.502734i −0.0214367 + 0.0214367i
\(551\) −15.2304 + 15.2304i −0.648837 + 0.648837i
\(552\) 17.1716i 0.730871i
\(553\) 4.48528i 0.190734i
\(554\) 6.45589 6.45589i 0.274285 0.274285i
\(555\) 13.0656 13.0656i 0.554605 0.554605i
\(556\) 19.3517 + 19.3517i 0.820697 + 0.820697i
\(557\) 28.2426 1.19668 0.598340 0.801243i \(-0.295827\pi\)
0.598340 + 0.801243i \(0.295827\pi\)
\(558\) 3.64113 + 3.64113i 0.154141 + 0.154141i
\(559\) 6.82843i 0.288812i
\(560\) 6.00000 0.253546
\(561\) 0 0
\(562\) 7.41421 0.312750
\(563\) 38.7696i 1.63394i −0.576679 0.816971i \(-0.695652\pi\)
0.576679 0.816971i \(-0.304348\pi\)
\(564\) −36.5838 36.5838i −1.54045 1.54045i
\(565\) −29.8995 −1.25788
\(566\) 6.70259 + 6.70259i 0.281731 + 0.281731i
\(567\) −4.46088 + 4.46088i −0.187340 + 0.187340i
\(568\) 14.6508 14.6508i 0.614732 0.614732i
\(569\) 36.0416i 1.51094i −0.655181 0.755472i \(-0.727408\pi\)
0.655181 0.755472i \(-0.272592\pi\)
\(570\) 9.65685i 0.404481i
\(571\) −33.3910 + 33.3910i −1.39737 + 1.39737i −0.589873 + 0.807496i \(0.700822\pi\)
−0.807496 + 0.589873i \(0.799178\pi\)
\(572\) −1.97908 + 1.97908i −0.0827493 + 0.0827493i
\(573\) −36.9552 36.9552i −1.54382 1.54382i
\(574\) −3.65685 −0.152634
\(575\) 4.64659 + 4.64659i 0.193776 + 0.193776i
\(576\) 15.9706i 0.665440i
\(577\) 12.9289 0.538238 0.269119 0.963107i \(-0.413267\pi\)
0.269119 + 0.963107i \(0.413267\pi\)
\(578\) 0 0
\(579\) −14.4853 −0.601988
\(580\) 15.0711i 0.625792i
\(581\) 0.262632 + 0.262632i 0.0108958 + 0.0108958i
\(582\) −6.97056 −0.288939
\(583\) −1.08239 1.08239i −0.0448281 0.0448281i
\(584\) −6.00755 + 6.00755i −0.248594 + 0.248594i
\(585\) 7.07401 7.07401i 0.292474 0.292474i
\(586\) 9.79899i 0.404793i
\(587\) 22.6863i 0.936363i −0.883632 0.468182i \(-0.844909\pi\)
0.883632 0.468182i \(-0.155091\pi\)
\(588\) −19.6913 + 19.6913i −0.812055 + 0.812055i
\(589\) −11.0866 + 11.0866i −0.456814 + 0.456814i
\(590\) 3.24718 + 3.24718i 0.133684 + 0.133684i
\(591\) −38.9706 −1.60303
\(592\) 8.11794 + 8.11794i 0.333645 + 0.333645i
\(593\) 27.0711i 1.11168i −0.831291 0.555838i \(-0.812398\pi\)
0.831291 0.555838i \(-0.187602\pi\)
\(594\) 0.970563 0.0398227
\(595\) 0 0
\(596\) −31.0294 −1.27102
\(597\) 4.48528i 0.183570i
\(598\) −1.71644 1.71644i −0.0701906 0.0701906i
\(599\) −34.6274 −1.41484 −0.707419 0.706794i \(-0.750141\pi\)
−0.707419 + 0.706794i \(0.750141\pi\)
\(600\) 4.64659 + 4.64659i 0.189696 + 0.189696i
\(601\) 14.3722 14.3722i 0.586254 0.586254i −0.350361 0.936615i \(-0.613941\pi\)
0.936615 + 0.350361i \(0.113941\pi\)
\(602\) −1.53073 + 1.53073i −0.0623880 + 0.0623880i
\(603\) 26.1421i 1.06459i
\(604\) 23.4558i 0.954405i
\(605\) 12.8415 12.8415i 0.522080 0.522080i
\(606\) −10.2668 + 10.2668i −0.417060 + 0.417060i
\(607\) −24.2835 24.2835i −0.985637 0.985637i 0.0142614 0.999898i \(-0.495460\pi\)
−0.999898 + 0.0142614i \(0.995460\pi\)
\(608\) 21.3137 0.864385
\(609\) 8.92177 + 8.92177i 0.361528 + 0.361528i
\(610\) 7.07107i 0.286299i
\(611\) −15.3137 −0.619526
\(612\) 0 0
\(613\) −17.3137 −0.699294 −0.349647 0.936881i \(-0.613698\pi\)
−0.349647 + 0.936881i \(0.613698\pi\)
\(614\) 0.887302i 0.0358086i
\(615\) −27.8477 27.8477i −1.12293 1.12293i
\(616\) 1.85786 0.0748555
\(617\) 2.38896 + 2.38896i 0.0961757 + 0.0961757i 0.753558 0.657382i \(-0.228336\pi\)
−0.657382 + 0.753558i \(0.728336\pi\)
\(618\) 3.43289 3.43289i 0.138091 0.138091i
\(619\) −6.81138 + 6.81138i −0.273772 + 0.273772i −0.830617 0.556844i \(-0.812012\pi\)
0.556844 + 0.830617i \(0.312012\pi\)
\(620\) 10.9706i 0.440588i
\(621\) 8.97056i 0.359976i
\(622\) −1.32249 + 1.32249i −0.0530272 + 0.0530272i
\(623\) 7.20533 7.20533i 0.288675 0.288675i
\(624\) 7.83938 + 7.83938i 0.313826 + 0.313826i
\(625\) 14.5563 0.582254
\(626\) 3.73398 + 3.73398i 0.149240 + 0.149240i
\(627\) 13.6569i 0.545402i
\(628\) −3.02944 −0.120888
\(629\) 0 0
\(630\) −3.17157 −0.126358
\(631\) 6.68629i 0.266177i −0.991104 0.133089i \(-0.957511\pi\)
0.991104 0.133089i \(-0.0424895\pi\)
\(632\) −4.64659 4.64659i −0.184832 0.184832i
\(633\) −39.1127 −1.55459
\(634\) −1.70051 1.70051i −0.0675359 0.0675359i
\(635\) 22.6215 22.6215i 0.897705 0.897705i
\(636\) −4.77791 + 4.77791i −0.189456 + 0.189456i
\(637\) 8.24264i 0.326585i
\(638\) 2.00000i 0.0791808i
\(639\) 35.3701 35.3701i 1.39922 1.39922i
\(640\) 13.7925 13.7925i 0.545198 0.545198i
\(641\) −10.5998 10.5998i −0.418665 0.418665i 0.466078 0.884743i \(-0.345666\pi\)
−0.884743 + 0.466078i \(0.845666\pi\)
\(642\) −6.82843 −0.269497
\(643\) −28.3504 28.3504i −1.11803 1.11803i −0.992030 0.126002i \(-0.959785\pi\)
−0.126002 0.992030i \(-0.540215\pi\)
\(644\) 8.20101i 0.323165i
\(645\) −23.3137 −0.917976
\(646\) 0 0
\(647\) 2.82843 0.111197 0.0555985 0.998453i \(-0.482293\pi\)
0.0555985 + 0.998453i \(0.482293\pi\)
\(648\) 9.24264i 0.363085i
\(649\) −4.59220 4.59220i −0.180260 0.180260i
\(650\) 0.928932 0.0364357
\(651\) 6.49435 + 6.49435i 0.254534 + 0.254534i
\(652\) −7.33664 + 7.33664i −0.287325 + 0.287325i
\(653\) 12.5244 12.5244i 0.490119 0.490119i −0.418225 0.908344i \(-0.637348\pi\)
0.908344 + 0.418225i \(0.137348\pi\)
\(654\) 4.62742i 0.180946i
\(655\) 0.343146i 0.0134078i
\(656\) 17.3023 17.3023i 0.675543 0.675543i
\(657\) −14.5035 + 14.5035i −0.565836 + 0.565836i
\(658\) 3.43289 + 3.43289i 0.133828 + 0.133828i
\(659\) −8.48528 −0.330540 −0.165270 0.986248i \(-0.552849\pi\)
−0.165270 + 0.986248i \(0.552849\pi\)
\(660\) 6.75699 + 6.75699i 0.263015 + 0.263015i
\(661\) 41.2132i 1.60301i 0.597990 + 0.801504i \(0.295966\pi\)
−0.597990 + 0.801504i \(0.704034\pi\)
\(662\) −7.37258 −0.286544
\(663\) 0 0
\(664\) 0.544156 0.0211173
\(665\) 9.65685i 0.374477i
\(666\) −4.29111 4.29111i −0.166277 0.166277i
\(667\) 18.4853 0.715753
\(668\) 12.9343 + 12.9343i 0.500444 + 0.500444i
\(669\) 1.53073 1.53073i 0.0591816 0.0591816i
\(670\) −3.69552 + 3.69552i −0.142770 + 0.142770i
\(671\) 10.0000i 0.386046i
\(672\) 12.4853i 0.481630i
\(673\) −0.224171 + 0.224171i −0.00864115 + 0.00864115i −0.711414 0.702773i \(-0.751945\pi\)
0.702773 + 0.711414i \(0.251945\pi\)
\(674\) 10.0970 10.0970i 0.388923 0.388923i
\(675\) 2.42742 + 2.42742i 0.0934313 + 0.0934313i
\(676\) −20.1127 −0.773565
\(677\) 31.0564 + 31.0564i 1.19360 + 1.19360i 0.976050 + 0.217545i \(0.0698048\pi\)
0.217545 + 0.976050i \(0.430195\pi\)
\(678\) 17.5147i 0.672649i
\(679\) −6.97056 −0.267506
\(680\) 0 0
\(681\) 13.1716 0.504736
\(682\) 1.45584i 0.0557472i
\(683\) 22.1187 + 22.1187i 0.846349 + 0.846349i 0.989675 0.143326i \(-0.0457799\pi\)
−0.143326 + 0.989675i \(0.545780\pi\)
\(684\) 33.7990 1.29234
\(685\) −11.4036 11.4036i −0.435708 0.435708i
\(686\) 4.06694 4.06694i 0.155276 0.155276i
\(687\) 42.1814 42.1814i 1.60932 1.60932i
\(688\) 14.4853i 0.552246i
\(689\) 2.00000i 0.0761939i
\(690\) −5.86030 + 5.86030i −0.223098 + 0.223098i
\(691\) 28.7988 28.7988i 1.09556 1.09556i 0.100634 0.994924i \(-0.467913\pi\)
0.994924 0.100634i \(-0.0320870\pi\)
\(692\) 4.36803 + 4.36803i 0.166048 + 0.166048i
\(693\) 4.48528 0.170382
\(694\) 1.13679 + 1.13679i 0.0431518 + 0.0431518i
\(695\) 27.6569i 1.04908i
\(696\) 18.4853 0.700683
\(697\) 0 0
\(698\) −1.75736 −0.0665170
\(699\) 26.4853i 1.00177i
\(700\) 2.21918 + 2.21918i 0.0838770 + 0.0838770i
\(701\) 21.6985 0.819540 0.409770 0.912189i \(-0.365609\pi\)
0.409770 + 0.912189i \(0.365609\pi\)
\(702\) −0.896683 0.896683i −0.0338431 0.0338431i
\(703\) 13.0656 13.0656i 0.492780 0.492780i
\(704\) −3.19278 + 3.19278i −0.120333 + 0.120333i
\(705\) 52.2843i 1.96914i
\(706\) 5.79899i 0.218248i
\(707\) −10.2668 + 10.2668i −0.386123 + 0.386123i
\(708\) −20.2710 + 20.2710i −0.761829 + 0.761829i
\(709\) −8.19486 8.19486i −0.307765 0.307765i 0.536277 0.844042i \(-0.319830\pi\)
−0.844042 + 0.536277i \(0.819830\pi\)
\(710\) −10.0000 −0.375293
\(711\) −11.2179 11.2179i −0.420703 0.420703i
\(712\) 14.9289i 0.559485i
\(713\) 13.4558 0.503925
\(714\) 0 0
\(715\) 2.82843 0.105777
\(716\) 10.9706i 0.409989i
\(717\) 16.9469 + 16.9469i 0.632892 + 0.632892i
\(718\) 9.59798 0.358193
\(719\) −9.94977 9.94977i −0.371064 0.371064i 0.496801 0.867865i \(-0.334508\pi\)
−0.867865 + 0.496801i \(0.834508\pi\)
\(720\) 15.0062 15.0062i 0.559250 0.559250i
\(721\) 3.43289 3.43289i 0.127847 0.127847i
\(722\) 1.78680i 0.0664977i
\(723\) 32.1421i 1.19538i
\(724\) −16.1430 + 16.1430i −0.599951 + 0.599951i
\(725\) −5.00208 + 5.00208i −0.185773 + 0.185773i
\(726\) −7.52235 7.52235i −0.279181 0.279181i
\(727\) −19.1127 −0.708851 −0.354425 0.935084i \(-0.615324\pi\)
−0.354425 + 0.935084i \(0.615324\pi\)
\(728\) −1.71644 1.71644i −0.0636156 0.0636156i
\(729\) 39.2843i 1.45497i
\(730\) 4.10051 0.151767
\(731\) 0 0
\(732\) 44.1421 1.63154
\(733\) 12.0416i 0.444768i 0.974959 + 0.222384i \(0.0713838\pi\)
−0.974959 + 0.222384i \(0.928616\pi\)
\(734\) 7.70806 + 7.70806i 0.284510 + 0.284510i
\(735\) 28.1421 1.03804
\(736\) −12.9343 12.9343i −0.476765 0.476765i
\(737\) 5.22625 5.22625i 0.192511 0.192511i
\(738\) −9.14594 + 9.14594i −0.336667 + 0.336667i
\(739\) 34.2843i 1.26117i −0.776121 0.630584i \(-0.782816\pi\)
0.776121 0.630584i \(-0.217184\pi\)
\(740\) 12.9289i 0.475277i
\(741\) 12.6173 12.6173i 0.463508 0.463508i
\(742\) 0.448342 0.448342i 0.0164591 0.0164591i
\(743\) 34.8448 + 34.8448i 1.27833 + 1.27833i 0.941601 + 0.336730i \(0.109321\pi\)
0.336730 + 0.941601i \(0.390679\pi\)
\(744\) 13.4558 0.493315
\(745\) 22.1731 + 22.1731i 0.812360 + 0.812360i
\(746\) 8.10051i 0.296581i
\(747\) 1.31371 0.0480661
\(748\) 0 0
\(749\) −6.82843 −0.249505
\(750\) 13.1716i 0.480958i
\(751\) 18.5320 + 18.5320i 0.676242 + 0.676242i 0.959148 0.282906i \(-0.0912984\pi\)
−0.282906 + 0.959148i \(0.591298\pi\)
\(752\) −32.4853 −1.18462
\(753\) −6.49435 6.49435i −0.236667 0.236667i
\(754\) 1.84776 1.84776i 0.0672914 0.0672914i
\(755\) −16.7611 + 16.7611i −0.610001 + 0.610001i
\(756\) 4.28427i 0.155817i
\(757\) 53.4558i 1.94289i 0.237274 + 0.971443i \(0.423746\pi\)
−0.237274 + 0.971443i \(0.576254\pi\)
\(758\) 0.317025 0.317025i 0.0115149 0.0115149i
\(759\) 8.28772 8.28772i 0.300825 0.300825i
\(760\) −10.0042 10.0042i −0.362889 0.362889i
\(761\) 21.6985 0.786569 0.393285 0.919417i \(-0.371339\pi\)
0.393285 + 0.919417i \(0.371339\pi\)
\(762\) −13.2513 13.2513i −0.480045 0.480045i
\(763\) 4.62742i 0.167524i
\(764\) −36.5685 −1.32300
\(765\) 0 0
\(766\) −2.28427 −0.0825341
\(767\) 8.48528i 0.306386i
\(768\) 7.33664 + 7.33664i 0.264738 + 0.264738i
\(769\) 12.7279 0.458981 0.229490 0.973311i \(-0.426294\pi\)
0.229490 + 0.973311i \(0.426294\pi\)
\(770\) −0.634051 0.634051i −0.0228496 0.0228496i
\(771\) −40.9133 + 40.9133i −1.47346 + 1.47346i
\(772\) −7.16687 + 7.16687i −0.257941 + 0.257941i
\(773\) 4.82843i 0.173666i 0.996223 + 0.0868332i \(0.0276747\pi\)
−0.996223 + 0.0868332i \(0.972325\pi\)
\(774\) 7.65685i 0.275220i
\(775\) −3.64113 + 3.64113i −0.130793 + 0.130793i
\(776\) −7.22126 + 7.22126i −0.259228 + 0.259228i
\(777\) −7.65367 7.65367i −0.274574 0.274574i
\(778\) 6.68629 0.239715
\(779\) −27.8477 27.8477i −0.997747 0.997747i
\(780\) 12.4853i 0.447045i
\(781\) 14.1421 0.506045
\(782\) 0 0
\(783\) 9.65685 0.345108
\(784\) 17.4853i 0.624474i
\(785\) 2.16478 + 2.16478i 0.0772645 + 0.0772645i
\(786\) −0.201010 −0.00716979
\(787\) 35.1074 + 35.1074i 1.25144 + 1.25144i 0.955073 + 0.296372i \(0.0957768\pi\)
0.296372 + 0.955073i \(0.404223\pi\)
\(788\) −19.2814 + 19.2814i −0.686872 + 0.686872i
\(789\) −11.9832 + 11.9832i −0.426615 + 0.426615i
\(790\) 3.17157i 0.112839i
\(791\) 17.5147i 0.622752i
\(792\) 4.64659 4.64659i 0.165110 0.165110i
\(793\) 9.23880 9.23880i 0.328079 0.328079i
\(794\) −7.98663 7.98663i −0.283435 0.283435i
\(795\) 6.82843 0.242179
\(796\) −2.21918 2.21918i −0.0786567 0.0786567i
\(797\) 17.2132i 0.609723i −0.952397 0.304861i \(-0.901390\pi\)
0.952397 0.304861i \(-0.0986102\pi\)
\(798\) −5.65685 −0.200250
\(799\) 0 0
\(800\) 7.00000 0.247487
\(801\) 36.0416i 1.27347i
\(802\) 5.00208 + 5.00208i 0.176630 + 0.176630i
\(803\) −5.79899 −0.204642
\(804\) −23.0698 23.0698i −0.813609 0.813609i
\(805\) −5.86030 + 5.86030i −0.206549 + 0.206549i
\(806\) 1.34502 1.34502i 0.0473765 0.0473765i
\(807\) 16.6274i 0.585313i
\(808\) 21.2721i 0.748349i
\(809\) −21.0523 + 21.0523i −0.740158 + 0.740158i −0.972608 0.232450i \(-0.925326\pi\)
0.232450 + 0.972608i \(0.425326\pi\)
\(810\) 3.15432 3.15432i 0.110832 0.110832i
\(811\) 31.3031 + 31.3031i 1.09920 + 1.09920i 0.994504 + 0.104697i \(0.0333873\pi\)
0.104697 + 0.994504i \(0.466613\pi\)
\(812\) 8.82843 0.309817
\(813\) 11.3492 + 11.3492i 0.398033 + 0.398033i
\(814\) 1.71573i 0.0601363i
\(815\) 10.4853 0.367283
\(816\) 0 0
\(817\) −23.3137 −0.815643
\(818\) 8.00000i 0.279713i
\(819\) −4.14386 4.14386i −0.144798 0.144798i
\(820\) −27.5563 −0.962309
\(821\) 10.1739 + 10.1739i 0.355073 + 0.355073i 0.861993 0.506920i \(-0.169216\pi\)
−0.506920 + 0.861993i \(0.669216\pi\)
\(822\) −6.68006 + 6.68006i −0.232994 + 0.232994i
\(823\) −16.6298 + 16.6298i −0.579679 + 0.579679i −0.934815 0.355135i \(-0.884435\pi\)
0.355135 + 0.934815i \(0.384435\pi\)
\(824\) 7.11270i 0.247783i
\(825\) 4.48528i 0.156157i
\(826\) 1.90215 1.90215i 0.0661843 0.0661843i
\(827\) −24.5461 + 24.5461i −0.853553 + 0.853553i −0.990569 0.137016i \(-0.956249\pi\)
0.137016 + 0.990569i \(0.456249\pi\)
\(828\) −20.5111 20.5111i −0.712809 0.712809i
\(829\) 13.9411 0.484195 0.242098 0.970252i \(-0.422165\pi\)
0.242098 + 0.970252i \(0.422165\pi\)
\(830\) −0.185709 0.185709i −0.00644606 0.00644606i
\(831\) 57.5980i 1.99805i
\(832\) 5.89949 0.204528
\(833\) 0 0
\(834\) −16.2010 −0.560995
\(835\) 18.4853i 0.639710i
\(836\) 6.75699 + 6.75699i 0.233695 + 0.233695i
\(837\) 7.02944 0.242973
\(838\) −7.89377 7.89377i −0.272686 0.272686i
\(839\) 2.74444 2.74444i 0.0947487 0.0947487i −0.658144 0.752892i \(-0.728658\pi\)
0.752892 + 0.658144i \(0.228658\pi\)
\(840\) −5.86030 + 5.86030i −0.202200 + 0.202200i
\(841\) 9.10051i 0.313811i
\(842\) 7.21320i 0.248583i
\(843\) 33.0740 33.0740i 1.13913 1.13913i
\(844\) −19.3517 + 19.3517i −0.666114 + 0.666114i
\(845\) 14.3722 + 14.3722i 0.494418 + 0.494418i
\(846\) 17.1716 0.590371
\(847\) −7.52235 7.52235i −0.258471 0.258471i
\(848\) 4.24264i 0.145693i
\(849\) 59.7990 2.05230
\(850\) 0 0
\(851\) −15.8579 −0.543601
\(852\) 62.4264i 2.13869i
\(853\) −30.1053 30.1053i −1.03079 1.03079i −0.999511 0.0312765i \(-0.990043\pi\)
−0.0312765 0.999511i \(-0.509957\pi\)
\(854\) −4.14214 −0.141741
\(855\) −24.1522 24.1522i −0.825987 0.825987i
\(856\) −7.07401 + 7.07401i −0.241785 + 0.241785i
\(857\) 2.70598 2.70598i 0.0924345 0.0924345i −0.659377 0.751812i \(-0.729180\pi\)
0.751812 + 0.659377i \(0.229180\pi\)
\(858\) 1.65685i 0.0565641i
\(859\) 1.02944i 0.0351239i −0.999846 0.0175620i \(-0.994410\pi\)
0.999846 0.0175620i \(-0.00559044\pi\)
\(860\) −11.5349 + 11.5349i −0.393337 + 0.393337i
\(861\) −16.3128 + 16.3128i −0.555939 + 0.555939i
\(862\) 11.6662 + 11.6662i 0.397353 + 0.397353i
\(863\) −34.6274 −1.17873 −0.589365 0.807867i \(-0.700622\pi\)
−0.589365 + 0.807867i \(0.700622\pi\)
\(864\) −6.75699 6.75699i −0.229877 0.229877i
\(865\) 6.24264i 0.212256i
\(866\) −6.28427 −0.213548
\(867\) 0 0
\(868\) 6.42641 0.218126
\(869\) 4.48528i 0.152153i
\(870\) −6.30864 6.30864i −0.213883 0.213883i
\(871\) −9.65685 −0.327210
\(872\) −4.79384 4.79384i −0.162340 0.162340i
\(873\) −17.4337 + 17.4337i −0.590040 + 0.590040i
\(874\) −5.86030 + 5.86030i −0.198228 + 0.198228i
\(875\) 13.1716i 0.445280i
\(876\) 25.5980i 0.864876i
\(877\) −26.6181 + 26.6181i −0.898828 + 0.898828i −0.995333 0.0965044i \(-0.969234\pi\)
0.0965044 + 0.995333i \(0.469234\pi\)
\(878\) −3.19278 + 3.19278i −0.107751 + 0.107751i
\(879\) 43.7122 + 43.7122i 1.47437 + 1.47437i
\(880\) 6.00000 0.202260
\(881\) 13.1041 + 13.1041i 0.441488 + 0.441488i 0.892512 0.451024i \(-0.148941\pi\)
−0.451024 + 0.892512i \(0.648941\pi\)
\(882\) 9.24264i 0.311216i
\(883\) −8.00000 −0.269221 −0.134611 0.990899i \(-0.542978\pi\)
−0.134611 + 0.990899i \(0.542978\pi\)
\(884\) 0 0
\(885\) 28.9706 0.973835
\(886\) 6.54416i 0.219855i
\(887\) −34.5503 34.5503i −1.16009 1.16009i −0.984456 0.175629i \(-0.943804\pi\)
−0.175629 0.984456i \(-0.556196\pi\)
\(888\) −15.8579 −0.532155
\(889\) −13.2513 13.2513i −0.444436 0.444436i
\(890\) −5.09494 + 5.09494i −0.170783 + 0.170783i
\(891\) −4.46088 + 4.46088i −0.149445 + 0.149445i
\(892\) 1.51472i 0.0507165i
\(893\) 52.2843i 1.74963i
\(894\) 12.9887 12.9887i 0.434407 0.434407i
\(895\) 7.83938 7.83938i 0.262041 0.262041i
\(896\) −8.07948 8.07948i −0.269916 0.269916i
\(897\) −15.3137 −0.511310
\(898\) 5.50482 + 5.50482i 0.183698 + 0.183698i
\(899\) 14.4853i 0.483111i
\(900\) 11.1005 0.370017
\(901\) 0 0
\(902\) −3.65685 −0.121760
\(903\) 13.6569i 0.454472i
\(904\) 18.1446 + 18.1446i 0.603482 + 0.603482i
\(905\) 23.0711 0.766908
\(906\) 9.81845 + 9.81845i 0.326196 + 0.326196i
\(907\) 17.7122 17.7122i 0.588125 0.588125i −0.348999 0.937123i \(-0.613478\pi\)
0.937123 + 0.348999i \(0.113478\pi\)
\(908\) 6.51688 6.51688i 0.216270 0.216270i
\(909\) 51.3553i 1.70335i
\(910\) 1.17157i 0.0388373i
\(911\) −5.99162 + 5.99162i −0.198511 + 0.198511i −0.799362 0.600850i \(-0.794829\pi\)
0.600850 + 0.799362i \(0.294829\pi\)
\(912\) 26.7653 26.7653i 0.886288 0.886288i
\(913\) 0.262632 + 0.262632i 0.00869186 + 0.00869186i
\(914\) 7.79899 0.257968
\(915\) −31.5432 31.5432i −1.04279 1.04279i
\(916\) 41.7401i 1.37913i
\(917\) −0.201010 −0.00663794
\(918\) 0 0
\(919\) −3.31371 −0.109309 −0.0546546 0.998505i \(-0.517406\pi\)
−0.0546546 + 0.998505i \(0.517406\pi\)
\(920\) 12.1421i 0.400314i
\(921\) 3.95815 + 3.95815i 0.130425 + 0.130425i
\(922\) 9.95837 0.327961
\(923\) −13.0656 13.0656i −0.430060 0.430060i
\(924\) 3.95815 3.95815i 0.130214 0.130214i
\(925\) 4.29111 4.29111i 0.141091 0.141091i
\(926\) 12.6863i 0.416897i
\(927\) 17.1716i 0.563988i
\(928\) 13.9239 13.9239i 0.457073 0.457073i
\(929\) 14.8205 14.8205i 0.486246 0.486246i −0.420873 0.907119i \(-0.638276\pi\)
0.907119 + 0.420873i \(0.138276\pi\)
\(930\) −4.59220 4.59220i −0.150584 0.150584i
\(931\) 28.1421 0.922321
\(932\) 13.1041 + 13.1041i 0.429239 + 0.429239i
\(933\) 11.7990i 0.386282i
\(934\) 5.23045 0.171145
\(935\) 0 0
\(936\) −8.58579 −0.280635
\(937\) 3.55635i 0.116181i −0.998311 0.0580904i \(-0.981499\pi\)
0.998311 0.0580904i \(-0.0185012\pi\)
\(938\) 2.16478 + 2.16478i 0.0706827 + 0.0706827i
\(939\) 33.3137 1.08715
\(940\) 25.8686 + 25.8686i 0.843742 + 0.843742i
\(941\) −13.2129 + 13.2129i −0.430727 + 0.430727i −0.888876 0.458148i \(-0.848513\pi\)
0.458148 + 0.888876i \(0.348513\pi\)
\(942\) 1.26810 1.26810i 0.0413170 0.0413170i
\(943\) 33.7990i 1.10065i
\(944\) 18.0000i 0.585850i
\(945\) −3.06147 + 3.06147i −0.0995895 + 0.0995895i
\(946\) −1.53073 + 1.53073i −0.0497684 + 0.0497684i
\(947\) 10.5069 + 10.5069i 0.341428 + 0.341428i 0.856904 0.515476i \(-0.172385\pi\)
−0.515476 + 0.856904i \(0.672385\pi\)
\(948\) −19.7990 −0.643041
\(949\) 5.35757 + 5.35757i 0.173914 + 0.173914i
\(950\) 3.17157i 0.102899i
\(951\) −15.1716 −0.491972
\(952\) 0 0
\(953\) −9.69848 −0.314165 −0.157082 0.987586i \(-0.550209\pi\)
−0.157082 + 0.987586i \(0.550209\pi\)
\(954\) 2.24264i 0.0726082i
\(955\) 26.1313 + 26.1313i 0.845588 + 0.845588i
\(956\) 16.7696 0.542366
\(957\) 8.92177 + 8.92177i 0.288400 + 0.288400i
\(958\) −10.1355 + 10.1355i −0.327462 + 0.327462i
\(959\) −6.68006 + 6.68006i −0.215710 + 0.215710i
\(960\) 20.1421i 0.650085i
\(961\) 20.4558i 0.659866i
\(962\) −1.58513 + 1.58513i −0.0511065 + 0.0511065i
\(963\) −17.0782 + 17.0782i −0.550336 + 0.550336i
\(964\) −15.9029 15.9029i −0.512199 0.512199i
\(965\) 10.2426 0.329722
\(966\) 3.43289 + 3.43289i 0.110451 + 0.110451i
\(967\) 32.3431i 1.04009i 0.854140 + 0.520043i \(0.174084\pi\)
−0.854140 + 0.520043i \(0.825916\pi\)
\(968\) −15.5858 −0.500946
\(969\) 0 0
\(970\) 4.92893 0.158258
\(971\) 55.7401i 1.78879i 0.447283 + 0.894393i \(0.352392\pi\)
−0.447283 + 0.894393i \(0.647608\pi\)
\(972\) 28.0878 + 28.0878i 0.900917 + 0.900917i
\(973\) −16.2010 −0.519381
\(974\) −1.29063 1.29063i −0.0413545 0.0413545i
\(975\) 4.14386 4.14386i 0.132710 0.132710i
\(976\) 19.5984 19.5984i 0.627331 0.627331i
\(977\) 1.61522i 0.0516756i −0.999666 0.0258378i \(-0.991775\pi\)
0.999666 0.0258378i \(-0.00822534\pi\)
\(978\) 6.14214i 0.196404i
\(979\) 7.20533 7.20533i 0.230283 0.230283i
\(980\) 13.9239 13.9239i 0.444781 0.444781i
\(981\) −11.5734 11.5734i −0.369509 0.369509i
\(982\) −10.4020 −0.331942
\(983\) −16.6298 16.6298i −0.530409 0.530409i 0.390285 0.920694i \(-0.372377\pi\)
−0.920694 + 0.390285i \(0.872377\pi\)
\(984\) 33.7990i 1.07747i
\(985\) 27.5563 0.878018
\(986\) 0 0
\(987\) 30.6274 0.974881
\(988\) 12.4853i 0.397210i
\(989\) 14.1480 + 14.1480i 0.449881 + 0.449881i
\(990\) −3.17157 −0.100799
\(991\) −22.6758 22.6758i −0.720322 0.720322i 0.248349 0.968671i \(-0.420112\pi\)
−0.968671 + 0.248349i \(0.920112\pi\)
\(992\) 10.1355 10.1355i 0.321802 0.321802i
\(993\) −32.8882 + 32.8882i −1.04368 + 1.04368i
\(994\) 5.85786i 0.185800i
\(995\) 3.17157i 0.100546i
\(996\) 1.15932 1.15932i 0.0367343 0.0367343i
\(997\) −5.45042 + 5.45042i −0.172617 + 0.172617i −0.788128 0.615511i \(-0.788950\pi\)
0.615511 + 0.788128i \(0.288950\pi\)
\(998\) −10.8465 10.8465i −0.343338 0.343338i
\(999\) −8.28427 −0.262103
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 289.2.c.c.251.4 8
17.2 even 8 289.2.a.f.1.2 4
17.3 odd 16 289.2.d.c.134.1 4
17.4 even 4 inner 289.2.c.c.38.2 8
17.5 odd 16 17.2.d.a.2.1 4
17.6 odd 16 289.2.d.a.179.1 4
17.7 odd 16 289.2.d.c.110.1 4
17.8 even 8 289.2.b.b.288.3 4
17.9 even 8 289.2.b.b.288.4 4
17.10 odd 16 289.2.d.b.110.1 4
17.11 odd 16 17.2.d.a.9.1 yes 4
17.12 odd 16 289.2.d.a.155.1 4
17.13 even 4 inner 289.2.c.c.38.1 8
17.14 odd 16 289.2.d.b.134.1 4
17.15 even 8 289.2.a.f.1.1 4
17.16 even 2 inner 289.2.c.c.251.3 8
51.2 odd 8 2601.2.a.bb.1.3 4
51.5 even 16 153.2.l.c.19.1 4
51.11 even 16 153.2.l.c.145.1 4
51.32 odd 8 2601.2.a.bb.1.4 4
68.11 even 16 272.2.v.d.145.1 4
68.15 odd 8 4624.2.a.bp.1.4 4
68.19 odd 8 4624.2.a.bp.1.1 4
68.39 even 16 272.2.v.d.257.1 4
85.19 even 8 7225.2.a.u.1.3 4
85.22 even 16 425.2.n.b.274.1 4
85.28 even 16 425.2.n.b.349.1 4
85.39 odd 16 425.2.m.a.376.1 4
85.49 even 8 7225.2.a.u.1.4 4
85.62 even 16 425.2.n.a.349.1 4
85.73 even 16 425.2.n.a.274.1 4
85.79 odd 16 425.2.m.a.26.1 4
119.5 even 48 833.2.v.a.410.1 8
119.11 odd 48 833.2.v.b.128.1 8
119.39 odd 48 833.2.v.b.716.1 8
119.45 even 48 833.2.v.a.128.1 8
119.62 even 16 833.2.l.a.638.1 4
119.73 even 48 833.2.v.a.716.1 8
119.79 odd 48 833.2.v.b.655.1 8
119.90 even 16 833.2.l.a.393.1 4
119.96 even 48 833.2.v.a.655.1 8
119.107 odd 48 833.2.v.b.410.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.2.d.a.2.1 4 17.5 odd 16
17.2.d.a.9.1 yes 4 17.11 odd 16
153.2.l.c.19.1 4 51.5 even 16
153.2.l.c.145.1 4 51.11 even 16
272.2.v.d.145.1 4 68.11 even 16
272.2.v.d.257.1 4 68.39 even 16
289.2.a.f.1.1 4 17.15 even 8
289.2.a.f.1.2 4 17.2 even 8
289.2.b.b.288.3 4 17.8 even 8
289.2.b.b.288.4 4 17.9 even 8
289.2.c.c.38.1 8 17.13 even 4 inner
289.2.c.c.38.2 8 17.4 even 4 inner
289.2.c.c.251.3 8 17.16 even 2 inner
289.2.c.c.251.4 8 1.1 even 1 trivial
289.2.d.a.155.1 4 17.12 odd 16
289.2.d.a.179.1 4 17.6 odd 16
289.2.d.b.110.1 4 17.10 odd 16
289.2.d.b.134.1 4 17.14 odd 16
289.2.d.c.110.1 4 17.7 odd 16
289.2.d.c.134.1 4 17.3 odd 16
425.2.m.a.26.1 4 85.79 odd 16
425.2.m.a.376.1 4 85.39 odd 16
425.2.n.a.274.1 4 85.73 even 16
425.2.n.a.349.1 4 85.62 even 16
425.2.n.b.274.1 4 85.22 even 16
425.2.n.b.349.1 4 85.28 even 16
833.2.l.a.393.1 4 119.90 even 16
833.2.l.a.638.1 4 119.62 even 16
833.2.v.a.128.1 8 119.45 even 48
833.2.v.a.410.1 8 119.5 even 48
833.2.v.a.655.1 8 119.96 even 48
833.2.v.a.716.1 8 119.73 even 48
833.2.v.b.128.1 8 119.11 odd 48
833.2.v.b.410.1 8 119.107 odd 48
833.2.v.b.655.1 8 119.79 odd 48
833.2.v.b.716.1 8 119.39 odd 48
2601.2.a.bb.1.3 4 51.2 odd 8
2601.2.a.bb.1.4 4 51.32 odd 8
4624.2.a.bp.1.1 4 68.19 odd 8
4624.2.a.bp.1.4 4 68.15 odd 8
7225.2.a.u.1.3 4 85.19 even 8
7225.2.a.u.1.4 4 85.49 even 8